SELECT THE RIGHT INTERESTINGNESS MEASURE FOR ASSOCIATION PATTERNS

Pang-Ning Tan Vipin Kumar Jaideep Srivastava

presentation : Zhipeng Cai

Specific contributions

- 1: Present an overview of various measures proposed in the statistics, machine learning and data mining literature.
- 2: Describe several key properties one should examine in order to select the right measure for a given application domain. A comparative study of these properties is made using twenty one of the existing measures.

ABSTRACT

- Many techniques for association rule mining and feature selection require a suitable metric to capture the dependencies among variables in a data set.
- However, many such measures provide conflicting information about the interestingness of a pattern and best metric to use for a given application domain is rarely known.

Specific contributions

- 3:we present two scenario in which most of the existing measures agree with each other. namely, support-based pruning and table standardization
- 4: present an algorithm to select a small set of tables such that an expert can select a desirable measure by looking at just a small set of table.

INTRODUCTION

- The central task of association rule mining is to find sets of binary variables that co-occur together frequently in a transaction database.
- Analysis often requires a suitable metric to capture the dependencies among variables.
- These metrics are defined in terms of the frequency counts tabulated in a 2*2 contingency table.

Table 2:Example of contingency tables

Example	f_{11}	f_{10}	f_{01}	f_{00}
El	8123	83	424	1370
E2	8330	2	622	1046
E3	9481	94	127	298
E4	3954	3080	5	2961
E5	2886	1363	1320	4431
E6	1500	2000	500	6000
E7	4000	2000	1000	3000
E8	4000	2000	2000	2000
E9	1720	71.21	5	11.54
E10	61	2483	4	7452

Table1:A 2*2 contingency table for variables A and B

	В	\overline{B}	
\boldsymbol{A}	$\int f$ 11	f 10	f1+
\overline{A}	f 01	f 00	f 0 +
	f + 1	f + 0	

Table 3:Ranking of contingency table using various interestingness measures

Table 3: Rankings of contingency tables using various interestingness measures.

Example	φ	λ	α	Q	Y	ĥ	М	Į	Ģ	8	C	L	V	I	ΙŞ	PS	F	AV	S	ζ	K
El	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
Εδ	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	1	10	10	5	1	10	10	7

Interestingness Measures for Association Patterns

#	Measure	Formula
1	ϕ -coefficient	$\frac{P(A_iB) - P(A)P(B)}{\sqrt{P(A)P(B)(1 - P(A))(1 - P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
3	Odds ratio (α)	$\frac{P(\Lambda, B)P(\overline{\Lambda}, \overline{B})}{P(\Lambda, \overline{B})P(\overline{\Lambda}, B)}$
4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},\overline{B})}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},\overline{B})}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
6	Kappa (κ)	$P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})$ $1-P(A)P(B)-P(\overline{A})P(\overline{B})$
7	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i)P(B_j)}}{\min(-\sum_{i} P(A_i) \log P(A_i), -\sum_{j} P(B_j) \log P(B_j))}$
8	J-Measure (J)	$\max \left(P(A, B) \log \left(\frac{P(B A)}{P(B)}\right) + P(A\overline{B}) \log \left(\frac{P(\overline{B} A)}{P(\overline{B})}\right)\right)$
9	Gini index (G)	$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(A)}))$ $\max(P(A) P(B A)^2 + P(\overline{B} A)^2 + P(\overline{A}) P(B \overline{A})^2 + P(\overline{B} \overline{A})^2]$ $-P(B)^2 - P(\overline{B})^2,$ $P(B) P(A B)^2 + P(\overline{A} B)^2 + P(\overline{B}) P(A \overline{B})^2 + P(\overline{A} \overline{B})^2 $ $-P(\overline{A})^2 - P(\overline{A})^2$

Interestingness Measures for Association Patterns

Support (s)P(A, B)Confidence (c) $\max(P(B|A), P(A|B))$ Laplace (L)Conviction (V)Interest (I)cosine(IS)Piatetsky-Shapiro's (PS)Certainty factor (F)Added Value (AV) $\max(P(B|A) - P(B), P(A|B) - P(A))$ Collective strength (S) $Jaccard(\zeta)$ Klosgen(K) $\overline{P(A,B)}$ max(P(B|A) - P(B), P(A|B) - P(A))

Two situation

- 1: the measures may become highly correlated when support-based pruning is used.
- 2: after standardizing the contingency tables to have uniform margins, many of the well-known measures become equivalent each other.

