Principles of Knowledge Discovery in Data

Winter 2007

Chapter 2: Mining Association Rules

Dr. Osmar R. Zaïane

University of Alberta

Chapter 6 Objectives

Understand association analysis in large datasets and get a brief introduction to the different types of association rule mining

- Introduction to Data Mining Association Analysis
- Sequential Pattern Analysis
- Classification and prediction
- Contrast Sets
- Data Clustering
- Outlier Detection
- Web Mining
- Other topics if time permits (spatial data, biomedical data, etc.)

What Is Association Rule Mining?

- Association rule mining searches for relationships between items in a dataset:
- aims at discovering associations between items in a

- Rule form: "Body \rightarrow Head [support, confidence buys(x, "bread") \rightarrow buys(x, "milk") [0.6\%, 65\%] major(x, "CS") ^ takes $(\mathrm{x}$, "DB") \rightarrow grade(x, "A") $[1 \%, 75 \%$

Transactional Databases

Lecture Outline

Part I: Concepts
 (30 minutes)

- Basic concepts
- Support and Confidence
- Naïve approach

Part II: The Apriori Algorithm (30 minutes)

- Principles
- Algorithm
- Running Example

Part III: The FP-Growth Algorithm (30 minutes)

- FP-tree structure
- Running Example

Part IV: More Advanced Concepts (30 minutes)

- Database layout and space search approach
- Other types of patterns and constraints

mining association rules (Agrawal et. al SIGMOD93)	Fast algorithm (Agrawal et. al VLDB94)	Partitioning (Navathe et. al VLDB95)
Hash-based (Park et. al SIGMOD95)	Multilevel A.R. (Han et. al. VLDB95)	Generalized A.R. (Srikant et. AI. VLDB95)
Quantitative A.R. (Srikant et. al SIGMOD96)	Incremental mining (Cheung et. al ICDE96)	Parallel mining (Agrawal et. al TKDE96)
Distributed mining (Cheung et. al PDIS96)	Meta-ruleguided mining (Kamber et al. KDD97)	Direct Itemset Counting (Brin et. al SIGMOD97)
N-dimensional A.R. (Lu et. al DMKD'98)	Constraint A.R. (Ng et. al SIGMOD'98)	A.R. with recurrent items (Zaïane et. al ICDE'00)
FP without Candidate gen. (Han et. al SIGMOD’00)	DualMiner (Bucil, et. al KDD’02)	COFI algorithm (El-Hajj, et. al Dawak'03)
Spatial AR; Sequence Associations;AR for multimedia; AR in time series; AR with progressive refinement; etc.		
© Dr. Osmar R. Zaiane, 1999, 2007	Principles of Knowledge Discovery in Data	University of Alberta

Finding Rules in Transaction Data Set

- 6 transactions
- 5 items: \{Beer, Bread, Jelly, Milk, PeanutButter\}

Transactions	Items
T1	Bread, Jelly, PeanutButter
T2	Bread, PeanutButter
T3	Bread, Milk, PeanutButter
T4	Beer, Bread
T5	Beer, Milk
T6	Bread, Milk

- Searching for rules of the form $X \rightarrow Y$, where X and Y are sets of items
- e.g. Bread \rightarrow Jelly; Bread, Jelly \rightarrow PeanutButter
- Design an efficient algorithm for mining association rules in large data sets
- Develop an effective approach for distinguishing interesting rules from irrelevant ones

Basic Concepts

A transaction is a set of items: $\quad T=\left\{i_{a}, i_{b}, \ldots i_{t}\right\}$
$\mathrm{T} \subset I$, where I is the set of all possible items $\left\{\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots \mathrm{i}_{d}\right\}$
D, the task relevant data, is a set of transactions $\mathrm{D}=\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots \mathrm{~T}_{\mathrm{n}}\right\}$.
An association rule is of the form:
$\mathrm{P} \rightarrow \mathrm{Q}$, where $\mathrm{P} \subset I, \mathrm{Q} \subset I$, and $\mathrm{P} \cap \mathrm{Q}=\varnothing$

Support of an Itemset

- Support of $P=P_{1} \wedge P_{2} \wedge \ldots \wedge P_{k}$ in $\boldsymbol{D} \sigma(\mathrm{P} / D)$ is the probability that P occurs in D : it is the percentage of transactions T in D satisfying P.
- I.e. the support of an item (or itemset) X is the percentage of transactions in which that item (or items) occurs: (number of T by cardinality of D).

