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Outline

Brief Introduction to Max-Miner

Techniques used in Max-Miner 
– Candidate Itemset Counting
– Superset Frequency Pruning
– Item Ordering Policies
– Subset Infrequency Pruning
– Support Lower Bounding

Experiment and Evaluation 

Summary
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Basic ideas

An itemset is maximal frequent if it 
has no superset that is frequent.

Same as Apriori: scan database, 
get frequent itemset, get candidate 
itemset, repeat until no more 
candidate itemset.

Look ahead and prune as much as 
possible.
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Max-Miner(1)

Set-enumeration tree search (breadth-
first), utilizing specific ordering and 
pruning
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Max-Miner(2)

Each candidate set, g, has two 
parts: h(g) and t(g).  H(g) is the 
node itself and t(g) is all possible 
items in the sub-nodes.  E.g. h(g) = 
{1} and t(g) = {2, 3, 4}.

Counting support of g = counting 
support of h(g), h(g)∪ t(g), and 
h(g)∪ {i} for all i ∈ t(g).
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Max-Miner: Pruning(1)

Superset-frequency pruning: If 
h(g)∪ t(g) is frequent, then all its 
subsets are frequent but not 
maximal.  Therefore they can be 
pruned.

Itemset ordering: order them from 
least to most frequency.  The most 
frequent items appear in the most 
candidate groups.
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Max-Miner: Pruning(2)

Itemset-ordering increase the 
effectiveness of superset-frequency 
pruning.
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Max-Miner: Pruning(3)

Subset-infrequency pruning: If 
h(g)∪ {i} is infrequent then all its 
superset are infrequent.  Therefore 
{i} can be excluded from generating 
candidate itemset.

New candidate itemsets are 
generated from expanding g’s sub-
nodes.
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Example

h(g’) = {1, 3}  t(g’) = {4}
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Max-Miner Details(1)
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Max-Miner Details(2)

Order tail items of a group g in 
increasing order of sup(h(g)∪ {i})

12

Max-Miner Correctness

The tree enumerates all possible 
itemsets and Max-Miner will traverse the 
entire tree unless a node is infrequent or 
it is a subset of a frequent itemset.
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Support Lower-Bounding(1)
Compute a lower-bound on the 
support of an itemset, if lower-
bound > minimum support, then all 
its subset can be pruned.

drop(Is, i) = sup(Is) – sup(Is∪ i)
The # of transaction “dropped” when
an itemset is extended with an item.
e.g. {1,2,3} {1,2}: sup(1,2) = 1, 

sup(1,2,3) = 0.5
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Support Lower-Bounding(2)

Theorem (support lower-bounding): 
sup(I) – drop(Is, i) is a lower-bound on 
the support of itemset I∪ {i} when Is ⊂ I.
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Support Lower-Bounding(3)

Theorem (Generalized support lower-
bounding): lower-bound on the support 
of itemset I ∪ T where T is an itemset
disjoint from I and Is ⊂ I 

I = h(g) T = t(g)

16

Max-Miner: Support LB(1)

During candidate generation, h(g2)∪ t(g2) 
⊂ h(g1)∪ t(g1).  If h(g1)∪ t(g1) is frequent, 
then no need to expand sub-nodes 
further.
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Max-Miner: Support LB(2)

drop(Is, i) = sup(Is) – sup(Is∪ i)

Sup(Is) = sup(old h(g))

Sup(Is∪ i) = sup(old h(g)∪ {i})
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Implementation Details

Max-Miner uses similar data 
structure to Apriori.

Max-Miner uses a hash tree to index 
only the head of each candidate 
group.

During the second pass, a 2-D array 
is used and support for h(g)∪ t(g) is 
not counted.
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Experiment and Evaluation(1)

Three algorithms: Max-Miner, Apriori, 
Apriori-LB (a support lower bound 
version of Apriori).  Both Apriori
algorithms were optimized for finding 
maximal frequent itemset.
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Experiment and Evaluation(2)

200MHz Power-PC with 256 megabytes.  
All algorithms were implemented in C++ 
using same hash tree implementation.
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Experiment and Evaluation(3)
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Experiment and Evaluation(4)
Max-Miner is scaling roughly linearly 
with the number of maximal frequent 
itemsets.
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Experiment and Evaluation(5)

Number of data passes against the 
length of the longest patterns identified 
during each run.  Effects of pruning.

24

Experiment and Evaluation(6)

More observations:
– Max-Miner is an order of magnitude 

faster with the item-ordering heuristic.
– Performance of Max-Miner without 

support lower bounding decrease 
substantially.

– Support lower-bounding is more 
effective with datasets that have long 
patterns. 
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Summary(1)

Max-Miner is a new algorithm that 
applies several new techniques.  These 
techniques can be extended in many 
way and applied to other algorithms.

Compare to Apriori, Max-Miner is an 
efficient algorithm for finding maximal 
frequent patterns.

Max-Miner is easily made to incorporate 
additional constraints during search.
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Summary(2)
One such constrain is finding “longest 
maximal pattern only” to reduce space 
and time further (Max-Miner-LO).

More works can be done adding more 
constraints to Max-Miner during search.

More comparisons to other maximal 
frequent pattern finding algorithms need 
to be done.
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Thank You
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Questions?


