

PPDM: Problems in Defining Privacy

- "The right to be alone" (Warren & Brandeis).
- "The right to determine what (personal) information is communicated to others" (Schoeman).
- Privacy has become a digital problem.
- "Getting valid data mining results without learning the underlying data values" (Clifton et al.).
- "PPDM encompasses the dual goal of meeting privacy requirements and providing valid data mining results" (Oliveira and Zaïane).

CMPUT 695 - November 4th, 2004

Privacy-Preserving Data Mining: An Overview

Stanley Oliveira

PPDM: Privacy Violation

- Changes in technology are making privacy harder.
 - ✓ reduced cost for data storage
 - \checkmark increased ability to store and process large amounts of data
- Privacy violation in data mining: misuse of data.
- Defining privacy preservation in data mining:
 - ✓ Individual privacy preservation: protection of personally identifiable information.
 - Collective privacy preservation: protection of users' collective activity.

CMPUT 695 - November 4th, 2004

Privacy-Preserving Data Mining: An Overview

Stanley Oliveira

Some Scenarios in PPDM

- Characterizing Scenarios in PPDM:
 - ✓ Scenario 1: A hospital shares some data for research purposes.
 - ✓ Scenario 2: A collaboration between an Internet marketing company and an on-line retail company.
- General parameters:
 - ✓ **Outcome**: refers to the desired data mining results.
 - ✓ **Data distribution**: How are the data available for mining?
 - Privacy preservation: What are the privacy preservation requirements?

Outline

- Privacy-Preserving Data Mining (PPDM)
 - ✓ The Landmarks
 - ✓ Problems in defining privacy
 - ✓ Privacy violation
 - Some scenarios in PPDM

Privacy-Preserving Clustering (PPC)

- ✓ Object Similarity-Based Representation (OSBR)
- ✓ Dimensionality Reduction-Based Transformation (DRBT)

Motivation for PPC

- Clustering plays an outstanding role in data mining:
 - ✓ Scientific data exploration;
 - ✓ Marketing;
 - ✓ Medical diagnosis;
 - ✓ Computational biology.
- Dual-goal: Protecting the underlying data values and achieving valid clustering results.
- Challenge: How can organizations protect personal data subjected to clustering and meet their needs to support decision making and to promote social benefits?

CMPUT 695 - November 4th, 2004

Privacy-Preserving Data Mining: An Overview

Stanley Oliveira

The Basics of Clustering Analysis

- Data Matrix (*m*×*n* matrix *D*)
 - $D = \begin{bmatrix} a_{11} & \cdots & a_{1k} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2k} & \cdots & a_{2n} \\ a_{31} & \cdots & a_{3k} & \cdots & a_{3n} \\ \vdots & & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mk} & \cdots & a_{mn} \end{bmatrix}$

 $DM = \begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(m,1) & d(m,2) & \cdots & \cdots & 0 \end{bmatrix}$

CMPUT 695 – November 4th, 2004

Privacy-Preserving Data Mining: An Overview

Stanley Oliveira

The Basics of Clustering Analysis (cont.)

- Distance between any two data points:
 - ✓ Given two n-dimensional vectors $i = (x_{i1}, x_{i2}, ..., x_{in})$ and $j = (x_{j1}, x_{j2}, ..., x_{jn})$

$$d(i, j) = \sqrt{\sum_{k=1}^{n} (x_{ik} - x_{jk})^2}$$
 Euclidean Distance

• Euclidean distance satisfies the constraints:

 $d(i,j) \ge 0$ d(i,i) = 0 $d(i,j) \le d(i,k) + d(k,j)$

Problem Definition

- Problem: Given a data matrix D_{m×n}, the goal is to transform D into D' so that the following restrictions hold:
 - ✓ A transformation $T:D \rightarrow D$ ' must preserve the privacy of individual records.
 - \checkmark The similarity between objects in *D* and *D'* must be the same or slightly altered by the transformation process.

Privacy-Preserving Clustering (PPC)

• PPC over Centralized Data:

 \checkmark The attribute values subjected to clustering are available in a central repository.

• PPC over Vertically Partitioned Data:

- ✓ There are *k* parties sharing data for clustering, where $k \ge 2$;
- \checkmark The attribute values of the objects are split across the k parties.
- ✓ Objects IDs are revealed for join purposes only. The values of the associated attributes are private.