$$
\operatorname{support}(\mathrm{X})=\frac{\# \mathrm{X}}{n}
$$

Support for all subsets of items

- Note the exponential growth in the set of items - 5 items: 31 sets

A set of items is referred to as itemset.
An itemset containing k items is called \mathbf{k}-itemset.
\{Jelly, Milk, Bread\} is a 3-itemset example
An items set can also be seen as a conjunction of items (or a predicate)
$\mathrm{P} \rightarrow \mathrm{Q}$ holds in D with support s
and
$\mathrm{P} \rightarrow \mathrm{Q}$ has a confidence \boldsymbol{c} in the transaction set D.
Support $(P \rightarrow Q)=\operatorname{Probability}(P \cup Q)$
Confidence $(\mathrm{P} \rightarrow \mathrm{Q})=$ Probability $(\mathrm{Q} / \mathrm{P})$

Support and Confidence of an Association Rule

- The support of an association rule $X \rightarrow Y$ is the percentage of transactions that contain $X \cup Y$
$\operatorname{support}(\mathrm{X}->\mathrm{Y})=\frac{\#(\mathrm{X} \cup \mathrm{Y})}{n}$
- The confidence of an association rule $X \rightarrow Y$ is the ratio of the number of transactions that contain $X \cup Y$ to the number of transactions that contain X
confidence $(X->Y)=\frac{\#(X \cup Y)}{\# X}$
- Confidence of a rule $\mathrm{P} \rightarrow \mathrm{Q}$ in database $\mathrm{D} \varphi(\mathrm{P} \rightarrow \mathrm{Q} / D)$ is the ratio $\sigma((\mathrm{P} \wedge \mathrm{Q}) / D)$ by $\sigma(\mathrm{P} / D)$
$\operatorname{confidence}(X->Y)=\frac{\operatorname{support}(X->Y)}{\operatorname{support}(X)}$

Support and Confidence - cont.

- What is the support and confidence of the following rules?
- Beer \rightarrow Bread

Transactions	Items
T1	Bread, Jelly, PeanutButter
T2	Bread, PeanutButter
T3	Bread, Milk, PeanutButter
T4	Beer, Bread
T5	Beer, Milk
T6	Bread, Milk

Frequent Itemsets and Strong Rules
Support and Confidence are bound by Thresholds:
$>$ minimum support σ^{\prime}
$>$ minimum confidence φ,
A Frequent (or large) itemset I in D is an itemset with a support larger than the minimum support;
A strong rule $X \rightarrow Y$ is a rule that is frequent (i.e. support higher than minimum support) and its confidence is higher than the minimum confidence threshold.

Association Rule Problem Definition

- Given $\mathrm{I}=\left\{\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{m}}\right\}, \mathrm{D}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ and the support and confidence thresholds, the association rule mining problem is to identify all strong association rules $\mathrm{X} \rightarrow \mathrm{Y}$.

Better Approach

Find the frequent itemsets: the sets of items that have minimum support(1) Use the frequent itemsets to generate association rules. Keep only strong rules.

Generating Association kules trom Frequent Itemsets

- Only strong association rules are generated.
- Frequent itemsets satisfy minimum support threshold.
- Strong AR satisfy minimum confidence threshold.
$\cdot \operatorname{Confidence}(A \rightarrow B)=\operatorname{Prob}(B / A)=\frac{\operatorname{Support}(A \cup B)}{\operatorname{Support}(A)}$
For each frequent itemset, \mathbf{f}, generate all non-empty subsets of \mathbf{f}. For every non-empty subset \mathbf{s} of \mathbf{f} do output rule $\mathbf{s} \rightarrow$ (f-s) if $\operatorname{support}(\mathbf{f}) /$ support $(\mathbf{s}) \geq$ min_confidence end

Naïve Frequent Itemset Generation

- Brute-force approach (Basic approach):
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity $\sim \mathrm{O}(\mathrm{NMw})=>$ Expensive since $\mathbf{M}=2^{\text {d }}$!!!