Preliminaries

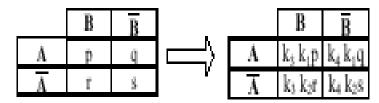
- $T(D)=\{t1,t2,t3...tn\}$ denote the set of patterns.
- P is the set of measures available to an analyst.
- $M \in P$
- M(T)={m1,m2,m3....mn},which corresponds to the values of M for each contingency table that belongs to T(D).
- M(T) can also be transformed into a ranking vector Om(T)={O1,O2,....On}.

Definition 1:

- [Similarity between measures]
- Two measures of association, M1 and M2, are similar to each other with respect to the data set D if the correlation between Om1(T) and Om2(T) is greater than or equal to some positive threshold t.

Other properties of a measure

- Property 1: [symmetry under variable permutation]
- A measure O is symmetric under variable permutation, $A \leftarrow B$, if $O(M^T) = O(M)$ for all contingency matrices M


	В	В			A	$\overline{\mathbf{A}}$
A	P	q	│ ┌─── ^\	В	Р	г
Ā	f	8		В	q	5

(a) Variable Permutation Operation

Desired properties of a measure three key properties

- P1: M=0 if A and B are statistically independent;
- P2: M monotonically increases with P(A,B)when P(A) and P(B) remain the same.
- P3: M monotonically decreases with P(A)(or P(B)) when the rest of the parameters (P(A,B) and P(B) or P(A)) remain unchanged.

- Property 2:[Row/Column scaling invariance]
- Let R=C=[k1 0;0 k2] be a 2*2 square matrix.
- A measure O is invariant under row and column scaling if O(RM)=O(M) and O(MC)=O(M) for all contingency matrices,M

(b) Row & Column Scaling Operation

- Property 3: Antisymmetry under Row/Column permutation.
- Let S=[0 1; 1 0] be a 2*2 permutation matrix. A normalized measure O is antisymmetric under the row permutation operation.
- O(SM) = -O(M).
- Under the column permutation operation
- O(MS)=-O(M)

	В	B	•		В	B
A	P	q		A	Ť	8
$\overline{\Lambda}$	Ť	8	V	Ā	P	q

(c) Row & Column Permutation Operation

- Property 5: Null Invariance
- A binary measure of association is null-invariant if O(M+C)=O(M) where C=[0 0; 0 k] and is a positive constant.

	В	В			В	B
A	Р	q		A	Р	q
Ā	ſ	S	, v	Ā	r	s + k

(e) Null Addition Operation

Property 4: Inversion Invariance

• Let S=[0 1;1 0] be a 2*2 permutation matrix . A measure O is invariant under the inversion operation , if O(SMS)=O(M) for all contingency matrices M.