CMPUT 695 - November 4th, 2004

Privacy-Preserving Data Mining: An Overview

Object Similarity-Based Representation (OSBR)

Example 1: Sharing data for research purposes (OSBR).

Original Data

Transformed Data

Stanley Oliveira

ID	age	weight	heart	Int_def	QRS	PR_int			
	-	_	rate					0	
123	75	80	63	32	91	193		2.243	0
342	56	64	53	24	81	174	DM =	3.348	2.477
254	40	52	70	24	77	129		3.690	3.884
446	28	58	76	40	83	251		3.020	4.082
286	44	90	68	44	109	128			

A sample of the cardiac arrhythmia database (UCI Machine Learning Repository)

3.020 4.082 4.130 3.995

3 176

The corresponding dissimilarity matrix

Object Similarity-Based Representation (OSBR)

• General Assumptions:

- \checkmark The attributes could contain either binary, numerical, or categorical attributes, or even mixed types.
- ✓ Object IDs should be replaced by fictitious identifiers.
- PPC over Centralized Data:
 - ✓ **Step 1** Suppressing identifiers (e.g., address, phone number, etc.)
 - ✓ Step 2 Normalizing numerical attributes.
 - ✓ **Step 3** Computing the dissimilarity matrix.

CMPUT 695 - November 4th, 2004

Privacy-Preserving Data Mining: An Overview

Stanley Oliveir

Object Similarity-Based Representation (OSBR)

• Security of the OSBR:

- \checkmark Lemma 1: Let $DM_{m \times m}$ be a dissimilarity matrix, where m is the number of objects. It is impossible to determine the coordinates of the two objects by knowing only the distance between them.
- Complexity of the OSBR:
 - Communication cost is of order $O(m^2)$, where m is the number of objects under analysis.

Ω

Object Similarity-Based Representation (OSBR)

- Limitations of the OSBR:
 - Lemma 2: Knowing the coordinates of a particular object *i* and the distance *r* between *i* and any other object *j*, it is possible to estimate the attribute values of *j*.
 - ✓ Vulnerable to attacks (Lemma 2).
 - ✓ Expensive in terms of communication cost.
 - ✓ Conclusion \Rightarrow The OSBR is not effective for PPC over Vertically Partitioned Data.

Privacy-Preserving Data Mining: An Overview

Dimensionality Reduction Transformation (DRBT)

- **Random projection** from *d* to *k* dimensions:
 - $\checkmark D'_{n \times k} = D_{n \times d} \bullet R_{d \times k}$ (linear transformation), where

D is the original data, D' is the reduced data, and R is a random matrix.

- *R* is generated by first setting each entry, as follows:
 - ✓ (**R**₁): r_{ij} is drawn from an i.i.d. N(0,1) and then normalizing the columns to unit length;

 $\checkmark (\mathbf{R}_2): \mathbf{r}_{ij} = \sqrt{3} \times \begin{cases} +1 \text{ with probability } 1/6 \\ 0 \text{ with probability } 2/3 \\ -1 \text{ with probability } 1/6 \end{cases}$

Dimensionality Reduction Transformation (DRBT)

General Assumptions:

- ✓ The attribute values subjected to clustering are numerical only.
- In PPC over centralized data, object IDs should be replaced by fictitious identifiers;
- ✓ In PPC over vertically partitioned data, object IDs are used for the join purposes between the parties involved in the solution..
- The transformation (random projection) applied to the data might slightly modify the distances between data points.

CMPUT	695 -	November	4 th , 2004	
-------	-------	----------	------------------------	--

Privacy-Preserving Data Mining: An Overview

Stanley Oliveira

Dimensionality Reduction Transformation (DRBT)

- PPC over Centralized Data (General Approach):
 - ✓ **Step 1** Suppressing identifiers (e.g., address, phone number, etc.)
 - ✓ Step 2 Normalizing attribute values subjected to clustering.
 - ✓ **Step 3** Reducing the dimension of the original dataset by using random projection.
 - ✓ Step 4 Computing the error that the distances in *k*-*d* space suffer from:

$$Error^{2} = \left(\sum_{i,j} (\hat{d}_{ij} - d_{ij})^{2}\right) / \left(\sum_{i,j} d_{ij}^{2}\right)$$