Lecture Outline

Part I: Concepts (30 minutes)

- Basic concepts
- Support and Confidence
- Naïve approach

Part II: The Apriori Algorithm (30 minutes)

- Principles
- Algorithm
- Running Example

Part III: The FP-Growth Algorithm (30 minutes)

- FP-tree structure
- Running Example

Part IV: More Advanced Concepts (30 minutes)

- Database layout and space search approach
- Other types of patterns and constraints

An Influential Mining Methodology
 - The Apriori Algorithm

- The Apriori method:
- Proposed by Agrawal \& Srikant 1994
- A similar level-wise algorithm by Mannila et al. 1994
- Major idea (Apriori Principle):
- A subset of a frequent itemset must be frequent
- E.g., if \{beer, diaper, nuts\} is frequent, \{beer, diaper\} must be. Any itemset that is infrequent, its superset cannot be frequent!
- A powerful, scalable candidate set pruning technique:
- It reduces candidate k-itemsets dramatically (for $k>2$)

Mining Association rules: the Key Steps

Apriori principle:

- A subset of any frequent (large) itemset is also frequent
- This also implies that if an itemset is not frequent (small), a superset of it is also not frequent
- If we know that an itemset is infrequent, we need not generate any subsets of it as they will be infrequent

- Lines represent "subset" relationship
- If $A C D$ is frequent, than $A C, A D, C D, A, C, D$ are also frequent, i.e. if an itemset is frequent than any set in a path above it is also frequent
- If AB is infrequent, than $\mathrm{ABC}, \mathrm{ABD}, \mathrm{ABCD}$ will also be infrequent, i.e. if an itemset is infrequent than any set in the path below is also infrequent
- If any of $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{AC}, \mathrm{AD}, \mathrm{CD}$, is infrequent than ACD is infrequent (no need to check).

Apriori Algorithm - Idea

1. Generate candidate itemsets of a particular size

2. Scan the database to see which of them are frequent

- An itemset is frequent if all its subsets are frequent

3. Use only these frequent itemsets to generate the set of candidates with

size=size+1

For our example if $\sigma^{\prime}=50 \%$
Items Bread, PeanutButter Bread, Milk, PeanutButter Beer, Bread
Beer, Milk
Beer, M.
Bread, Milk
(4) Find the frequent itemsets: the sets of items that have minimum support
A subset of a frequent itemset must also be a frequent itemset, i.e., if $\{A B\}$ is a frequent itemset, both $\{A\}$ and $\{B\}$ should be frequent itemsets

- Iteratively find frequent itemsets with cardinality from 1 to k (k-itemsets)
(1) Use the frequent itemsets to generate strong association rules.

The Apriori Algorithm

C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k
$L_{1}=\{$ frequent items $\} ;$
for ($k=1 ; L_{k}!=\varnothing ; k++$) do begin
$C_{k+1}=$ candidates generated from L_{k};
for each transaction t in database do
increment the count of all candidates
in C_{k+1} that are contained in t
$L_{k+l}=$ candidates in C_{k+1} with min_support
end
return $\cup_{k} L_{k}$;

The Apriori Algorithm -- Example

Database D		C_{1} itemset sup.			port>1					
		L_{l}	itemset	sup.						
TID	Items				C_{1}	\{1\}	2		\{1\}	2
100	134		\{2\}	3	\rightarrow	\{2\}	3			
200	235	$5 \xrightarrow{\text { Scan D }}$	\{3\}	3		\{3\}	3			
300	1235		\{4\}	1		\{5\}	3			
400	25		\{5\}	3						
		C_{2}	itemset	sup		C_{2} item	mset			
L_{2}	itemset	sup	\{1 2\}	1	Scan		$12\}$			
	\{1 3\}	2	\{1 3\}	2			13 3			
	\{2 3\}	2	\{1 5\}	1			$15\}$			
	\{2 5\}	3	\{2 3\}	2			$23\}$			
	\{35\}	2	$\{25\}$ $\{35$	3			$\left.\begin{array}{l}25 \\ 25 \\ 3\end{array}\right\}$			

Apriori-Gen Algorithm - Clothing Example

- Given: 20 clothing transactions; $\boldsymbol{s = 2 0 \%} \mathbf{c} \mathbf{c}=\mathbf{5 0 \%}$
- Generate association rules using the Apriori algorithm

Transaction	Items	Transaction	Items
t_{1}	Blouse	t_{11}	TShirt
t_{2}	Shoes, Skirt, TShirt	t_{12}	Blouse, Jeans, Shoes, Skirt, TShirt
t_{3}	Jeans, TShirt	t_{13}	Jeans, Shoes, Shorts, TShirt
t_{4}	Jeans, Shoes, TShirt	t_{14}	Shoes, Skirt, TShirt
t_{5}	Jeans, Shorts	t_{15}	Jeans, TShirt
t_{6}	Shoes, TShirt	t_{16}	Skirt, TShirt
t_{7}	Jeans, Skirt	t_{17}	Blouse, Jeans, Skirt
t_{8}	Jeans, Shoes, Shorts, TShirt	t_{18}	Jeans, Shoes, Shorts, TShirt
t_{9}	Jeans	t_{19}	Jeans
t_{10}	Jeans, Shoes, TShirt	t_{20}	Jeans, Shoes, Shorts, TShirt