	В	B			В	B
Α	p	q		A	S	Γ
Ā	Γ	8	V	Ā	q	p

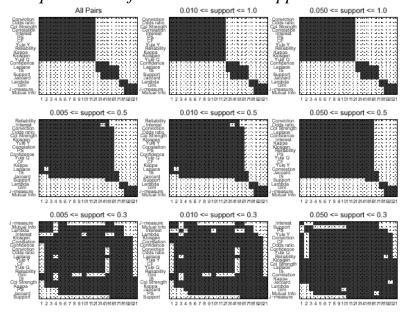
(d) Inversion Operation

Table 6 properties of interestingness measures

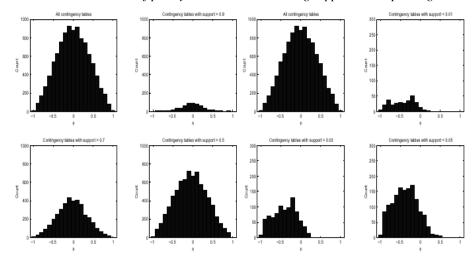
Symbol	Measure	Range	Pl	P2	P3	01	02	03	Q3 ¹	04
ϕ	ϕ -coefficient	$-1\cdots 0\cdots 1$	Yes	Yes	Yes	Yes	No	Yes	Yes	No
λ	Goodman-Kruskal's	$0 \cdots 1$	Yes	No	No	Yes	No	No*	Yes	No
α	odds ratio	$0\cdots 1\cdots \infty$	Yes*	Yes	Yes	Yes	Yes	Yes*	Yes	No
$Q \\ Y$	Yule's Q	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Y	Yule's Y	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
К	Cohen's	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	Yes	No	No	Yes	Νo
M	Mutual Information	0 · · · 1	Yes	Yes	Yes	No**	Νo	No*	Yes	Nο
J	J-Measure	0 · · · 1	Yes	No	No	No**	Nο	No	No	Nο
G	Gini index	$0 \cdots 1$	Yes	No	No	No**	Nο	No*	Yes	Nο
8	Support	0 · · · 1	Nο	Yes	No	Yes	Νo	No	No	Nο
C	Confidence	0 · · · 1	Nο	Yes	No	No^{**}	No	No	No	Yes
L	Laplace	0 · · · 1	Nο	Yes	No	No**	Νo	No	No	No
V	Conviction	$0.5\cdots 1\cdots \infty$	Nο	Yes	No	No^{**}	Nο	No	Yes	No
I	Interest	$0\cdots 1\cdots \infty$	Yes*	Yes	Yes	Yes	Nο	No	No	No
IS	Cosine	$0 \cdots \sqrt{P(A,B)} \cdots 1$	No	Yes	Yes	Yes	No	No	No	Yes
PS	Piatetsky-Shapiro's	$-0.25\cdots0\cdots0.25$	Yes	Yes	Yes	Yes	No	Yes	Yes	No
F	Certainty factor	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	No**	No	No	Yes	No
AV	Added value	$-0.5\cdots 0\cdots 1$	Yes	Yes	Yes	No**	No	No	No	No
S	Collective strength	$0\cdots 1\cdots \infty$	No	Yes	Yes	Yes	No	Yes*	Yes	No
ζ	Jaccard	$0 \cdots 1$	No	Yes	Yes	Yes	No	No	No	Yes
K	Klosgen's	$(\frac{2}{\sqrt{3}}-1)^{1/2}[2-\sqrt{3}-\frac{1}{\sqrt{3}}]\cdots 0\cdots \frac{2}{3\sqrt{3}}$	Yes	Yes	Yes	No**	No	No	No	No

Table 6 properties of interestingness measures

- where: P1: O(M) = 0 if det(M) = 0, i.e., whenever A and B are statistically independent.
- P2: O(M2) > O(M1) if M2 = M1 + [k k; -k k]
- P3: O(M2) < O(M1) if M2=M1+[0 k;0 -k] or M2=M1+[0 0;k -k].
- O1: Property1:symmetry under variable permutation
- O2: Property2: Row/Column scaling invariance
- O3: Property3:Antisymmetry under Row/Column permutation.
- O3':Property4: inversion invariance.
- O4:: Property5: Null invariance
- Yes*: yes if measure is normalized.
- No*:Symmetry under row or column permulation.
- No**:No unless the measure is symmetrized by taking max(M(A,B),M(B,A)).


Effect of support-based pruning

- Support is a widely-used measure in association rule mining because it represents the statistical significance of a pattern.
- We now describe two additional consequences of using the support measure.
- 1: Equivalence of measures under support constraints.
- 2: Elimination of poorly correlated tables using support-based pruning.


Summary

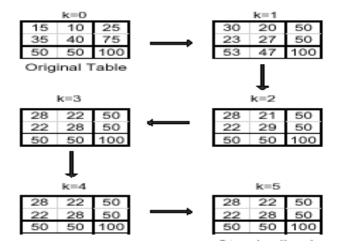
- The discussion in this section suggests that there is no measure that is better than others in all application domains.
- Thus, in order to find the right measure, one must match the desired properties of an application against the properties of the existing measures.

Equivalence of measures under support constraints

Elimination of poorly correlated tables using support-based pruning.

- (a) Distribution of φ-coefficient for contingency tables that are removed by applying a maximum support threshold.
- (b) Distribution of φ-coefficient for contingency tables that are removed by applying a minimum support threshold.

