Tutorial exercises Clustering – K-means, Nearest Neighbor and Hierarchical.

A1 A2

Exercise 1. K-means clustering

Use	the	k-means	alg	gorithm	and		
Eucli	dean	distance	to	cluster	the		
follov	wing 8	examples	into	3 cluster	s:		
A1=(2,10),	A2=(2	,5),	A3=(8,4),		
A4=(5,8),	A5=(7,	5),	A6=(6,4),		
A7=(1,2), <i>A</i>	A8=(4,9).					
The distance matrix based on the							
Englideen distance is since helenn							

A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{53}$	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	$\sqrt{58}$
A8								0

A4

A5

A6

A7

A8

A3

Euclidean distance is given below:

Suppose that the initial seeds (centers of each cluster) are A1, A4 and A7. Run the k-means algorithm for 1 epoch only. At the end of this epoch show:

a) The new clusters (i.e. the examples belonging to each cluster)

b) The centers of the new clusters

c) Draw a 10 by 10 space with all the 8 points and show the clusters after the first epoch and the new centroids.

d) How many more iterations are needed to converge? Draw the result for each epoch.

Exercise 2. Nearest Neighbor clustering

Use the Nearest Neighbor clustering algorithm and Euclidean distance to cluster the examples from the previous exercise: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). Suppose that the threshold t is 4.

Exercise 3. Hierarchical clustering

Use single and complete link agglomerative clustering to group the data described by the following distance matrix. Show the dendrograms.

	А	В	С	D
А	0	1	4	5
В		0	2	6
С			0	3
D				0

Exercise 4: Hierarchical clustering (to be done at your own time, not in class)

Use single-link, complete-link, average-link agglomerative clustering as well as medoid and centroid to cluster the following 8 examples:

A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). The distance matrix is the same as the one in Exercise 1. Show the dendrograms.

Exercise 5: DBScan

If Epsilon is 2 and minpoint is 2, what are the clusters that DBScan would discover with the following 8 examples: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). The distance matrix is the same as the one in Exercise 1. Draw the 10 by 10 space and illustrate the discovered clusters.