- Scan1: Find all 1-itemsets. Identify the frequent ones. Candidates:Bोorse, Jeans, Shoes, Shorts, Skirt, Tshirt Support: \quad z/20 $14 / 20 \quad 10 / 20 \quad 5 / 20 \quad 6 / 20 \quad 14 / 20$ Frequent (Large): Jeans, Shoes, Shorts, Skirt, Tshirt Join the frequent items - combine items with each other to generate candidate pairs

Clothing Example - cont. 1

- Scan2: 10 candidate 2-itemsets were generated. Find the frequent ones.

\{Jeans, Short\} :5/20 \{Shoe	20 \{Short, TShirt\}: 4/20
\{Jeans, cirirt\} : 3/20 \{Sho	0/20
\{Jeans, TShirt\}:9/20 4/20	7 frequent itemsets are found out of 10.

Scan	Candidates	Large Itemsets
1	$\begin{aligned} & \begin{array}{l} \text { [Blouse\}, , [Jeanss, ;Shoes\}, } \\ \text { [Shorts], \{Skirt), [TShirt\} } \end{array} \longrightarrow \end{aligned}$	
2	\{Jeans, Shoes\}, \{Jeans, Shorts\}, \{Jeans, Skirt\}, \{Jeans, TShirt\}, \{Shoes, Shorts\}, \{Shoes, Skirt\}, \{Shoes, TShirt\}, \{Shorts, Skirt\}, \{Shorts, TShirt\}, [Skirt, TShirt]	\{Jeans, Shoes\}, (Jeans, Sluots). 2 sets are joined if they \{Jeans, TShirt\}, \{Shoes, Shorss, have 1 item in common (Shoes, TShirt), \{Shorts, TShit\}, [Skiz, TShirt] (i,.e. 1 item different)
3	$\{$ Jeans, Shoes, Shorts\}, (Jeans, Shoes, TShirt\}, \{Jeans, Shorts, TShirt\}, (Jeans, Skirt, TShirt\}, [Shoes, Shorts, TShirt\}, \{Shoes, Skirt, TShirt\}, [Shorts, Skirt, TShirt]	\{Jemis, Shoes, Short\}, (Jeans, Shoes, TShirt), 2 sets are joined if they (Jeans, Shorts, TShirt), have 2 item in common (Shoes, Shorts, TShirt\} (i,.e. 1 item different)
4	[Jeans, Shoes, Shorts, TShirt\} \longrightarrow	(Jeans, Shoes, Shorts, TShirt\}
5	θ	\emptyset

Clothing Example - cont. 2

- The next step is to use the large itemsets and generate association rules
- $\mathbf{c = 5 0 \%}$
- The set of large itemsets is

L=\{ \{Jeans \}, \{Shoes \}, \{Shorls\}, \{Skirt\}, \{TShirt\}, \{Jeans, Shoes\}, \{Jeans, Shorts\}, \{Jeans, TShirt\}, \{Shoes, Shorts\}, \{Shoes, TShirt\}, \{Shorts, TShirt\}, \{Skirt, TShirt\}, \{Jeans, Shoes, Shorts\}, \{Jeans, Shoes, TShirt\}, \{Jeans, Shorts, TShirt\},\{Shoes, Shorts, TShirt $\},\{$ Jeans, Shoes, Shorts,TShirt $\}$

- We ignore the first 5 as they do not consists of 2 nonempty subsets of large itemsets. We test all the others, e.g.:

$$
\text { confidence }(\text { Jeans }->\text { Shoes })=\frac{\operatorname{support}(\{\text { Jeans, Shoes }\})}{\operatorname{support}(\{\text { Jeans }\})}=\frac{7 / 20}{14 / 20}=50 \% \geq c
$$

Lecture uutine

Part I: Concepts
 (30 minutes)

- Basic concepts
- Support and Confidence
- Naïve approach

Part II: The Apriori Algorithm (30 minutes)

- Principles
- Algorithm
- Running Example

Part III: The FP-Growth Algorithm (30 minutes)

- FP-tree structure
- Running Example

Part IV: More Advanced Concepts (30 minutes)

- Database layout and space search approach
- Other types of patterns and constraints

Problems with Apriori

- Generation of candidate itemsets are expensive (Huge candidate sets)
- 10^{4} frequent 1 -itemset will generate 10^{7} candidate 2-itemsets
- To discover a frequent pattern of size 100 , e.g., $\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.
- High number of data scans

Frequent Pattern Growth

- First algorithm that allows frequent pattern mining without generating candidate sets
- Requires Frequent Pattern Tree

Frequent Pattern Tree

- Prefix tree.
- Each node contains the item name, frequency and pointer to another node of the same kind.
- Frequent item header that contains item names and pointer to the first node in FP tree.

