
1

H-Mine: Hyper-Structure
Mining of Frequent Patterns in

Large Databases

J. Pei, J. Han, H. Lu, S. Nishio, S. Tang,
and D. Yang

Int. Conf. on Data Mining (ICDM'01), San
Jose, CA

Presented by Leonid Mocofan 2

Paper’s goals

■ Introduce a new data structure: H-struct

■ Introduce a new mining algorithm: H-mine

■ Introduce a new data mining methodology:
space-preserving mining

3

Why a new algorithm ?

■ Two current algorithm categories:
– Candidate generation-and-test approach:

• E.g., Apriori algorithm

– Pattern growth methods:
• E.g., FP-growth, TreeProjection

■ They have performance bottlenecks:
– Huge space required for mining
– Real databases contain all the cases
– Large applications need more scalability

4

H-mine characteristics

■ It has limited and precisely predictable
space overhead.

■ It can scale up to very large databases
by using database partitioning

■ When the data sets are dense, it can
switch to use FP-trees to continue the
mining process

5

Frequent pattern mining
introduction

■ set of items: I = {x1,…,xn}

■ itemset X: subset of items (X ⊆ I)
■ transaction: T=(tid, X)
■ transaction database: TBD
■ support(X): number of transactions in

TDB containing X

6

Frequent pattern mining
definitions

Frequent pattern: For a transaction database
TDB and a support threshold min_sup, X is a
frequent pattern if and only if sup(X)≥min_sup

Frequent pattern mining: Finding the
complete set of frequent patterns in a given
transaction database with respect to a given
support threshold.

7

H-mine algorithm

1. H-mine(Mem) – memory based,
efficient pattern-growth algorithm

2. H-mine based on H-mine(Mem) for
large databases by first partitioning the
database

3. For dense data sets, H-mine is
integrated with FP-growth dynamically

8

H-mine(Mem) – Example

 Header
Table H

a c d e g
3 3 4 3 2

frequent
projections

100

200

300

400

c d e g

a c d E

a d e g

a c d

H-struct

Trans
ID

Items Frequent-item
projection

100 c,d,e,f,g,i c,d,e,g
200 a,c,d,e,m a,c,d,e
300 a,b,d,e,g,k a,d,e,g
400 a,c,d,h a,c,d

 minimum support threshold is 2

 F-list: a-c-d-e-g

9

H eader
T able Ha

H eader
T able H

a c d e g
3 3 4 3 2

frequent
pro jections

100

200

300

400

c d e g

a c d g

a d e g

a c d

H eader tab le H a and ac-queue

c d e g
2 3 2 1

H-mine(Mem) – Example

10

Header
Table H

a c d e g
3 3 4 3 2

frequent
projections

100

200

300

400

c d e g

a c d g

a d e g

a c d

Header table Hac

c d e g
2 3 2 1

d e
2 1

Header
Table Ha

Header
Table Hac

H-mine(Mem) – Example

11

H-mine(Mem) – Example

H eader
T able H

H eader
T able H

a c d e g
3 3 4 3 2

frequent
pro jections

100

200

300

400

c d e g

a c d g

a d e g

a c d

H eader tab le H a and ad-queue

c d e g
2 3 2 1

12

Header
Table H

a c d e g
3 3 4 3 2

frequent
projections

100

200

300

400

c d e g

a c d e

a d e g

a c d

Adjusted hyper-links after mining
a-projected database

H-mine(Mem) – Example

13

H-mine: Mining large databases

■ TDB transaction database (size n)

■ Minimum support threshold min_sup

■ Find L, the set of frequent items

■ TDB partitioned in k parts (TDBi, 1≤i≤k)
14

H-mine: Mining large databases

min_sup ∗ ni/n

■ Apply H-mine(Mem) to TDBi with minimum
support threshold

■ Combine Fi, set of locally frequent pattern in
TDBi, to get the globally frequent patterns.

15

H-mine – Example

■ TDB split in P1,P2,P3,P4

■ Minimum support threshold 100

■ Frequent patterns: ab, ac, ad, abc

 Local freq. pat. Partitions Accumulated sup.cnt

ab P1,P2,P3,P4 280
ac P1,P2,P3,P4 320
ad P1,P2,P3,P4 260
abc P1,P3,P4 120
abcd P1,P4 40
… … …

16

Performance

■ H-mine has better runtime performance
on both sparse and dense data than
FP-growth and Apriori

■ H-mine has better space usage on both
sparse and dense data than FP-growth
and Apriori

■ H-mine performs well with very large
databases too

17

Conclusions

H-mine:
■ has high performance

■ is scalable in all kinds of data
■ has very small space overhead
■ can dynamically adapt to input data

■ introduces structure- and space-
preserving mining methodology

18

Bibliography

■ “H-Mine: Hyper-Structure Mining of Frequent
Patterns in Large Databases”, J. Pei, J. Han, H. Lu,
S. Nishio, S. Tang, and D. Yang, Int. Conf. on Data
Mining (ICDM'01), San Jose, CA, Nov. 2001.

■ “Mining Frequent Patterns without Candidate
Generation”, J. Han, J. Pei, and Y. Yin, ACM-
SIGMOD 2000, Dallas, TX, May 2000.

■ “Data Mining: Concepts and Techniques”, Jiawei Han
and Micheline Kamber, The Morgan Kaufmann Pub.,
2001.

