
Introduction
Algorithm

Optimizations and Extensions
Analysis

Overview of Dual Miner

Paul Nalos

November 16, 2004

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Problem Statement
Related Work
Contributions
Key Ideas

Problem Statement

“Find all frequent itemsets whose total price is at least $50.”

I Constraining mining improves its speed and usefulness.

I Many practical constraints can be expressed as a conjunction
of monotone and antimonotone predicates.

I Other constraints can be approximated this way.

Dual Miner finds frequent itemsets by leveraging monotone and
antimonotone constraints at the same time.

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Problem Statement
Related Work
Contributions
Key Ideas

Related Work

I Dual Miner is brought to you by the creators of MAFIA.

I They like MAFIA.
I Dual Miner is traversal strategy agnostic.

I Other ways to solve the problem:

I Run existing algorithm twice and intersect.
I Run existing algorithm and post-process.
I Melish’s Algorithm

All of these require two distinct phases.
I Other types of constraints:

I Succinct
I Convertible

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Problem Statement
Related Work
Contributions
Key Ideas

Related Work

I Dual Miner is brought to you by the creators of MAFIA.
I They like MAFIA.

I Dual Miner is traversal strategy agnostic.

I Other ways to solve the problem:

I Run existing algorithm twice and intersect.
I Run existing algorithm and post-process.
I Melish’s Algorithm

All of these require two distinct phases.
I Other types of constraints:

I Succinct
I Convertible

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Problem Statement
Related Work
Contributions
Key Ideas

Related Work

I Dual Miner is brought to you by the creators of MAFIA.
I They like MAFIA.
I Dual Miner is traversal strategy agnostic.

I Other ways to solve the problem:

I Run existing algorithm twice and intersect.
I Run existing algorithm and post-process.
I Melish’s Algorithm

All of these require two distinct phases.
I Other types of constraints:

I Succinct
I Convertible

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Problem Statement
Related Work
Contributions
Key Ideas

Related Work

I Dual Miner is brought to you by the creators of MAFIA.
I They like MAFIA.
I Dual Miner is traversal strategy agnostic.

I Other ways to solve the problem:
I Run existing algorithm twice and intersect.
I Run existing algorithm and post-process.
I Melish’s Algorithm

All of these require two distinct phases.

I Other types of constraints:

I Succinct
I Convertible

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Problem Statement
Related Work
Contributions
Key Ideas

Related Work

I Dual Miner is brought to you by the creators of MAFIA.
I They like MAFIA.
I Dual Miner is traversal strategy agnostic.

I Other ways to solve the problem:
I Run existing algorithm twice and intersect.
I Run existing algorithm and post-process.
I Melish’s Algorithm

All of these require two distinct phases.
I Other types of constraints:

I Succinct
I Convertible

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Problem Statement
Related Work
Contributions
Key Ideas

Dual Miner has to offer...

I First algorithm to leverage P() and Q() simultaneously

I Extreme flexibility

I Non-trivial optimizations

I New issues

I Nice summary of analytical properties

Definition

I P() is a conjunction of antimonotone predicates.

I Q() is a conjunction of monotone predicates.

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Problem Statement
Related Work
Contributions
Key Ideas

Key Ideas

I Items have attributes and values

I Monotone and antimonotone predicates
e.g. sum(price(X)) > 30 or 10 < support(X) < 100

I Join predicates of same type

I Approximate other types of constraints

I Different predicates have different cost
e.g. support vs. sum

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Problem Statement
Related Work
Contributions
Key Ideas

More Key Ideas

I Trimming values near top or bottom removes many nodes

I Duality

Find all frequent itemsets

D is OUT because it is not frequent.

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Problem Statement
Related Work
Contributions
Key Ideas

More Key Ideas

I Trimming values near top or bottom removes many nodes

I Duality

Find all infrequent itemsets

D is IN because ∼D (ABC) is frequent.

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

Subalgebras

I don’t care about support – look for MFI

I ... but all subsets of MFI may not satisfy Q()

How can we represent portions of the result space?

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

Subalgebras

I don’t care about support – look for MFI

I ... but all subsets of MFI may not satisfy Q()

How can we represent portions of the result space?

Any set of itemsets closed under ∪ and ∩ can be expressed as a
subalgebra.

I A subalgebra consists of a bottom set and a top set.

I All itemsets in a subalgebra contain all of the items in the
bottom set,

I and only items from the top set.

I All members of a good subalgebra satisfy P() and Q().

