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Summary of Last Chapter

• What is the motivation for ad-hoc mining process?

• What defines a data mining task?

• Can we define an ad-hoc mining language?
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• Introduction to Data Mining
• Data warehousing and OLAP
• Data cleaning
• Data mining operations
• Data summarization
• Association analysis
• Classification and prediction 
• Clustering
• Web Mining
• Spatial and Multimedia Data Mining

• Other topics if time permits

Course Content

Principles of Knowledge Discovery in Data University  of Alberta Dr. Osmar R. Zaïane, 1999-2004 4

Chapter 4 Objectives

Understand Characterization and 
Discrimination of data.

See some examples of data summarization.
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Data Summarization  
Outline

• What are summarization and generalization?

• What are the methods for descriptive data mining?

• What is the difference with OLAP?

• Can we discriminate between data classes?
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Descriptive vs. Predictive Data Mining

• Descriptive mining: describe concepts or task-relevant 
data sets in concise, informative, discriminative forms.

• Predictive mining: Based on data and analysis, 
construct models for the database, and predict the trend 
and properties of unknown data.   

Concept description:

• Characterization: provides a concise and succinct 
summarization of the given collection of data.

• Comparison: provides descriptions comparing two or 
more collections of data.
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Need for Hierarchies in Descriptive Mining

• Schema hierarchy
– Ex: house_number < street < city < province < country

• define hierarchy as [house_number, street, city, province, country]

• Instance-based (Set-Grouping Hierarchy):
– Ex: {freshman, ..., senior} ⊂ undergraduate.

• define hierarchy statusHier as
level2: {freshman, sophomore, junior, senior} < level1:undergraduate;
level2: {M.Sc, Ph.D} < level1:graduate;
level1: {undergraduate, graduate} < level0: allStatus

• Rule-based:  
– undergraduate(x) ∧ gpa(x) > 3.5 good(x).

• Operation-based: 
– aggregation, approximation, clustering, etc.
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Creating Hierarchies

• Defined by database schema:

– Some attributes naturally form a hierarchy:

• Address (street, city, province, country, continent)

– Some hierarchies are formed with different attribute 
combinations:

• food(category, brand, content _spec, package _size, price).

• Defined by set-grouping operations (by users/experts).

• {chemistry, math, physics} ⊂ science.

• Generated automatically by data distribution analysis.

• Adjusted automatically based on the existing hierarchy.
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Automatic Generation of Numeric Hierarchies

0

5

10

15

20

25

30

35

40

10000 30000 50000 70000 90000

Count

Amount

2000-97000

2000-25000 25000-97000

2000-12000 12000-25000 25000-38000 38000-97000

Principles of Knowledge Discovery in Data University  of Alberta Dr. Osmar R. Zaïane, 1999-2004 10

Methods for Automatic Generation of Hierarchies

• Categorical hierarchies: (Cardinality heuristics)

– Observation: the higher hierarchy, the smaller cardinality.

• card(city) < card(state) < card (country).

– There are exceptions, e.g., {day, month, quarter, year}.

– Automatic generation of categorical hierarchies based on 
cardinality heuristic:

• location: {country, street, city, region, big-region, province}.

• Numerical hierarchies:

– Many algorithms are applicable for generation of hierarchies 
based on data distribution.

– Range-based vs. distribution-based (different binning methods)
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Automatic Hierarchy Adjustment

• Why adjusting hierarchies dynamically?
– Different applications may view data differently.

– Example: Geography in the eyes of politicians, researchers, 
and merchants.

• How to adjust the hierarchy?
– Maximally preserve the given hierarchy shape.

– Node merge and split based on certain weighted measure 
(such as count, sum, etc.)

• E.g., small nodes (such as small provinces) should be 
merged and big nodes should be split.
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Dynamic Adjustment of Concept 
Hierarchies
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Data Summarization  
Outline

• What are summarization and generalization?

• What are the methods for descriptive data mining?

• What is the difference with OLAP?

• Can we discriminate between data classes?
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Methods of Descriptive Data Mining
• Data cube-based approach:

– Dimensions: Attributes form concept hierarchies

– Measures: sum, count, avg, max, standard-deviation, etc.

– Drilling: generalization and specialization.

– Limitations: dimension/measure types, intelligent analysis.

• Attribute-oriented induction:
– Proposed in 1989 (KDD’89 workshop).

– Not confined to categorical data nor particular measures.

– Can be presented in both table and rule forms.

Principles of Knowledge Discovery in Data University  of Alberta Dr. Osmar R. Zaïane, 1999-2004 15

Basic Principles of Attribute-Oriented 
Induction

• Data focusing: task-relevant data, including dimensions, and the 
result is the initial relation.

• Attribute-removal: remove attribute A if there is a large set of 
distinct values for A but (1) there is no generalization operator on 
A, or (2)A’s higher level concepts are expressed in terms of other 
attributes.

• Attribute-generalization: If there is a large set of distinct values 
for A, and there exists a set of generalization operators on A, then 
select an operator and generalize A. 

• Attribute-threshold control: typical 2-8, specified/default.

• Generalized relation threshold control: control the final 
relation/rule size.
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Basic Algorithm for Attribute-Oriented 
Induction

• InitialRel: Query processing of task-relevant data, deriving the 
initial relation.

• PreGen: Based on the analysis of the number of distinct values 
in each attribute, determine generalization plan for each attribute: 
removal? or how high to generalize?