FP-Growth

- Grow long patterns from short ones using local frequent items
- "abc" is a frequent pattern
- Get all transactions having "abc": DB|abc
- "d" is a local frequent item in DB|abc \rightarrow abcd is a frequent pattern

tree (on T10I4D100k)

Frequent Pattern Tree

F, A, C, D, G, I, M, P
A, B, C, F, L, M, O
B, F, H, J, O
A, F, C, E, L, P, M, N
B, C, K, S, P
F, M, C, B, A

Required Support: 3

Frequent Pattern Tree

Original Transaction	Ordered frequent items
F, A, C, D, G, I, M, P	F, C, A, M, P
A, B, C, F, L, M, O	F, C, A, B, M
B, F, H, J, O	F, B
A, F, C, E, L, P, M, N	C, B, P
B, C, K, S, P	F, C, A, M, P
F, M, C, B, A	F, C, A, M
F, B, D	F, B

	F, C, A, M, P
$\Rightarrow F, C, A, B, M$	
F, B	
C, B, P	
F, C, A, M, P	
C, A, M	
F, B	

Frequent Pattern Tree

F, C, A, M, P
F, C, A, B, M
F, B

$\mathrm{C}, \mathrm{B}, \mathrm{P}$
$\mathrm{F}, \mathrm{C}, \mathrm{A}, \mathrm{M}, \mathrm{P}$

F, C, A, M, I
C, A, I
F, B

Frequent Pattern Tree

$\mathrm{F}, \mathrm{C}, \mathrm{A}, \mathrm{M}, \mathrm{P}$
$\mathrm{F}, \mathrm{C}, \mathrm{A}, \mathrm{B}, \mathrm{M}$
F, B
$\mathrm{C}, \mathrm{B}, \mathrm{P}$
$\mathrm{F}, \mathrm{C}, \mathrm{A}, \mathrm{M}, \mathrm{P}$
$\mathrm{C}, \mathrm{A}, \mathrm{M}$
F, B

Frequent Pattern Tree

F, C, A $, \mathrm{M}, \mathrm{P}$
F, C, A, B, M
F, B
C, B, P
F, C, A, M, P
C, A, M
F, B

Frequent Pattern Tree

Frequent Pattern Tree

F, C, A M, P
F, C, A , B, M
F, B
C, B, P
F, C, A, M, P
C, A, M
F, B

Frequent Pattern Tree

F, C, A, M, P
F, C, A, B, M
F, B
C, B, P
F, C, A, M, P
C, A, M
F, B

Frequent Pattern Tree

F, C, A, M, P
F, C, A, B, M
F, B
C, B, P
F, C, A, M, P
C, A, M
F, B

Frequent Pattern Tree

Mining Frequent Patterns with FP-Tree 3 Major Steps
Starting the processing from the end of list L :
Step 1:
Construct conditional pattern base for each item in the header table
Step 2
Construct conditional FP-tree from each conditional pattern base
Step 3
Recursively mine conditional FP-trees and grow frequent patterns obtained so far. If the conditional FP-tree contains a single path, simply enumerate all the patterns

Frequent Pattern Growth

Recursively buil the A, C and F conditional trees

Another Example: Construct FP-tree from a
Transaction Database

TID	Items bought	(ordered) fr	min_support $=3$
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	

1. Scan DB once, find frequent 1-itemset (single item pattern)
2. Sort frequent items in frequency descending order, F-List
3. Scan DB again, construct FP-tree

Properties of Step 1

- Node-link property
- For any frequent item a_{i}, all the possible frequent patterns that contain a_{i} can be obtained by following a_{i} 's node-links, starting from a_{i} 's head in the FP-tree header.
- Prefix path property
- To calculate the frequent patterns for a node a_{i} in a path P, only the prefix sub-path of a_{i} in P need to be accumulated, and its frequency count should carry the same count as node a_{i}.
- Starting at the frequent-item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Conditional pattern bases item cond. pattern base fcam:2, cb:1 fca:2, fcab:1
fca:1, f:1, c:1
fc: 3
f:3