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

Subalgebras Con’t

For example, the subalgebra ({A}, {ABC}) contains the
elements:

I A

I AB

I AC

I ABC

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

max(X.price) < 4
∧

min(X.price) < 2

Item Cost
A 1

B 4

C 3

D 2

I P(X) = max(X.price) < 4

I Q(X) = min(X.price) < 2

I P(B) is false, therefore B is OUT

I Q(∼A) = Q(BCD) is false, therefore A is IN

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

max(X.price) < 4
∧

min(X.price) < 2

I P(B) is false, therefore B is OUT

I Q(∼A) = Q(BCD) is false, therefore A is IN

This leads to the subalgebra ({A}, {ACD}), which satisfies P()
and Q().

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

Towards the Basic Algorithm 1/2

As usual, we will traverse nodes in a tree.

I Each node contains IN, OUT, and CHILD sets,
which correspond to the subalgebra (IN, ∼OUT).

I This is a good subalgebra if P(∼OUT)
∧

Q(IN).

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

Towards the Basic Algorithm 2/2

Dual Miner

I Start with the root node; it is undetermined.
I Repeatedly pick an undetermined node:

I Optionally, move children to OUT, if P(IN ∪ child) fails
or to IN, if Q(∼(OUT ∪ child)) fails

I Optionally, check if node is a good subalgebra.
I Pick one child element to split on, and create two child nodes.
I The node is now determined.

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

support(X) ≥ 1
∧

total price(X) > 50

Item Cost
A 26

B 26

C 1

D 1

E 100

Transactions
ABCD

E

Root Node: ({}, {ABCDE}, {})

I P(X) true for all elements X

I Q(∼X) true for all elements X

I ({}, {ABCDE}) is not a good subalgebra

I ... therefore pick a child (say E) to split on

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

support(X) ≥ 1
∧

total price(X) > 50

Item Cost
A 26

B 26

C 1

D 1

E 100

Transactions
ABCD

E

Undetermined Nodes:

I β: ({E}, {ABCD}, {})

I γ: ({}, {ABCD}, {E})

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

support(X) ≥ 1
∧

total price(X) > 50

Item Cost
A 26

B 26

C 1

D 1

E 100

Transactions
ABCD

E

Current Node: β: ({E}, {ABCD}, {})

I P(EA) is false, so A is OUT

I β becomes ({E}, {BCD}, {A})

I P(EB), P(EC), P(ED) are all false too

I β becomes ({E}, {}, {ABCD})

I ({E}, {E}) is a good subalgebra

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

support(X) ≥ 1
∧

total price(X) > 50

Item Cost
A 26

B 26

C 1

D 1

E 100

Transactions
ABCD

E

Current Node: β: ({E}, {ABCD}, {})

I P(EA) is false, so A is OUT

I β becomes ({E}, {BCD}, {A})

I P(EB), P(EC), P(ED) are all false too

I β becomes ({E}, {}, {ABCD})

I ({E}, {E}) is a good subalgebra

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

support(X) ≥ 1
∧

total price(X) > 50

Item Cost
A 26

B 26

C 1

D 1

E 100

Transactions
ABCD

E

Current Node: β: ({E}, {ABCD}, {})

I P(EA) is false, so A is OUT

I β becomes ({E}, {BCD}, {A})

I P(EB), P(EC), P(ED) are all false too

I β becomes ({E}, {}, {ABCD})

I ({E}, {E}) is a good subalgebra
Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

support(X) ≥ 1
∧

total price(X) > 50

Item Cost
A 26

B 26

C 1

D 1

E 100

Transactions
ABCD

E

Current Node: γ: ({}, {ABCD}, {E})

I Q(∼(EA)) is false, so A is IN

I γ becomes ({A}, {BCD}, {E})

I Q(∼(EB)) is false, so B is IN

I γ becomes ({AB}, {CD}, {E})

I ({AB}, {ABCD}) is a good subalgebra

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

support(X) ≥ 1
∧

total price(X) > 50

Item Cost
A 26

B 26

C 1

D 1

E 100

Transactions
ABCD

E

Current Node: γ: ({}, {ABCD}, {E})

I Q(∼(EA)) is false, so A is IN

I γ becomes ({A}, {BCD}, {E})

I Q(∼(EB)) is false, so B is IN

I γ becomes ({AB}, {CD}, {E})

I ({AB}, {ABCD}) is a good subalgebra

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

support(X) ≥ 1
∧

total price(X) > 50

Item Cost
A 26

B 26

C 1

D 1

E 100

Transactions
ABCD

E

Current Node: γ: ({}, {ABCD}, {E})

I Q(∼(EA)) is false, so A is IN

I γ becomes ({A}, {BCD}, {E})

I Q(∼(EB)) is false, so B is IN

I γ becomes ({AB}, {CD}, {E})

I ({AB}, {ABCD}) is a good subalgebra
Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

support(X) ≥ 1
∧

total price(X) > 50

In Summary, the good subalgebras were:

I ({E}, {E})

I ({AB}, {ABCD})

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Subalgebras
Example Without Descent
Example With Descent
Finishing Touches

Finishing Touches

I Don’t store IN, OUT, and CHILD;
just store new in and new out for each node.

