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Outline

=) Privacy-Preserving Data Mining (PPDM)
v' The Landmarks
v" Problems in defining privacy
v" Privacy violation

v" Some scenarios in PPDM
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PPDM: Landmarks

» Conceptive Landmark: Preliminary discussions
on security and privacy implications of data
mining.

» Deployment Landmark: Proliferation of PPDM
techniques and Workshops/Conferences.

» Prospective Landmark: The need for foundations
for further research in PPDM.
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PPDM: Problemsin Defining Privacy

* “Theright to beaone’” (Warren & Brandeis).

* “Theright to determine what (personal) information is
communicated to others’ (Schoeman).

* Privacy has become a digital problem.

» “Getting valid data mining results without learning the
underlying datavalues’ (Clifton et al.).

* “PPDM encompasses the dual goal of meeting privacy
requirements and providing valid data mining results’
(Oliveiraand Zaiane).
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PPDM : Privacy Violation

» Changesin technology are making privacy harder.

v reduced cost for data storage

v increased ability to store and process large amounts of data
 Privacy violation in data mining: misuse of data.

 Defining privacy preservation in data mining:

v'Individual privacy preservation: protection of
personally identifiable information.

v'Collective privacy preservation: protection of users
collective activity.

Stanley Oliveira +&5,
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Some Scenariosin PPDM

» Characterizing Scenariosin PPDM:

v' Scenario 1: A hospital shares some data for research
pUrposes.

v/ Scenario 2: A collaboration between an Internet marketing
company and an on-lineretail company.

* Genera parameters:
v Outcome: refers to the desired data mining results.
v’ Data distribution: How are the data available for mining?

v’ Privacy preservation: What are the privacy preservation
requirements?
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Outline

m) Privacy-Preserving Clustering (PPC)
v’ Object Similarity-Based Representation (OSBR)
v Dimensionality Reduction-Based Transformation (DRBT)
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M otivation for PPC

 Clustering plays an outstanding role in data mining:
v Scientific data exploration;
v' Marketing;
v' Medica diagnosis;
v Computational biology.

» Dual-goal: Protecting the underlying data values and
achieving valid clustering results.

» Challenge: How can organizations protect persona data
subjected to clustering and meet their needs to support
decision making and to promote socia benefits?
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TheBasicsof Clustering Analysis

« DataMatrix (mxn matrix D)

A
ay v Ay Ay,
D= Qy o By v A,

a. - a, - a,
* Dissimilarity Matrix (mxm matrix DM)
0
d2) 0

DM =| d(31) d32) 0

d(r'n,l) d(rﬁ,z) 0
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The Basics of Clustering Analysis (cont.)

 Distance between any two data points:
v' Given two n-dimensional vectorsi = (X, X, - -,X;,) and

J = (X1 X1 -+00 %)

dg, j)= ;(xk—X.k)z <«— Euclidean Distance

* Euclidean distance satisfies the constraints:
v d(i,j) 20
v d(i,i)=0
v d(i,j) =d(i k) + d(k,)
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Problem Definition
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Original The transformation Transformed|¢ Privacy-Preserving ? @
Database

>
process Database Clustering (PPC) :j,l\\i!e‘

 Problem: Given adata matrix D, the goal isto
transform D into D' so that the following restrictions
hold:

v’ A transformation T:D - D’ must preserve the privacy of
individua records.

v The similarity between objectsin D and D' must be the same or
dlightly altered by the transformation process.

2
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Privacy-Preserving Clustering (PPC)

 PPC over Centralized Data:

v The attribute values subjected to clustering are availablein a
central repository.

* PPC over Vertically Partitioned Data:
v’ There are k parties sharing data for clustering, wherek = 2;
v’ The attribute values of the objects are split across the k parties.

v Objects IDs are revealed for join purposes only. The values of
the associated attributes are private.
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Object Similarity-Based Representation (OSBR)

* General Assumptions:

v’ The attributes could contain either binary, numerical, or
categorical attributes, or even mixed types.

v Object IDs should be replaced by fictitious identifiers.
* PPC over Centralized Data:

v Step 1 - Suppressing identifiers (e.g., address, phone number,
etc.)

v’ Step 2 - Normalizing numerical attributes.
v' Step 3 - Computing the dissimilarity matrix.
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Object Similarity-Based Representation (OSBR)

Example 1. Sharing data for research purposes (OSBR).

Original Data Transformed Data

ID | age | weight | heart | Int_def | QRS | PR_int
rate 0

123| 75| 80 | 63 32 91 | 193 2243 0
342 (56| 64 | 53 | 24 | 8 | 174 | DM=/3348 2477 0
25440 52 | 70 | 24 | 77 | 129 3600 3884 3176 O
6| 28| 8 | 0 & | 251 3.020 4.082 4.130 3.995 0
286 | 44| 90 | e8 44 | 109 | 128

A sample of the cardiac arrhythmia database The corresponding dissimilarity matrix

(UCI Machine L earning Repository)
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Object Similarity-Based Representation (OSBR)

e Security of the OSBR:

v'Lemmal: Let DM, be adissimilarity matrix,
where mis the number of objects. It isimpossible to
determine the coordinates of the two objects by
knowing only the distance between them.

o Complexity of the OSBR:

v'Communication cost is of order O(n?), wheremis
the number of objects under analysis.

