Overview of Dual Miner

Paul Nalos

November 16, 2004

Problem Statement

"Find all frequent itemsets whose total price is at least $\$ 50$."

- Constraining mining improves its speed and usefulness.
- Many practical constraints can be expressed as a conjunction of monotone and antimonotone predicates.
- Other constraints can be approximated this way.

Dual Miner finds frequent itemsets by leveraging monotone and antimonotone constraints at the same time.

Related Work

- Dual Miner is brought to you by the creators of MAFIA.

Related Work

- Dual Miner is brought to you by the creators of MAFIA.
- They like MAFIA.

Related Work

- Dual Miner is brought to you by the creators of MAFIA.
- They like MAFIA.
- Dual Miner is traversal strategy agnostic.

Related Work

- Dual Miner is brought to you by the creators of MAFIA.
- They like MAFIA.
- Dual Miner is traversal strategy agnostic.
- Other ways to solve the problem:
- Run existing algorithm twice and intersect.
- Run existing algorithm and post-process.
- Melish's Algorithm

All of these require two distinct phases.

Related Work

- Dual Miner is brought to you by the creators of MAFIA.
- They like MAFIA.
- Dual Miner is traversal strategy agnostic.
- Other ways to solve the problem:
- Run existing algorithm twice and intersect.
- Run existing algorithm and post-process.
- Melish's Algorithm

All of these require two distinct phases.

- Other types of constraints:
- Succinct
- Convertible

Dual Miner has to offer...

- First algorithm to leverage $P()$ and $Q()$ simultaneously
- Extreme flexibility
- Non-trivial optimizations
- New issues
- Nice summary of analytical properties

Definition

- $P()$ is a conjunction of antimonotone predicates.
- $Q()$ is a conjunction of monotone predicates.

Key Ideas

- Items have attributes and values
- Monotone and antimonotone predicates e.g. sum $($ price $(X))>30$ or $10<\operatorname{support}(X)<100$
- Join predicates of same type
- Approximate other types of constraints
- Different predicates have different cost e.g. support vs. sum

More Key Ideas

- Trimming values near top or bottom removes many nodes
- Duality

Find all frequent itemsets

D is OUT because it is not frequent.

More Key Ideas

- Trimming values near top or bottom removes many nodes
- Duality

Find all infrequent itemsets

D is $I N$ because $\sim D(A B C)$ is frequent.

Subalgebras

- don't care about support - look for MFI
- ... but all subsets of MFI may not satisfy $Q()$

How can we represent portions of the result space?

Subalgebras

- don't care about support - look for MFI
- ... but all subsets of MFI may not satisfy Q()

How can we represent portions of the result space?
Any set of itemsets closed under \cup and \cap can be expressed as a subalgebra.

- A subalgebra consists of a bottom set and a top set.
- All itemsets in a subalgebra contain all of the items in the bottom set,
- and only items from the top set.
- All members of a good subalgebra satisfy P() and Q() .

Subalgebras Con't

For example, the subalgebra ($\{A\},\{A B C\}$) contains the elements:

- A
- $A B$
- AC
- ABC

$\max (X$. price $)<4 \wedge \min (X$. price $)<2$

Item	Cost
A	1
B	4
C	3
D	2

- $\mathrm{P}(\mathrm{X})=\max (X$. price $)<4$
- $Q(X)=\min (X$.price $)<2$
- $P(B)$ is false, therefore B is OUT
- $Q(\sim A)=Q(B C D)$ is false, therefore A is $I N$

$\max ($ X. price $)<4 \bigwedge \min (X$. price $)<2$

- $P(B)$ is false, therefore B is OUT
- $Q(\sim A)=Q(B C D)$ is false, therefore A is $I N$

This leads to the subalgebra ($\{\mathrm{A}\},\{\mathrm{ACD}\}$), which satisfies P() and $Q()$.

Towards the Basic Algorithm 1/2

As usual, we will traverse nodes in a tree.

- Each node contains IN, OUT, and CHILD sets, which correspond to the subalgebra (IN, ~OUT).
- This is a good subalgebra if $P(\sim O U T) \wedge Q(I N)$.

