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» What are associative classifiers?
How do you use them?

How can you evaluate and compare
multiple classification systems?

What measures are better?

How do classifiers perform when there are
rare classes?
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Association Rules (typical)

Association rule mining aims at discovering associations
between items in a transactional database.

Given D={T1...Tn} aset of transactionsand I={il...in} a
set of items such that any Ti in D isaset of itemsin .

An association rule is an implication A=»B where A and B
are subsets of Ti given some support and confidence
thresholds.

The support of the rule is the probability that A and B hold
together among all the possible presented cases.

The confidence of the rule isthe conditional probability
that the consequent B is true under the condition of the
antecedent A.

Association Rulesfor Classification
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» Association Rules (typical)
-F,O0F; OF, 0O... OF; = class
» Negative Association Rules
—F,Onot FgOnot F, 0... OF; =» class
—F,OFgOnot F, U... OF;=» not class
» Welghted Association Rules
—aF, bk, UcF, 0... OdF;=» class
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Associative Classifier

* Rule discovery
— Using an ARM algorithm
e Pruning
— Discarding those rules that are redundant or not
interesting
 Classification
— Based on a scoring scheme, use the set of rulesto
classify new, unseen instances

Rule Discovery (1% stage)
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» Given atraining set a set of association rulesis
discovered using an ARM algorithm:
— Apriori, FP-tree, etc.

— Modify the algorithms to mine the form of rules that you
want;

— Mineall the association rules and filter them afterwards,
e CBA, ARC-AC and ARC-BC

— Apriori based;
« CMAR

— FP-tree;
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Pruning (29 stage)

Large number [ > Noisy information

of rules [ > Long classification time

* Removing low ranked specialized rules;

R :F, = C Confidence 90%
=R

R,:F, OF, = C Confidence 80%

 Eliminate conflicting rules;
F,=C,0F =C,

» Database coverage;

Pruning (29 stage)
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» Database Coverage
—select asmall set of high quality rules

— A set of rules (SR)
» Therules are ordered by confidence and support

— for each rule (R)
* if R classifies correctly at least one example, keep R
» remove the examples covered by R

— stop when there are no more examples or all the
rules have been checked
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Classification (3" stage)

o A set of rules (SR)
— Therules are ordered by confidence and support

* A new instance to be classified

e From SR asubset of rules SR’ matches the new
instance
— Divide SR’ in subsets based on the class |abel
-SR'C,SR'C,, .... SR'C,
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Classification (3" stage)

» Different strategies

— CBA
 Choose the first matching rule (highest confidence)

- CMAR
» ForeachSR'C,, SR'C,, .... SR'C, set
» Computes aweighted chi-square
 Chooses the class with the best score (best chi-square)
— ARC-AC and ARC-BC
» ForeachSR'C,, SR'C,, .... SR'C, set
» Computes the average of the confidences
 Chooses the class with the best score (best average confidence)
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Classification Stagefor ARC

Let S be the classification system

A new object O <f1; f3; f4; f7; f9 >

C2 0.825
f1 => C1 confidence 0.9 C10.75
f3 & f4 => C2 confidence 0.85 C305

f4 => C2 confidence 0.8
f7 => C1 confidence 0.6
f9 => C3 confidence 0.5

Using the dominance factor we chose the

winning categories. If=100%| C2 is winning. If

0=80% O is predicted to fall in C2 and C1.
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Association Rules Classification with All Categories

New

‘ objects
Traini i Associative
Dataset — - oomion -~ Classifier
— ARC-AC

Put object in
its predicted
> Ltlass
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ARC-AC

Association Rules Classification by Category

l-itemset | support | possible correlations between
Trans 1D | Class Label | Attributes the l-itemset and a class label e
1 C1 AD A 2 A= C1 Association Rules New
2 C1 AC B 5 B=C1 for Category 1 ‘ objects
3 (87] BDE B = (2
4 c2 BCE C bl C= (;'l
: T | iExe 1 — Associative
7 02 CDE D T e Category i aAsfoicg;LZg(i;lies — Classifier
8 C3 CF 4 = (!
T T =03 |\ ] ARC-BC
Association Rules Put objects in its
= =1/8 Category n for Category n predicted class
supp=1/8 Supp= v
conf=100% conf=20% -
Tuesday, November 09, 2004 Luiza Antonie — Cmput 695 Presentation 13 Tuesday, November 09, 2004 Luiza Antonie — Cmput 695 Presentation 14
ARC-BC Evaluation
i  Why dowedo it?
Trans ID | Class Label | Attributes A=>C1 SUpp 50% -r .
1 — e )| ->c1 — To study the performance of the classification
- < o c=cl A=>Cl systems and to compare with other algorithms
Trans 1D | Class Label | Attributes B=>C2 B=>C2 .
3 2 BDE - C=>C2 ?
I E); BB((:UE}L e g =S gg D=>C2 O HOW do We do It H
5 ] "DE =
- : E=>C2 — Accuracy/error
G C2 BD _
7 (&) CDE E=>C2 C=>C3 L. y
F=>C3 — Precision, Recall, F-measure
‘ Trans 1D | Class Label ‘ Attributes ‘ C=>C3 .
[ = | & [ or |EEEIF—"C3 — Graphical methods
* ROC
supp=1/1 e Lift curves, PN curves, cost curves

conf=100%
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2-class Confusion M atrix