TABLE STANDARDIZATION


- Standardization is a widely-used technique.
- standardization is needed to get a better idea of the underlying association between marginals are variables by transforming an existing table so that their equal.

$$f_{1+}^* = f_{0+}^* = f_{+1}^* = f_{+0}^* = N / 2$$

Table 7: Table Standardization

$\frac{A}{A}$	$\frac{B}{f_{11}}$ $\frac{f_{01}}{f_{+1}}$	\overline{B} f_{10} f_{00} f_{+0}	f ₁₊ f ₀₊ N	<u>→</u>	$\frac{A}{A}$	$\frac{B}{f_{11}^*}$ f_{01}^* f_{+1}^*	f_{10}^* f_{20}^* f_{2}^*	f_{1+}^* f_{0+}^* f_{0} f_{0}	
		(a)		<u>→</u>	$\frac{A}{A}$	$\frac{B}{x}$ $\frac{N/2}{N/2}$	- x 2	$\frac{\overline{B}}{N/2 - x}$ x $N/2$	N/2 N/2 N

- Row scaling: $f_{ij}^{(k)} = f_{ij}^{(k-1)} \times \frac{f_{i+1}^{*}}{f_{+i}^{(k)}}$
- Column scaling: $f_{ij}^{(k+1)} = f_{ij}^{(k)} \times \frac{f_{ij}^{(k)}}{f_{i}^{(k)}}$

Table 8:Rankings of contingency table after IPF standardization

Table 8; Rankings of contingency tables after IPF standardization.

			# CL 10	WA A	1 4100		y w	200	med.	my	hanca	ar saa y			*****	t titza	l munit				
Example	φ	λ	α	Q	Y	К	M	J	Ģ	8	C	L	V	I	ΙŞ	₽Ş	F	AV	Ş	ζ	K
E1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
E2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
E3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
E4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
E5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
E6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
E7	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
E8	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
E9	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
E10	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6

Three equation for fix the standardized table

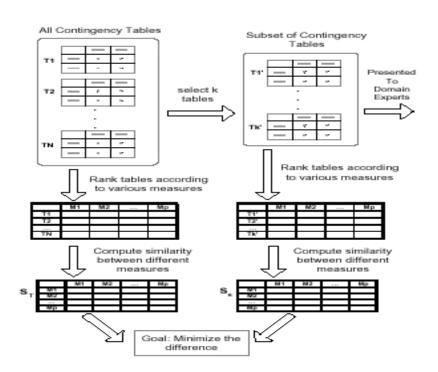
• 1
$$f_{11}^* = f_{00}^*$$

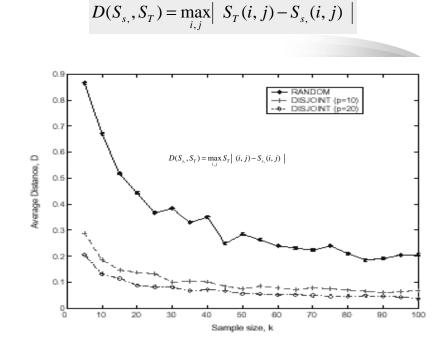
• 2
$$f_{10}^* = f_{01}^*$$

• 3
$$f_{11}^* + f_{10}^* = N / 2$$

Example

• Odds ratio:
$$\frac{P(A, B) P(\overline{A}, \overline{B})}{P(A, \overline{B}) P(\overline{A}, \overline{B})}$$


Fourth equations:
$$\frac{f_{11} + f_{00}}{f_{10} + f_{01}} = \frac{f_{11}^* + f_{00}^*}{f_{10}^* + f_{01}^*}$$


$$f_{11}^{*} = f_{00}^{*} = \frac{N \sqrt{f_{11} f_{00}}}{2 (\sqrt{f_{11} f_{00}} + \sqrt{f_{10} f_{01}})}$$

$$f_{10}^{*} = f_{01}^{*} = \frac{N \sqrt{f_{10} f_{01}}}{2 (\sqrt{f_{11} f_{00}} + \sqrt{f_{10} f_{01}})}$$

Measure Selection Based on bankings by experts

- 1:Random :randomly select k out of the overall N tables and present them to the experts.
- 2:Disjoint: select k tables that are "furthest" Apart according to their average ranking and would produce the largest amount of ranking conflicts.