Stanley Oliveira

Dimensionality Reduction Transformation (DRBT)

	PR_int	QRS	Int_def	heart rate	weight	age	ID
A	193	91	32	63	80	75	123
A sample of (UCI Ma	174	81	24	53	64	56	342
	129	77	24	70	52	40	254
	251	83	40	76	58	28	446
	128	109	44	68	90	44	286
	$\vdash \mathbf{RP}_1 \longrightarrow \mathbf{RP}_2 \longrightarrow$						
	Att3	Att2	Att1	Att3	Att2	Att1	D
Tra	-97.58	-125.0	91.0	12.31	17.33	-50.40	123
RP ₁ : The rai	-77.07	-98.50	81.0	12.22	6.27	-37.08	342
Norma	-77.78	-93.0	77.0	-0.66	20.69	-55.86	254
RP ₂ : The ran much s	-73.53	-101.0	83.0	-17.58	-31.66	-37.61	446
	-79 19	-123.0	109.0	18 16	37 64	-62.72	286

Original Data

nple of the cardiac arrhythmia database UCI Machine Learning Repository)

Transformed Data

RP₁: The random matrix is based on the Normal distribution.

RP₂: The random matrix is based on the much simpler distribution.

Stanley Oliveira

CMPUT 695 - November 4th, 2004

Privacy-Preserving Data Mining: An Overview

Dimensionality Reduction Transformation (DRBT)

• Security of the DRBT:

✓ Lemma 3: A random projection from *d* to *k* dimensions, where $k \ll d$, is a non-invertible linear transformation.

• Complexity of the OSBR:

- ✓ The complexity of space requirements is of order O(m), where *m* is the number of objects.
- ✓ The communication cost is of order O(mlk), where *l* represents the size (in bits) required to transmit a dataset from one party to a central or third party.

Dimensionality Reduction Transformation (DRBT)

- PPC over Vertically Partitioned Data:
 - ✓ It is a generalization of the solution for PPC over centralized data.
 - \checkmark Any of the *k* parties can be the central one.
 - Step 1 Individual transformation (dimensionality reduction).
 - ✓ Step 2 Data exchanging or sharing.
 - Step 3 The central party mines the data and shares the clustering results with the other parties.

CMPUT 695 - November 4th, 2004

Privacy-Preserving Data Mining: An Overview

Stanley Oliveira

Experimental Results

- Datasets (UCI Repository of ML Databases):
 - ✓ chess (3196 x 37);
 - ✓ mushroom (8124 x 23)
- Methodology (DRBT only):
 - ✓ PPC over centralized data:
 - (a) we applied dimensionality reduction to the datasets; (b) we computed the error produced on reduced datasets.
 - ✓ PPC over vertically partitioned data:
 - (a) We split the datasets up to 4 parties; (b) we applied dimensionality reduction to the sub-datasets in each party; (c) we computed the error produced on the merged datasets (central party).

CMPUT 695 - November 4th, 2004

Experimental Results (cont.)

PPC over Centralized Data

CMPUT 695 – November 4th, 2004

Privacy-Preserving Data Mining: An Overview

Stanley Oliveir

Experimental Results (cont.)

PPC over Vertically Partitioned Data

(a) The error produced on the the Mushroom dataset (b) The error produced on the Chess dataset

• We reduced 50% of the dimensions of each sub-dataset, in each party. Then we combined the sub-datasets and computed the error on the merged datasets.

```
CMPUT 695 - November 4th, 2004
```

Privacy-Preserving Data Mining: An Overview

Summary

- Privacy-Preserving Data Mining (PPDM)
 - ✓ The PPDM landmarks
 - ✓ Problems in defining privacy
 - ✓ Privacy violation
 - ✓ Some scenarios in PPDM
- Privacy-Preserving Clustering
 - ✓ Object Similarity-Based Representation (OSBR)
 - ✓ Dimensionality Reduction-Based Transformation (DRBT)

Summary (cont.)

- Highlights of the OSBR/DRBT Solutions:
 - They are independent of distance-based clustering algorithms.
 - ✓ They do not require CPU-intensive operations.
 - ✓ OSBR is effective to address PPC over centralized data.
 - DRBT is effective to address both PPC over centralized data and PPC over vertically partitioned data.

Stanley Oliveir