Towards the Basic Algorithm 2/2

Dual Miner

- Start with the root node; it is undetermined.
- Repeatedly pick an undetermined node:
- Optionally, move children to OUT, if $\mathrm{P}(\mathrm{IN} \cup$ child) fails or to IN , if $\mathrm{Q}(\sim($ OUT \cup child $))$ fails
- Optionally, check if node is a good subalgebra.
- Pick one child element to split on, and create two child nodes.
- The node is now determined.

support $(X) \geq 1 \bigwedge$ total_price $(X)>50$

Item	Cost	
A	26	
B	26	Transactions
C	1	ABCD
D	1	E
E	100	

Root Node: ($\},\{\mathrm{ABCDE}\},\{ \})$

- $P(X)$ true for all elements X
- $\mathrm{Q}(\sim \mathrm{X})$ true for all elements X
- ($\},\{$ ABCDE $\})$ is not a good subalgebra
- ... therefore pick a child (say E) to split on

support $(X) \geq 1 \wedge$ total_price $(X)>50$

Item	Cost	
A	26	
B	26	Transactions
C	1	ABCD
D	1	E
E	100	

Undetermined Nodes:

- $\beta:(\{E\},\{A B C D\},\{ \})$
- $\gamma:(\{ \},\{A B C D\},\{E\})$

support $(X) \geq 1 \bigwedge$ total_price $(X)>50$

Item	Cost	
A	26	Transactions
B	26	ABCD
C	1	E
D	1	E
E	100	

Current Node: β : ($\{\mathrm{E}\},\{\mathrm{ABCD}\},\{ \}$)

- $\mathrm{P}(\mathrm{EA})$ is false, so A is OUT
- β becomes ($\{\mathrm{E}\},\{\mathrm{BCD}\},\{\mathrm{A}\}$)

support $(X) \geq 1 \bigwedge$ total_price $(X)>50$

Item	Cost	
A	26	
B	26	Transactions
C	1	ABCD
D	1	E
E	100	

Current Node: β : ($\{\mathrm{E}\},\{\mathrm{ABCD}\},\{ \}$)

- $P(E A)$ is false, so A is OUT
- β becomes ($\{E\},\{B C D\},\{A\})$
- $P(E B), P(E C), P(E D)$ are all false too
- β becomes ($\{\mathrm{E}\},\{ \},\{\mathrm{ABCD}\}$)

support $(X) \geq 1 \bigwedge$ total_price $(X)>50$

Item	Cost	
A	26	
B	26	Transactions
C	1	ABCD
D	1	
E	100	

Current Node: β : ($\{\mathrm{E}\},\{\mathrm{ABCD}\},\{ \}$)

- $P(E A)$ is false, so A is OUT
- β becomes ($\{E\},\{B C D\},\{A\}$)
- $P(E B), P(E C), P(E D)$ are all false too
- β becomes ($\{E\},\{ \},\{A B C D\})$
- ($\{E\},\{E\})$ is a good subalgebra

support $(X) \geq 1 \bigwedge$ total_price $(X)>50$

Item	Cost	
A	26	Transactions
B	26	ABCD
C	1	
D	1	E
E	100	

Current Node: γ : ($\},\{\mathrm{ABCD}\},\{\mathrm{E}\}$)

- $\mathrm{Q}(\sim(\mathrm{EA}))$ is false, so A is IN
- γ becomes ($\{\mathrm{A}\},\{B C D\},\{E\}$)

support $(X) \geq 1 \bigwedge$ total_price $(X)>50$

Item	Cost	
A	26	
B	26	Transactions
C	1	ABCD
D	1	E
E	100	

Current Node: $\gamma:(\{ \},\{\operatorname{ABCD}\},\{\mathrm{E}\})$

- $Q(\sim(E A))$ is false, so A is $I N$
- γ becomes ($\{A\},\{B C D\},\{E\}$)
- $Q(\sim(E B))$ is false, so B is $I N$
- γ becomes ($\{A B\},\{C D\},\{E\}$)

