Efficiently Mining Long
Patter ns from Databases

R |

Paper presentation by

Outline

® Brief Introduction to Max-Miner

® Techniques used in Max-Miner

— Candidate Itemset Counting
— Superset Frequency Pruning
— Item Ordering Policies

— Subset Infrequency Pruning
— Support Lower Bounding

® An itemset is maximal frequent if it
has no superset that is frequent.

® Same as Apriori: scan database,
get frequent itemset, get candidate
itemset, repeat until no more
candidate itemset.

® Look ahead and prune as much as
possible.

;
|
|
|
|

Dean Cheng ® Experiment and Evaluation
® Summary
Basic ideas Max-Miner(1)

® Set-enumeration tree search (breadth-
first), utilizing specific ordering and
pruning

Figure 1. Complete set-enumeration iree over four items.

i
e ——
1

2 3 4
- [|
1.2 1.3 14 23 24 GAD

|
1,{&2,4 1.3.4 Q3.4

Max-Miner(2)

® Each candidate set, g, has two
parts: h(g) and t(g). H(g) is the
node itself and t(g) is all possible
items in the sub-nodes. E.g. h(g) =
{1} and t(g) ={2, 3, 4}.

® Counting support of g = counting
support of h(g), h(g)Ut(g), and
h(g)U{i} for all i O t(g).

/
/

Max-Miner: Pruning(1)

® Superset-frequency pruning: If
h(g)dt(g) is frequent, then all its
subsets are frequent but not
maximal. Therefore they can be
pruned.

® [temset ordering: order them from
least to most frequency. The most
frequent items appear in the most
candidate groups.

Max-Miner: Pruning(2)

Figure 1. Complete set-enumeration tree over four items.

i3

i —

-

1 2 3 4
e [|
L'F\\‘ 113 1.4 2[3 2.4 3.4
123124 134 234

1.234

® |[temset-ordering increase the
effectiveness of superset-frequency
pruning.

Max-Miner: Pruning(3)

® Subset-infrequency pruning: If
h(g)d{i} is infrequent then all its
superset are infrequent. Therefore
{i} can be excluded from generating
candidate itemset.

® New candidate itemsets are
generated from expanding g's sub-
nodes.

g 1.3 1.4 Qf 24 i4

Example
Figure 1. Complete set-enumeration tree over four items.
{
I
1 7 3 4

Max-Miner Details(1)

Figure 2. Max-Miner at its top level.
Max-MmER(Data-set T)
i: Returns the set of maximal frequent itemseis presentin T
Set of Candidate Groups & «— { }
Set of Itemsets F «— {GEN-INITIAL-GFROUPS(T, C')}
while ' is non-emprty do
scan I to count the support of all candidate groups in C
for each g = C such that A(g) '« #g) is frequent do
F e Fu{hig) g}
Set of Candidate Groups C__ < { }
for each g = < such that i(g) '« #(g) is infrequent do
F +— F 1 {GEN-SUB-NoODES(g, C,_.)}
C—C
remove from F anv itemset with a proper superset in F
remove from < any group g such that Adg) o ng)
has a superset in 7

return F

Figure 1. Complete set-enumeration tree over four items.

i
__._..—-—-—-'—'_—'_"_'_4.—_._" -_—_h:.%::—-—._._
13124 GD 234 : ! T,
e . |
1.2 1.3 1.4 2 2.4 3.4
1344 | i
1\ — 1\ — 1.231.24 134 234
h(g') ={1,3} t(g') ={4} |
1.23.4
9 10
1 | Max-Miner Details(2) Max-Miner Correctness
Figure 4. Generating sub-nodes.
GEN-SUB-NoDES{Candidate Group g, Set of Cand. Groups C')
1, © is passed by reference and refurns the sub-nodes of g Figure 1. Complete set-enumeration tree over four items.
:; The refurn value of the fimction is a frequent itemset i3
remove any item i from #(g) if fig)w {i} is infrequent 1—-———‘ ZJ'L__-“'_‘:—‘{—-T_—:._;-—‘___“
reorder the items in #(g) :; see secrion 3.2 —_—
for each i € (g) other than the greatest do EES T4 2[_\1‘_‘“;4 3|4
let g* be a new candidate with s(g) = h(g)w [i} l\ i : [3 - :
and 1(g) = {j|J € 1(g) and j follows i in 1(g)} 123124 134 234
CeCulg} |
return A(g) w {m} where m 1s the greatest item in #(g). 1.2.3.4
or i(g) if {g) ts empty.
® The tree enumerates all possible
® Order tail items of a group g in |temsets and IMax-Mln(fjr V\.nllntrfaverse the
increaSing order of SUp(h(g)D{l}) ?Qtlre tfree unless a node |S‘ Infrequent or
it is a subset of a frequent itemset.
11 12

Support Lower-Bounding(1)

® Compute a lower-bound on the
support of an itemset, if lower-
bound > minimum support, then all
its subset can be pruned.

edrop(lg, i) = sup(ly) —sup(l0i)

The # of transaction “dropped” when

an itemset is extended with an item.

e.g.{1,2,3} {1,2}: sup(1,2) =1,
sup(1,2,3) =0.5

13

/
/

Support Lower-Bounding(2)

® Theorem (support lower-bounding):
sup(l) —drop(lg, i) is a lower-bound on
the support of itemset I1O{i} when IO I.

Figure 5. Ilustration of support drop resulting from extending
itemsets J and J, with 7.

