

CHARM: An Efficient Algorithm for Closed Itemset Mining

Authors: Mohammed J. Zaki and Ching-Jui Hsiao Presenter: Junfeng Wu

28/10/2004

Outline

- Introductions
- Itemset-Tidset tree
- CHARM algorithm
- Performance study
- Conclusion
- Comments

28/10/2004

Introductions

When we are mining association rules in a database, a huge number of frequent patterns (itemsets) will be generated.

- Database: {(1,2,3,4),(1,2,3,4,5,6)}
- Minimum support = 50%
- 63 frequent itemsets ({(1),(2),(3),(4),(5),(6),(1,2),(1,3),...,(1,2,3,4,5,6)})

Introductions

Closed frequent itemsets are nonredundant representations of all frequent itemsets.

Mining association rules on closed frequent itemsets is a much easier task.

In the previous database, the number of closed frequent itemsets is only $\frac{2}{2}$, (1,2,3,4) and (1,2,3,4,5,6).

28/10/2004 3 28/10/2004

Closed frequent itemsets

- A frequent itemset X is closed if and only if there is no itemset Y such that
 - Y subsumes X
 - every transaction that contains X also contains Y

Database: $\{(1,2,3,4),(1,2,3,4,5,6)\}$ Itemset (1,2) is **not** a closed itemset. Itemset (1,2,3,4) is a closed itemset.

28/10/2004

Example Database

DISTINCT DATABASE ITEMS

Jane Austen	Agatha Christie	Sir Arthur Conan Doyle	Mark Twain	P.G. Wodehouse	
Α	A C		Т	W	

DATABASE

Transaction	Items
1	A,C,T,W
2	C,D,W
3	A,C,T,W
4	A,C,D,W
5	A,C,D,T,W
6	C,D,T

ALL FREQUENT ITEMSETS MINIMUM SUPPORT = 50%

Support	Itemsets
100%(6)	С
83%(5)	W,CW
67%(4)	A,D,T,AC,AW,CD,CT,ACW
50%(3)	AT,DW,TW,ACT,ATW,CDW,C TW,ACTW

28/10/2004

Horizontal/Vertical format database

- Horizontal format database
 - Each record is a set of items.
 - Each record is assigned a distinct number named transaction id.
- Vertical format database
 - Each record is a set of transaction id about an item.
 - This item occurs in these transactions.

Vertical format database

Α	С	D	T	W
1	1	2	1	1
3	2	4	3	2
4	3	5	5	3
5	4	6	6	4
	5			5
	6			

28/10/2004 7 28/10/2004

Notations

Given an itemset X, t(X) is the set of all tids that contains X.

For example: t(ACW) = 1345

Given a tidset *Y*, *i*(*Y*) is the set of all common items to all the tids in *Y*.

For example: i(12) = CW

Given an itemset X, C(X) is the smallest closed set that contains X.

For example: c(A)=c(C)=C(W)=ACW

28/10/2004

9

Itemset-Tidset Search Tree (IT-tree)

 Each node in the IT-tree is an itemsettidset pair, X×t(X).

For example: AT×135

 All the children of node X share the same prefix X and belong to an equivalence class

28/10/2004

Example of IT-tree

Theorem 1

- Let $X_i \times t(X_i)$ and $X_j \times t(X_j)$ be any two members of a class [p], with $X_i \leq_f X_j$, where f is a total order. The following four properties hold:
 - 1. If $t(X_i) = t(X_i)$, then $c(X_i) = c(X_i) = c(X_i \cup X_i)$
 - 2. If $t(X_i) \subset t(X_j)$, then $c(X_i) \neq c(X_j)$, but $c(X_i) = c(X_i \cup X_j)$
 - 3. If $t(X_i) \supset t(X_j)$, then $c(X_i) \neq c(X_j)$, but $c(X_j) = c(X_i \cup X_j)$