Privacy-Preserving Data Mining: An Overview Stanley Oliveira "-;%%;
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Object Similarity-Based Representation (OSBR)

e Limitations of the OSBR:

v'Lemma 2: Knowing the coordinates of a particular
object i and the distancer between i and any other
object j, it is possible to estimate the attribute values
of .

v'Vulnerable to attacks (Lemma 2).
v'Expensive in terms of communication cost.

v'Conclusion = The OSBR is not effective for PPC
over Verticaly Partitioned Data.
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Dimensionality Reduction Transformation (DRBT)

* General Assumptions:

v The attribute values subjected to clustering are numerical only.

v"In PPC over centralized data, object | Ds should be replaced by
fictitious identifiers;

v In PPC over vertically partitioned data, object IDs are used for
the join purposes between the partiesinvolved in the solution..

v The transformation (random projection) applied to the data
might slightly modify the distances between data points.

18

CMPUT 695 — November 4h, 2004 Privacy-Preserving Data Mining: An Overview Stanley Oliveira 3%%3

Dimensionality Reduction Transformation (DRBT)

e Random projection from d to k dimensions:

V'D' xk = D xq ® Ryxk (linear transformation), where

nxk

D istheoriginal data, D’ isthe reduced data, and R is arandom
matrix.

» Risgenerated by first setting each entry, asfollows:

v (Ry): r;; isdrawn from ani.i.d. N(0,1) and then normalizing the
columns to unit length;
+1with probability1/6
v (R,): ;= ¥3x4 0 with probability2/3
—1with probability1/6
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Dimensionality Reduction Transformation (DRBT)

* PPC over Centralized Data (General Approach):

v Step 1 - Suppressing identifiers (e.g., address, phone number,
etc.)

v’ Step 2 - Normalizing attribute values subjected to clustering.

v’ Step 3 - Reducing the dimension of the original dataset by
using random projection.

v’ Step 4 — Computing the error that the distances in k-d space
suffer from:

Error® = (Y (d, —d,)) /(X d,*)

20
Privacy-Preserving Data Mining: An Overview Stanley Oliveira \%é

CMPUT 695 — November 4™, 2004




Dimensionality Reduction Transformation (DRBT)

ID | age | weight | heart | Int_def | QRS | PR_int o
rate Original Data

123 | 75 80 63 32 91 193
A sample of the cardiac arrhythmia database

342 | 56 64 53 24 81 174 (UCI Machine L earning Repository)
254 | 40 52 70 24 77 129
446 | 28 58 76 40 83 251
286 | 44 90 68 44 109 128
| RP; | RP, |

ID | Attl Att2 Att3 Attl Att2 Att3

123 | -50.40 | 17.33 | 1231 91.0 | -1250 | -97.58 Transformed Data

342 | -37.08 | 6.27 | 12.22 81.0 | -98.50 | -77.07 RP,: Therandom matrix isbased on the
Normal distribution.

254 | -55.86 | 20.69 | -0.66 77.0 -93.0 | -77.78

RP,: Therandom matrix isbased on the

446 | -37.61 | -31.66 | -17.58 | 83.0 | -101.0 | -73.53 much simpler distribution.

286 | -62.72 | 37.64 | 1816 | 109.0 | -1230 | -79.19
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Dimensionality Reduction Transformation (DRBT)

 PPC over Vertically Partitioned Data:

VIt isageneralization of the solution for PPC over
centralized data.

v'Any of the k parties can be the central one.

v'Step 1 - Individual transformation (dimensionality
reduction).

v'Step 2 - Data exchanging or sharing.

v'Step 3 - The central party mines the data and shares
the clustering results with the other parties.

22
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Dimensionality Reduction Transformation (DRBT)

e Security of the DRBT:

v'Lemma 3: A random projection from d to k dimensions,
where k << d, isanon-invertible linear transformation.

e Complexity of the OSBR:

v The complexity of space requirementsis of order O(m),
where mis the number of objects.

v The communication cost is of order O(mlk), where |
represents the size (in bits) required to transmit a dataset
from one party to a central or third party.
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Experimental Results

» Datasets (UCI Repository of ML Databases):
v' chess (3196 x 37);
v mushroom (8124 x 23)

* Methodology (DRBT only):

v PPC over centralized data:

= (a) we applied dimensionality reduction to the datasets; (b) we
computed the error produced on reduced datasets.

v PPC over verticaly partitioned data:
= (a) We gplit the datasets up to 4 parties; (b) we applied dimensionality
reduction to the sub-datasets in each party; (c) we computed the error
produced on the merged datasets (central party).

24
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Experimental Results (cont.)

PPC over Centralized Data

Experimental Results (cont.)

PPC over Vertically Partitioned Data
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* The Mushroom dataset = 23 dimensions ¢ The Chessdataset = 37 dimensions

» Wereduced 50% of the dimensions of each sub-dataset, in each party. Then we combined the
sub-datasets and computed the error on the merged datasets.
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Summary Summary (cont.)
« Privacy-Preserving Data Mining (PPDM) « Highlights of the OSBR/DRBT Solutions:
v The PPDM landmarks v They are independent of distance-based clustering
v' Problems in defining privacy algorithms.
v’ Privacy violation v" They do not require CPU-intensive operations.
v' Some scenariosin PPDM v OSBR is effective to address PPC over centralized
data
* Privacy-Preserving Clustering v DRBT is effective to address both PPC over
v Object Similarity-Based Representation (OSBR) gentral ized data and PPC over vertically partitioned
v Dimensionality Reduction-Based Transformation (DRBT) 25
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Thank You!
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