re0	q	Υ	к	PS	F	ΑV	к	1	c	L	IS	٤	5	s	λ	м	J	G	α	٧
All tables	8	7	4	16	15	10	11	9	17	18	2	12	19	3	20	5	1	13	6	1
k=20	6	6	5	16	13	10	11	12	17	18	2	15	19	4	20	3	1	9	6	1
la1	ď	Υ	к	PS	F	ΑV	к	1	c	L	IS	٤	s	s	λ	м	J	G	α	٦
All tables	10	9	2	7	5	3	6	16	18	17	13	14	19	1	20	12	11	15	8	-
k=20	13	13	2	5	8	3	6	16	18	17	10	11	19	1	20	9	4	12	13	-
Product	ď	Υ	к	PS	F	ΑV	к	1	c	L	IS	ě	s	s	λ	м	J	G	α	,
All tables	12	11	3	10	8	7	14	16	17	18	1	4	19	2	20	5	6	15	13	1
k=20	4.78	13	2	7	11	10	9	17	169	18	1	4	19	3	20	6	5	8	13	4
K-20	1.0	-							10						2.0					
	Q	Υ		PS		AV	к	1	c	L	ıs	Š	s	s	λ	м	J	G	α	
S&P500										L	IS								α	,
S&P500 All tables	q	Υ	κ	PS	F	ΑV		1 11	e 15	L 14	IS	ξ 13	s	s	λ 20	M	J 18	G	α 7	,
S&P500 All tables	Qi 9	Y	κ	PS	F 6	AV 3	K	1 11	e 15	L 14	12	ξ 13	s 19	8	λ 20	M	J 18	G	α 7	,
S&P500 All tables k=20	Qi 9	Y	1 2	PS	F 6 4	3 3	K 4 6	1 11	e 15	L 14	12	ξ 13	s 19	8	λ 20	M	J 18	G	α 7	,
S&P500 All tables k=20 E-Com	Q 9 7	Y 8 7	1 2	PS 10 10	F 6 4	3 3	K 4 6	1 11 11	e 15 17	L 14 18	18 12 12	ξ 13 13	s 19 19	8 2 1	λ 20 20	M 16 15	J 18 14	G 17 16	α 7 7	,
S&P500 All tables k=20 E-Com All tables	9 7	Y 8 7	1 2	PS 10 10 PS 7	F 4 F	AV 3 3 4V	K 4 6	1 11 11	e 15 17	L 14 18	18 12 12	<u>\$</u> 13 13	s 19 19	8 2 1	λ 20 20	M 16 15	J 18 14	G 17 16	α 7 7 α	1
S&P500 All tables k=20 E-Com All tables k=20	Q 9 7 Q 9	Y 8 7 Y 8	1 2 K	PS 10 10 PS 7	F 4 F	AV 3 3 4V	K 4 6	1 11 11	e 15 17 e 17	L 14 18 L	IS 12 12 13	\$ 13 13	s 19 19	S 2 1 S 2	λ 20 20 20	M 16 15 M	J 18 14 J	G 17 16 G	α 7 7 α	1
S&P500 All tables k=20 E-Com All tables k=20	Q 9 7 Q 9	Y 8 7 Y 8	1 2 K 3 3	PS 10 10 PS 7	F 4 F	AV 3 3 4V	K 4 6	1 11 11	e 15 17 e 17	L 14 18 L	IS 12 12 13	\$ 13 13	s 19 19	S 2 1 S 2	λ 20 20 20	M 16 15 M	J 18 14 J	G 17 16 G	α 7 7 α	1 1
S&P500 All tables k=20 E-Com All tables	Q 9 7 Q 9 7	Y 8 7 Y 8	1 2 K 3 3	PS 10 10 PS 7 10	F 4 F 14	AV 3 3 4V 13 14	K 4 6 K 16 13	1 11 11	e 15 17 e 17	L 14 18 L 18	IS 12 12 IS 1	13 13 4 4	s 19 19 19	S 1 S 2 2	λ 20 20 λ 20 20	M 16 15 M 6 6	J 18 14 J	G 17 16 12 12	α 7 7 α 10 7	1

All tables: Rankings when all contingency tables are ordered. k=20: Rankings when 20 of the selected tables are ordered.

Conclusions

- 1:Describe several key properties.
- 2:There are situations in which many of these measure that is consistently with each other
- 3:Present an algorithm to select a small set of tables that an expert can find the most appropriate measure by looking at this small set of table.