support $(X) \geq 1 \bigwedge$ total_price $(X)>50$

Item	Cost	
A	26	
B	26	Transactions
C	1	ABCD
D	1	
E	100	

Current Node: $\gamma:(\{ \},\{\operatorname{ABCD}\},\{\mathrm{E}\})$

- $Q(\sim(E A))$ is false, so A is $I N$
- γ becomes ($\{A\},\{B C D\},\{E\}$)
- $Q(\sim(E B))$ is false, so B is $I N$
- γ becomes ($\{A B\},\{C D\},\{E\}$)
- ($\{A B\},\{A B C D\})$ is a good subalgebra

support $(X) \geq 1 \wedge$ total_price $(X)>50$

In Summary, the good subalgebras were:

- ($\{\mathrm{E}\},\{\mathrm{E}\}$)
- ($\{\mathrm{AB}\},\{\mathrm{ABCD}\})$

Finishing Touches

- Don't store IN, OUT, and CHILD; just store new_in and new_out for each node.
- Interleave pruning with P() and Q() ; each creates opportunities for the other.

Heuristics

Dual Miner is flexible; it can be tuned for the problem at hand:

- traversal strategy
- pruning order heuristics
- stop heuristics
- choice order heuristics
- control heuristics

Heuristics

Dual Miner is flexible; it can be tuned for the problem at hand:

- traversal strategy
- pruning order heuristics
- stop heuristics
- choice order heuristics
- control heuristics
- don't prune with P() unless IN has changed
- don't prune with Q() unless OUT has changed

Leveraging the Underlying Algorithm

Goal: Minimize the cost of executing $P()$ and $Q()$

- $Q()$ is often much cheaper
- existing algorithms minimize calls to P() in clever ways reuse them!
- dual situation may occur as well

Extend MAFIA HUTMFI...

- partial list of maximum itemsets which satisfy P()
- partial list of minimum itemsets which satisfy $Q()$

Dual HUT

Testing $\mathrm{P}(\sim \mathrm{OUT})$ may be expensive.

Dual HUT

Testing $\mathrm{P}(\sim \mathrm{OUT})$ may be expensive.
Alternative:

- Examine a sequence of nodes where new children are speculatively added to IN, until you reach a leaf.
- The oldest ancestor in the chain that satisfies $Q()$ is a good subalgebra.
- Don't evaluate any of its children.

Dual HUT

Testing $\mathrm{P}(\sim \mathrm{OUT})$ may be expensive.
Alternative:

- Examine a sequence of nodes where new children are speculatively added to IN, until you reach a leaf.
- The oldest ancestor in the chain that satisfies $Q()$ is a good subalgebra.
- Don't evaluate any of its children.

Also:

- We don't need to evaluate $P()$ for any nodes below the top of the chain, even if that node doesn't satisfy $Q()$.
- This applies in the dual case also.

Seek out complete left and right chains.

Subalgebra Fragmentation

Problem

If Dual Miner splits on the wrong child nodes, it can split good subalgebras.

Mitigation

- Heuristics can help.
- Keep track of good subalgebras and merge them on the fly.

Approximations

Problem

Dual Miner only handles monotone and antimonotone constraints.
Mitigation
A strategy for approximating mean-like functions is proposed.

- average $(X)<$ constant

Theoretical Evaluation

Summary:

- Same (weak) upper bound on Dual Miner / Apriori and Dual Miner / MAFIA
- P() more selective than Q()\rightarrow CONVERTIBLE wins

COVERTIBLE

Run Apriori and post-process, but don't test $Q()$ on a superset of something that already passed.

Emprical Evaluation

- Assume P() costs $100 \times \mathrm{Q}()$
- Test vs. synthetic data
- Observation: Other algorithms operate in two phases
- Competitors
- CONVERTIBLE
- MAFIA + free second phase
- Champions
- Dual Miner
- Dual Miner with good choice order heuristic

Dual Miner wins when $Q()$ is sufficiently selective.