I Interleave pruning with P() and Q();
each creates opportunities for the other.

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Heuristics
Dual HUT
Subalgebra Fragmentation
Approximations

Heuristics

Dual Miner is flexible; it can be tuned for the problem at hand:

I traversal strategy

I pruning order heuristics

I stop heuristics

I choice order heuristics
I control heuristics

I don’t prune with P() unless IN has changed
I don’t prune with Q() unless OUT has changed

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Heuristics
Dual HUT
Subalgebra Fragmentation
Approximations

Heuristics

Dual Miner is flexible; it can be tuned for the problem at hand:

I traversal strategy

I pruning order heuristics

I stop heuristics

I choice order heuristics
I control heuristics

I don’t prune with P() unless IN has changed
I don’t prune with Q() unless OUT has changed

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Heuristics
Dual HUT
Subalgebra Fragmentation
Approximations

Leveraging the Underlying Algorithm

Goal: Minimize the cost of executing P() and Q()

I Q() is often much cheaper

I existing algorithms minimize calls to P() in clever ways –
reuse them!

I dual situation may occur as well

Extend MAFIA HUTMFI...

I partial list of maximum itemsets which satisfy P()

I partial list of minimum itemsets which satisfy Q()

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Heuristics
Dual HUT
Subalgebra Fragmentation
Approximations

Dual HUT
Testing P(∼OUT) may be expensive.

Alternative:

I Examine a sequence of nodes where new children are
speculatively added to IN, until you reach a leaf.

I The oldest ancestor in the chain that satisfies Q() is a good
subalgebra.

I Don’t evaluate any of its children.

Also:

I We don’t need to evaluate P() for any nodes below the top of
the chain, even if that node doesn’t satisfy Q().

I This applies in the dual case also.

Seek out complete left and right chains.

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Heuristics
Dual HUT
Subalgebra Fragmentation
Approximations

Dual HUT
Testing P(∼OUT) may be expensive.

Alternative:

I Examine a sequence of nodes where new children are
speculatively added to IN, until you reach a leaf.

I The oldest ancestor in the chain that satisfies Q() is a good
subalgebra.

I Don’t evaluate any of its children.

Also:

I We don’t need to evaluate P() for any nodes below the top of
the chain, even if that node doesn’t satisfy Q().

I This applies in the dual case also.

Seek out complete left and right chains.

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Heuristics
Dual HUT
Subalgebra Fragmentation
Approximations

Dual HUT
Testing P(∼OUT) may be expensive.

Alternative:

I Examine a sequence of nodes where new children are
speculatively added to IN, until you reach a leaf.

I The oldest ancestor in the chain that satisfies Q() is a good
subalgebra.

I Don’t evaluate any of its children.

Also:

I We don’t need to evaluate P() for any nodes below the top of
the chain, even if that node doesn’t satisfy Q().

I This applies in the dual case also.

Seek out complete left and right chains.
Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Heuristics
Dual HUT
Subalgebra Fragmentation
Approximations

Subalgebra Fragmentation

Problem
If Dual Miner splits on the wrong child nodes, it can split good
subalgebras.

Mitigation

I Heuristics can help.

I Keep track of good subalgebras and merge them on the fly.

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Heuristics
Dual HUT
Subalgebra Fragmentation
Approximations

Approximations

Problem
Dual Miner only handles monotone and antimonotone constraints.

Mitigation

A strategy for approximating mean-like functions is proposed.

I average(X) < constant

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Theoretical
Empirical

Theoretical Evaluation

Summary:

I Same (weak) upper bound on Dual Miner / Apriori
and Dual Miner / MAFIA

I P() more selective than Q() → CONVERTIBLE wins

COVERTIBLE
Run Apriori and post-process, but don’t test Q() on a superset of
something that already passed.

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Theoretical
Empirical

Emprical Evaluation

I Assume P() costs 100x Q()

I Test vs. synthetic data

I Observation: Other algorithms operate in two phases
I Competitors

I CONVERTIBLE
I MAFIA + free second phase

I Champions
I Dual Miner
I Dual Miner with good choice order heuristic

Dual Miner wins when Q() is sufficiently selective.

Paul Nalos Overview of Dual Miner

Introduction
Algorithm

Optimizations and Extensions
Analysis

Theoretical
Empirical

Thank you!

Paul Nalos Overview of Dual Miner

	Introduction
	Problem Statement
	Related Work
	Contributions
	Key Ideas

	Algorithm
	Subalgebras
	Example Without Descent
	Example With Descent
	Finishing Touches

	Optimizations and Extensions
	Heuristics
	Dual HUT
	Subalgebra Fragmentation
	Approximations

	Analysis
	Theoretical
	Empirical