L {i}

14

Support Lower-Bounding(3)

® Theorem (Generalized support lower-
bounding): lower-bound on the support
of itemset | O T where T is an itemset
disjoint from land I, O |

sup(l)— Y drep(Z,. 1)

ie I

I=h(g) T=t(9)

15

Max-Miner: Support LB(1)

® During candidate generation, h(g,)dt(g,)
O h(g,)0Ot(g,). If h(g,)Ot(g,) is frequent,
then no need to expand sub-nodes
further.

Figure 6. Generating sub-nodes with support lower-bounding.
GEN-5UB-NoDEs(Candidate Group g. Set of Cand. Groups ')
i C is passed by raference and refturns the sub-nodes of g
2 The refurn value of the fimction is a frequent iremset
remove any item § from r(g) if i{g) v {i} is infrequent
reorder the items in #{g)
for each 7 = f(g) in increasing item order do

let £ be a new candidate with g = Ag) o {i}
and 1(g7 = {j|(j= f(g)) and jfollows i in f(g) }
if ConmPUTE-LB(g' . A(g)) = minsup
then return A{g") o f{g") . this itemser is frequent
else O «— O g}
return A(g) :; This case arises only if Kg) is empty

16

Max-Miner: Support LB(2)

Figure 7. Computing the support lower-bound.
CoMPUTE-LB(Candidate Group g. Itemset [,)
. Returns a lower-bound on the support of hig) v Hg)
i Tremset I is a proper subset af h(g)
Integer d « 0
for each i e 1g) do
ded+drop(l.)
return sup{/i(g)) —d

® drop(lg, i) = sup(ly) — sup(I,0i)

Sup(ly) = sup(old h(g))
Sup(l0i) = sup(old h(g)0{i})

17

|mplementation Details

® Max-Miner uses similar data
structure to Apriori.

® Max-Miner uses a hash tree to index
only the head of each candidate

group.

® During the second pass, a 2-D array
is used and support for h(g)Ot(g) is
not counted.

18

Experiment and Evaluation(1)

® Three algorithms: Max-Miner, Apriori,
Apriori-LB (a support lower bound
version of Apriori). Both Apriori
algorithms were optimized for finding
maximal frequent itemset.

19

Experiment and Evaluation(2)

® 200MHz Power-PC with 256 megabytes.
All algorithms were implemented in C++
using same hash tree implementation.

Table 1. Width and height of the evaluation data-sets.

Data-set Records Avg. Record Width
chess 3,106 37
connect-4 G67.557 43
mushroom g2.124 23
pumsb 49 046 74
pumsb™® 49046 50
retail 213972 31
splice 3,174 61

20

CPU Time {sec)
CPU Time {sec)

CPU Time (sec)
©PU Time {sec)

CRT Time/ (M| (normalized

Experiment and Evaluation(3) Experiment and Evaluation(4)
Figure . CPU e onpumsty. Figare . CPU tne on musiroan | ® Max-Miner is scaling roughly linearly
nnnnnnnnnnn
Baxominer S P il S I H H
ST with the number of maximal frequent
uuuuu - 1000
: i itemset
g oL iemsets.
1000 100 I
3 i
100 1o / I
10
as 20 2s 20 15 10 s 1 y
support (%) 10 7.5 s 2.5 1 0.1
- Pgweld CPUmmeanches. Figure 11. CPU time on connect-4. Figure 14. CPU time per maximal frequent itemset Figure 15. Number of candidate groups considered per maximal
Max-Minsr —— Max-Miner —s— 2.4 frequent itemset.
Apricri-LE —— teriote — 31 | THiMES W » . ..\ = chess——| 700000
foriie T spriorioLe o FRE connect -4 coming® T
nnnnn - 5 2 v o000 pdns
1 06w = iice m_
el 18 retgfl w— 1 soo000 prroom -
I P [} . [
& 1oo0 - ¢ o000 L o000 /
L " 200000 7
e T A\ — /
0.8 TRy K
e e] e
1050 ss so as 40 35 30 25 20 lﬂgu 20 7o &o 50 40 o 20 10 ﬂ,dmn 1000 ° o 100000 200000 300000 400000 S00000 60000C
Eupport (%) Support (%) il
21

A retaill - -

- effective with datasets that have long

as | T patterns.

20 F '_‘/ -4
e

=1 /f -]

10

IE pasass

I

- LsEt

10 1s 20 as 20 as ao
Length of longest pattern

23

/
Experiment and Evaluation(5) 1 | Experiment and Evaluation(6)
® Number of data passes against the ® More observations:
length of the longest patterns identified — Max-Miner is an order of magnitude
during each run. Effects of pruning. , faster with the item-ordering heuristic.
— Performance of Max-Miner without
‘ support lower bounding decrease
EFigare 16. Database peecs pesfomacd o Man-Mincs compace i substantially.
"‘““ge””'*““‘“‘“mimgggfﬁ. — Support lower-bounding is more

Summary(1)

® Max-Miner is a new algorithm that
applies several new techniques. These
techniques can be extended in many
way and applied to other algorithms.

® Compare to Apriori, Max-Miner is an
efficient algorithm for finding maximal
frequent patterns.

® Max-Miner is easily made to incorporate
additional constraints during search.

25

Summary(2)

® One such constrain is finding “longest
maximal pattern only” to reduce space
and time further (Max-Miner-LO).

® More works can be done adding more
constraints to Max-Miner during search.

® More comparisons to other maximal
frequent pattern finding algorithms need
to be done.

26

Thank You

27

Questions?

28

