
1

Efficiently Mining Long
Patterns from Databases

Paper presentation by
Dean Cheng

2

Outline

Brief Introduction to Max-Miner

Techniques used in Max-Miner
– Candidate Itemset Counting
– Superset Frequency Pruning
– Item Ordering Policies
– Subset Infrequency Pruning
– Support Lower Bounding

Experiment and Evaluation

Summary

3

Basic ideas

An itemset is maximal frequent if it
has no superset that is frequent.

Same as Apriori: scan database,
get frequent itemset, get candidate
itemset, repeat until no more
candidate itemset.

Look ahead and prune as much as
possible.

4

Max-Miner(1)

Set-enumeration tree search (breadth-
first), utilizing specific ordering and
pruning

5

Max-Miner(2)

Each candidate set, g, has two
parts: h(g) and t(g). H(g) is the
node itself and t(g) is all possible
items in the sub-nodes. E.g. h(g) =
{1} and t(g) = {2, 3, 4}.

Counting support of g = counting
support of h(g), h(g)∪ t(g), and
h(g)∪ {i} for all i ∈ t(g).

6

Max-Miner: Pruning(1)

Superset-frequency pruning: If
h(g)∪ t(g) is frequent, then all its
subsets are frequent but not
maximal. Therefore they can be
pruned.

Itemset ordering: order them from
least to most frequency. The most
frequent items appear in the most
candidate groups.

7

Max-Miner: Pruning(2)

Itemset-ordering increase the
effectiveness of superset-frequency
pruning.

8

Max-Miner: Pruning(3)

Subset-infrequency pruning: If
h(g)∪ {i} is infrequent then all its
superset are infrequent. Therefore
{i} can be excluded from generating
candidate itemset.

New candidate itemsets are
generated from expanding g’s sub-
nodes.

9

Example

h(g’) = {1, 3} t(g’) = {4}

10

Max-Miner Details(1)

11

Max-Miner Details(2)

Order tail items of a group g in
increasing order of sup(h(g)∪ {i})

12

Max-Miner Correctness

The tree enumerates all possible
itemsets and Max-Miner will traverse the
entire tree unless a node is infrequent or
it is a subset of a frequent itemset.

13

Support Lower-Bounding(1)
Compute a lower-bound on the
support of an itemset, if lower-
bound > minimum support, then all
its subset can be pruned.

drop(Is, i) = sup(Is) – sup(Is∪ i)
The # of transaction “dropped” when
an itemset is extended with an item.
e.g. {1,2,3} {1,2}: sup(1,2) = 1,

sup(1,2,3) = 0.5
14

Support Lower-Bounding(2)

Theorem (support lower-bounding):
sup(I) – drop(Is, i) is a lower-bound on
the support of itemset I∪ {i} when Is ⊂ I.

15

Support Lower-Bounding(3)

Theorem (Generalized support lower-
bounding): lower-bound on the support
of itemset I ∪ T where T is an itemset
disjoint from I and Is ⊂ I

I = h(g) T = t(g)

16

Max-Miner: Support LB(1)

During candidate generation, h(g2)∪ t(g2)
⊂ h(g1)∪ t(g1). If h(g1)∪ t(g1) is frequent,
then no need to expand sub-nodes
further.

17

Max-Miner: Support LB(2)

drop(Is, i) = sup(Is) – sup(Is∪ i)

Sup(Is) = sup(old h(g))

Sup(Is∪ i) = sup(old h(g)∪ {i})

18

Implementation Details

Max-Miner uses similar data
structure to Apriori.

Max-Miner uses a hash tree to index
only the head of each candidate
group.

During the second pass, a 2-D array
is used and support for h(g)∪ t(g) is
not counted.

19

Experiment and Evaluation(1)

Three algorithms: Max-Miner, Apriori,
Apriori-LB (a support lower bound
version of Apriori). Both Apriori
algorithms were optimized for finding
maximal frequent itemset.

20

Experiment and Evaluation(2)

200MHz Power-PC with 256 megabytes.
All algorithms were implemented in C++
using same hash tree implementation.

21

Experiment and Evaluation(3)

22

Experiment and Evaluation(4)
Max-Miner is scaling roughly linearly
with the number of maximal frequent
itemsets.

23

Experiment and Evaluation(5)

Number of data passes against the
length of the longest patterns identified
during each run. Effects of pruning.

24

Experiment and Evaluation(6)

More observations:
– Max-Miner is an order of magnitude

faster with the item-ordering heuristic.
– Performance of Max-Miner without

support lower bounding decrease
substantially.

– Support lower-bounding is more
effective with datasets that have long
patterns.

25

Summary(1)

Max-Miner is a new algorithm that
applies several new techniques. These
techniques can be extended in many
way and applied to other algorithms.

Compare to Apriori, Max-Miner is an
efficient algorithm for finding maximal
frequent patterns.

Max-Miner is easily made to incorporate
additional constraints during search.

26

Summary(2)
One such constrain is finding “longest
maximal pattern only” to reduce space
and time further (Max-Miner-LO).

More works can be done adding more
constraints to Max-Miner during search.

More comparisons to other maximal
frequent pattern finding algorithms need
to be done.

27

Thank You

28

Questions?