12

• 4. If $t(X_i) \neq t(X_j)$, then $c(X_i) \neq c(X_j) \neq c(X_i \cup X_j)$

28/10/2004 11 28/10/2004

CHARM algorithm

```
CHARM (\mathcal{D}, min\_sup):
                                                                     CHARM-Property ([P], [P_i]):
      [P] = \{X_i \times t(X_i) : X_i \in \mathcal{I} \land \sigma(X_i) \ge min\_sup\}
      CHARM-EXTEND ([P], C = \emptyset)
                                                                             if (\sigma(\mathbf{X}) > minsup) then
     \mathbf{return} \ \mathcal{C} \ //\mathrm{all} \ \mathrm{closed} \ \mathrm{sets}
                                                                                  if t(X_i) = t(X_j) then //Property 1
                                                                                          Remove X_i from [P]
                                                                                          Replace all X_i with \mathbf{X}
CHARM-EXTEND ([P], C):
                                                                      15.
     for each X_i \times t(X_i) in [P]
                                                                      16.
                                                                                  else if t(X_i) \subset t(X_j) then //Property 2
                                                                                          Replace all X_i with X
          [P_i] = \emptyset and \mathbf{X} = X_i
                                                                      17.
                                                                                  else if t(X_i) \supset t(X_i) then //Property 3
          for each X_i \times t(X_i) in [P], with X_i \geq_f X_i
                                                                      18.
                 \mathbf{X} = \mathbf{X} \cup X_i and \mathbf{Y} = t(X_i) \cap t(X_i)
                                                                                         Remove X_i from [P]
                                                                      19.
                                                                                          Add \mathbf{X} \times \mathbf{Y} to [P_i] //use ordering f
                 CHARM-Property([P], [P_i])
8.
9.
         if ([P_i] \neq \emptyset) then CHARM-EXTEND ([P_i], C) 21.
                                                                                  else if t(X_i) \neq t(X_j) then //Property 4
                                                                                          Add \mathbf{X} \times \mathbf{Y} to [P_i] //use ordering f
10.
          delete [P_i]
          C = C \cup X //if X is not subsumed
```

DCx2456 TCx1356 WCx12345 Cx123456

DTx56 DAx45 DWCx245 TAWCx135 TWCx135

How does CHARM work?

28/10/2004 13 28/10/2004 14

Subsumption Checking

Before add a set X to the current set of closed set, we need check if X is subsumed by some closed sets.

 Comparing X with all closed set is expensive.

Solution: using hash function to retrieve relevant closed sets

Hash function

$$h(X) = \sum_{T \in t(X)} T$$

The sum of the tids in the tidset of an itemset

 Assumption: itemsets with the same hash key have different supports.

28/10/2004 15 28/10/2004 16

Complexity issues

Comparing two itemset's tidsets becomes a time consuming task when tidset gets very large.

Keeping all tids of itemsets in memory needs lots of space.

Solution: using diffsets

28/10/2004 17

Diffset and Tidset

Let $m(X_i)$ and $m(X_i)$ denote the number of mismatches in the diffsets $d(X_i)$ and $d(X_i)$

For example: $X_i=D$, $X_j=T$, then $d(X_i)=2456$, $d(X_j)=1356$, $m(X_i)=|(13)|=2$, $m(X_i)=|(24)|=2$

```
m(X_i) = 0 and m(X_j) = 0, then d(X_i) = d(X_j) or t(X_i) = t(X_j)

m(X_i) > 0 and m(X_j) = 0, then d(X_i) \supset d(X_j) or t(X_i) \subset t(X_j)

m(X_i) = 0 and m(X_j) > 0, then d(X_i) \subset d(X_j) or t(X_i) \supset t(X_j)

m(X_i) > 0 and m(X_i) > 0, then d(X_i) \neq d(X_i) or t(X_i) \neq t(X_j)
```


20

28/10/2004 19 28/10/2004

Performance study

Datasets

Database	# Items	Avg. Length	Std. Dev.	# Records
chess	76	37	0	3,196
connect	130	43	0	67,557
mushroom	120	23	0	8,124
pumsb*	7117	50	2	49,046
pumsb	7117	74	0	49,046
gazelle	498	2.5	4.9	59,601
T10I4D100K	1000	10	3.7	100,000
T40I10D100K	1000	40	8.5	100,000

Performance study

28/10/2004 21 28/10/2004 22

Performance study

-

Performance study

28/10/2004 23 28/10/2004 24

Scalability

Linear increasing in the running time with increasing number of transactions at a giving support.

Memory usage

The memory usage is 50 times smaller by using diffsets than using tidsets.

Memory usage (using diffsets)

		-		_	-			
DB		20%			0.05%		1%	0.5%
connect	0.68MB	1.17MB	gazelle	0.13MB	1.24MB	T40I10D100K	0.39MB	0.52MB

28/10/2004 26

Conclusion

Advantage of CHARM

- Faster than other algorithm at low support threshold
- Faster than other algorithm on a database with very long closed patterns

Disadvantage of CHARM

Slower than Closet when most of closed sets are 2-itemset

Comments

Strength

- The ideas in the paper are intuitive.
- The authors first introduced an efficient data structure (IT-tree) for closed itemset mining.
- The authors demonstrated the algorithm on various datasets.
- The experimental studies are convincing.

Weakness

- The algorithm requires the conversion of database from horizontal format to vertical format.
- Follow-up
 - Closet+ (Wang et al, 2003) beats CHARM one year later.

28/10/2004 27 28/10/2004 28

THANK YOU!

Questions or comments?

28/10/2004 29