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Paper’s goals

■ Introduce a new data structure: H-struct

■ Introduce a new mining algorithm: H-mine

■ Introduce a new data mining methodology:
space-preserving mining
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Why a new algorithm ?

■ Two current algorithm categories:
– Candidate generation-and-test approach:

• E.g., Apriori algorithm

– Pattern growth methods:
• E.g., FP-growth, TreeProjection

■ They have performance bottlenecks:
– Huge space required for mining
– Real databases contain all the cases
– Large applications need more scalability
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H-mine characteristics

■ It has limited and precisely predictable 
space overhead.

■ It can scale up to very large databases 
by using database partitioning

■ When the data sets are dense, it can 
switch to use FP-trees to continue the 
mining process
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Frequent pattern mining
introduction

■ set of items:  I = {x1,…,xn}

■ itemset X: subset of items (X ⊆ I)
■ transaction: T=(tid, X)
■ transaction database: TBD 
■ support(X): number of transactions in  

TDB containing X
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Frequent pattern mining
definitions

Frequent pattern: For a transaction database 
TDB and a support threshold min_sup, X is a 
frequent pattern if and only if sup(X)≥min_sup

Frequent pattern mining: Finding the 
complete set of frequent patterns in a given 
transaction database with respect to a given 
support threshold.
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H-mine algorithm

1. H-mine(Mem) – memory based, 
efficient pattern-growth algorithm

2. H-mine based on H-mine(Mem) for 
large databases by first partitioning the 
database

3. For dense data sets, H-mine is 
integrated with FP-growth dynamically
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H-mine(Mem) – Example
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H-struct 

Trans 
ID 

Items Frequent-item 
projection 

100 c,d,e,f,g,i c,d,e,g 
200 a,c,d,e,m a,c,d,e 
300 a,b,d,e,g,k a,d,e,g 
400 a,c,d,h a,c,d 

 minimum support threshold is 2 

 F-list: a-c-d-e-g 
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H-mine(Mem) – Example
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H-mine: Mining large databases

■ TDB transaction database (size n)

■ Minimum support threshold min_sup

■ Find L, the set of frequent items

■ TDB partitioned in k parts (TDBi, 1≤i≤k)
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H-mine: Mining large databases

min_sup ∗ ni/n 

■ Apply H-mine(Mem) to TDBi with minimum 
support threshold 

■ Combine Fi, set of locally frequent pattern in 
TDBi, to get the globally frequent patterns.
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H-mine – Example

■ TDB split in P1,P2,P3,P4

■ Minimum support threshold 100

■ Frequent patterns: ab, ac, ad, abc

 Local freq. pat. Partitions Accumulated sup.cnt 

ab P1,P2,P3,P4 280 
ac P1,P2,P3,P4 320 
ad P1,P2,P3,P4 260 
abc P1,P3,P4 120 
abcd P1,P4 40 
… … … 
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Performance

■ H-mine has better runtime performance 
on both sparse and dense data than 
FP-growth and Apriori

■ H-mine has better space usage on both 
sparse and dense data than FP-growth 
and Apriori

■ H-mine performs well with very large 
databases too
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Conclusions

H-mine:
■ has high performance

■ is scalable in all kinds of data
■ has very small space overhead
■ can dynamically adapt to input data

■ introduces structure- and space-
preserving mining methodology
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