• PrimeGen: Based on the PreGen plan, perform generalization to 
the right level to derive a “prime generalized relation”.

• Presentation: User interaction: (1) adjust levels by drilling, (2) 
pivoting, (3) mapping into rules, cross tabs, visualization 
presentations.
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Class Characterization: An Example

Name Gender Major Birth-Place Birth_date Residence Phone # GPA

Jim Woodman   M   CS Vancouver,BC,Can
ada

  8-12-76 3511 Main St.,
Richmond

687-4598 3.67

Scott Lachance   M   CS Montreal, Que,
Canada

28-7-75 345 !st Ave.,
Vancouver

253-9106 3.70

Laura Lee   F physics Seattle, WA, USA 25-8-70 125 Austin Ave.,
Burnaby

420-5232 3.83

       …   ..    …           …      …          …     …  …

Gender Major Birth_region Age_range Residence GPA Count

    M Science    Canada     20-25 Richmond Very-good     16
    F Science    Foreign     25-30 Burnaby Excellent     22
   …      …        …        …      …        …     …

Birth_Region

Gender
Canada Foreign Total

M 16 14 30
F 10 22 32

Total 26 36 62
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Presentation of Generalized Results

• Generalized relation: 
– Relations where some or all attributes are generalized, with counts or 

other aggregation values accumulated.

• Cross tabulation:
– Mapping results into cross tabulation form (similar to contingency tables).

• Visualization techniques:
– Pie charts, bar charts, curves, cubes, and other visual forms.

• Quantitative characteristic rules:
– Mapping generalized result into characteristic rules with quantitative 

information associated with it, e.g.,

grad x male x
birth region x Canada birth region x foreign

( ) ( )
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Example: Grant Distribution in Canadian CS 
Departments

org_name                  count%             amount%   
Toronto                     7.92%               12.60%
Waterloo 8.87% 10.45%
British Columbia 5.85% 7.15%
Simon Fraser 4.34%                 4.97% 
Concordia   4.91%                  4.81% 
Alberta      4.15%                  4.26% 
Calgary 3.77%                  4.21% 
McGill 3.02%                  4.12% 
Victoria   3.96%                  3.91% 
Queen’s 4.34%                  3.90% 
Carleton 3.40%                  3.54% 
Western Ontario 3.77%                  3.25%
Ottawa 3.40%                  2.87%
York 2.45%                  2.41%
Saskatchewan 2.45%                  2.36%
McMaster 2.26%                  2.18%
Manitoba 2.64%                  2.15%
Regina 2.26%                  1.76%
New Brunswick 1.89%                  1.24%

DBMiner Query:

Find NSERC operating research grant
distributions according to Canadian universities.

use nserc96
mine characteristic rule
for “CS.Organization_Grants”
from award A, organization O, grant_type G
where A.grant_code = G.grant_code and

O.org_code = A.org_code and
A.disc_code = ‘Computer” and
G.grant_order = “Operation Grant”

in relevance to amount, org_name, count(*)%, 
amount(*)%

set attribute threshold 1 for amount
unset attribute threshold for org_name
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Data Summarization  
Outline

• What are summarization and generalization?

• What are the methods for descriptive data mining?

• What is the difference with OLAP?

• Can we discriminate between data classes?
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Characterization vs. OLAP

• Similarity:
– Presentation of data summarization at multiple levels of 

abstraction.

– Interactive drilling, pivoting, slicing and dicing.

• Differences:
– Automated desired level allocation.

– Dimension relevance analysis and ranking when there are 
many relevant dimensions.

– Sophisticated typing on dimensions and measures.

– Analytical characterization: data dispersion analysis.
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Attribute/Dimension Relevance Analysis

• Why attribute-relevance analysis?

– There are often a large number of dimensions, and only some 
are closely relevant to a particular analysis task.

– The relevance is related to both dimensions and levels.

• How to perform relevance analysis?

– Identify class to be analyzed and its comparative classes.

– Use information gain analysis (e.g., entropy or other 
measures) to identify highly relevant dimensions and levels.

– Sort and select the most relevant dimensions and levels.

– Use the selected dimension/level for induction.

– Drilling and slicing follow the relevance rules.
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Mining Characteristic Rules

• Characterization:  Data 

generalization/summarization 

at high  abstraction levels.

• An example query:  Find a 

characteristic rule for Cities 

from the database 

‘CITYDATA'  in  relevance 

to location, capita_income, 

and the distribution of 

count%  and amount%.
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Specification of Characterization by DMQL

• A summarization data mining query:
MINE Summary

ANALYZE cost, order_qty, revenue

WITH RESPECT TO cost, location, order_qty, 
product, revenue

FROM CUBE sales_cube

• Analytical characterization. 
If user writes, 

WITH RESPECT TO  *

relevance analysis is often required.
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Results of Summarization
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Data Summarization  
Outline
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Mining Discriminant Rules
• Discrimination: Comparing two or more classes.
• Method:

– Partition the set of relevant data into the target class and the
contrasting class(es) 

– Generalize both classes to the same high level concepts
– Compare tuples with the same high level descriptions
– Present for every tuple its description and two measures:

• support - distribution within single class
• comparison - distribution between classes

– Highlight the tuples with strong discriminant features 
• Relevance Analysis:

– Find attributes (features) which best distinguish different 
classes.
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Visualization of Characteristic Rules Using 
Tables and Graphs  (DBMiner Web version)
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Visualization of Discriminant Rules Using 
Graphs  (DBMiner Web version)