Predicted class
Trueclass positive negative
positive (P) TP FN=P-TP
negative (N) FP TN=N - FP
TP+TN
accuracy =
TP+FP+TN +FN
FP+FN
error =

~ TP+FP+TN +FN
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2-class Confusion M atrix

Predicted class

Trueclass positive negative

positive (P) TP FN=P-TP

negative (N) FP TN=N - FP

o 1+ B°)* P*R

precison = ——— F—measure:(
TP+FN P+p**R
TP _2*P*R
recall = ———— A IEEE==r
TP+FP
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ROC curve
Predicted class
Trueclass positive negative
positive (P) TP P-TP
negative (N) FP N - FP

* Reduce the 4 numbersto two rates
true positiverate = TPR= TP/P
false positive rate = FPR = FP/N

» Rates are independent of classratio

Source: Rob Holte
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Example: 3 classifiers

Predicted

True pos | neg

pos | 40 60

neg | 70 30

Classifier 1
TPR=0.4
FPR=0.3

Classifier 2
TPR=0.7
FPR=0.5

Classifier 3

TPR=0.6
FPR=0.2

Source: Rob Holte
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Example: 3 Classifiers

! always positive

L

ROC plot for 3 classifiers

Dominance

ROC plat for 2 dassiues
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Linear Interpolation Operating Range
. ROG plot for 3 classifiers
, RO plot for & dassbons 1 . z
i
) / / o o
@ + 1iff6f1l‘nr lways-positi
. PR ys-positive
g 04 1 . E 04
. . / Slope indicates the class distributions and
| misclassification costs for which the
y | | | .classfier is better than always-negative

4 0.
Falze Posiive rate

Source: Rob Holte
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False Positive rate

Source: Rob Holte
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Combining Classifier s— Convex Hull

ROC plot for 3 casshers

pe indicates the class distributions and
+misclassificationicosts for which the red
lassifier isthe same as the blue one.

True Positve mme

L i
0B e
o

Source: Rob Holte

Rar e Classes
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 Classimbalance - occurs when some
classes have many examples, while others
are represented by just afew;

» Small classes are difficult to classify for
existing classification algorithms;

o Applications - medical data; text data;
biological data; detection of intrusions;
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Why isit difficult?

» Classimbalance -
@

* Class overlapping

O NOIW data °, OO*O +0
(@) (@] (@)
© © o o***
« Small disjuncts + O et ®

M ethods and Solutions
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» Data manipulation

— balancing data by sampling

— data segmentations

— learning only the minority class
» Cost-sensitive classifiers

— MetaCost [Domingos ‘ 99]

— AdaCost [Fan et al. ‘99]
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M ethods and Solutions

 Creating new algorithms
— PN-rule [Joshi et al. ‘01]
 P-rules (rulesthat predict the presence of the target class)
 N-rules (rules that imply the absence of the target class)

* two phases
— 1% focuses on recall; completeness — retrieving the results
— 2" improves precision; quality — retaining only the desired
examples
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M ethods and Solutions

» Creating new algorithms
— Boosting
» AdaBoost [Schapire ‘99]
* startswith aweak classifier and boosts is performance
* iterative processes

At each iteration the weights that are attached to a
training example are refined

» misclassified - weight increase
» correctly classified — weight decrease
— ARC-BC
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M ethods and Solutions

» Associative Classifier (by category)

Yeast Gene AROC Scores for All Teams
Regulation 0.8 — ; .
Prediction 075} |
*A list of test set genes 'g o7l |
(many missing values) H 065 F PP G |
(Instances. 127 g " e s S

.. - [y
positive; 4380 g 06F s 1
negative) S 055 ot .

. = [&) Aja A

*Protein / protein 9 05 s s s
interaction “ oast o tuL L 1
*MEDLIN text
abstracts describing %%4 045 05 055 06 065 07 075 08
genes of interest. AROC (narrow pos class)
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Sampling

 Under-sampling

— random — eliminate at random examples of the majority
class

— Tomek links [Tomek ‘ 76]
— Condensed Nearest Neighbour Rule (CNN) [Hart ‘68]
— One-sided Selection (OSS) [Kubat and Matwin “97]
— Neighbourhood Cleaning Rule (NCL) [Laurikkala‘01]
— drawbacks — it can discard good examples
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Sampling

» Over-sampling
— random — duplicate at random some examples
belonging to the minority class,

— Smote [Chawla ‘02]— create artificial examples for
the minority class by interpolating between existing
examples;

— drawbacks

* overfitting
* execution timeincrease

 Under-sampling + Over-sampling

Under-Sampling vs. Over-Sampling
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 Under-sampling
— [Drummond and Holte’ 03]
— [Domingos ’ 99]
* Over-sampling
— [Japkowicz et al. *02] — artificial datasets
— [Batistaet al. ‘04]
* |sit dataset dependant?
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Discussion

classification errors occur near class boundaries

difficult to find good boundaries when classes
are overlapping

take into account the overlapping of classes
application dependant

Discussion
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» develop new algorithmsto deal with rare
classes

* incorporate in the existing algorithms some
knowledge about the classification with rare
classes

* use some graphical evaluation measures to
Improve the classifier
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Thank Y oul!
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