Step 2: Construct Conditional FP-tree

- For each pattern base
- Accumulate the count for each item in the base
- Construct the conditional FP-tree for the frequent items of the pattern base

Conditional Pattern Bases and Conditional FP-Tree

\uparrow| Item | Conditional pattern base | Conditional FP-tree |
| :---: | :---: | :---: |
| p | $\{(\mathrm{fcam}: 2),(\mathrm{cb}: 1)\}$ | $\{(\mathrm{c}: 3)\} \mid \mathrm{p}$ |
| m | $\{(\mathrm{fca}: 2),(\mathrm{fcab}: 1)\}$ | $\{(\mathrm{f}: 3, \mathrm{c}: 3, \mathrm{a}: 3)\} \mid \mathrm{m}$ |
| b | $\{(\mathrm{fca}: 1),(\mathrm{f}: 1),(\mathrm{c}: 1)\}$ | Empty |
| a | $\{(\mathrm{fc}: 3)\}$ | $\{(\mathrm{f}: 3, \mathrm{c}: 3)\} \mid \mathrm{a}$ |
| c | $\{(\mathrm{f}: 3)\}$ | $\{(\mathrm{f}: 3)\} \mid \mathrm{c}$ |
| f | Empty | Empty |

order of L

Principles of FP-Growth

- Pattern growth property
- Let α be a frequent itemset in DB, B be α 's conditional pattern base, and β be an itemset in B. Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in B .
- Is "fcabm" a frequent pattern?
- "fcab" is a branch of m's conditional pattern base
- "b" is NOT frequent in transactions containing "fcab"
- "bm" is NOT a frequent itemset.

Step 3: Kecursively mine the conditional
FP-tree

Single FP-tree Path Generation

- Suppose an FP-tree T has a single path P. The complete set of frequent pattern of T can be generated by enumeration of all the combinations of the sub-paths of P

Discussion (2/2)

- Association rules are typically sought for very large databases $\boldsymbol{-}$ efficient algorithms are needed
- The Apriori algorithm makes 1 pass through the dataset for each different itemset size
- The maximum number of database scans is $k+1$, where k is the cardinality of the largest large itemset (4in the clothing ex.) - potentially large number of scans - weakness of Apriori
- Sometimes the database is too big to be kept in memory and must be kept on disk
- The amount of computation also depends on the min.support; the confidence has less impact as it does not affect the number of passes
- Variations
- Using sampling of the database
- Using partitioning of the database
- Generation of incremental rules

Lecture Outline

Part I: Concepts (30 minutes)

- Basic concepts
- Support and Confidence
- Naïve approach

Part II: The Apriori Algorithm (30 minutes)

- Principles
- Algorithm
- Running Example

Part III: The FP-Growth Algorithm (30 minutes)

- FP-tree structure
- Running Example

Part IV: More Advanced Concepts (30 minutes)

- Database layout and space search approach
- Other types of patterns and constraints
- Choice of minimum support threshold
- lowering support threshold results in more frequent itemsets
- this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
- more space is needed to store support count of each item
- if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
- since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
- transaction width increases with denser data sets
- This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Other Frequent Patterns

- Frequent pattern $\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{100}\right\} \rightarrow\left({ }_{100}{ }^{1}\right)+\left({ }_{100^{2}}\right)+$ $\ldots+\left({ }_{100}{ }^{100}\right)=2^{100}-1=1.27 * 10^{30}$ frequent subpatterns!
- Frequent Closed Patterns
- Frequent Maximal Patterns
- All Frequent Patterns

Frequent Closed Patterns

- For frequent itemset X, if there exists no item y such that every transaction containing X also contains y , then X is a frequent closed pattern
- In other words, frequent itemset X is closed if there is no item y , not already in X , that always accompanies X in all transactions where X occurs.
- Concise representation of frequent patterns. Can generate all frequent patterns with their support from frequent closed ones.
- Reduce number of patterns and rules
- N. Pasquier et al. In ICDT'99

Frequent Maximal Patterns

- Frequent itemset X is maximal if there is no other frequent itemset Y that is superset of X.
- In other words, there is no other frequent pattern that would include a maximal pattern.
- More concise representation of frequent patterns but the information about supports is lost.
- Can generate all frequent patterns from frequent maximal ones but without their respective support.
- R. Bayardo. In SIGMOD’98

Maximal vs. Closed Itemsets

Mining the Pattern Lattice

- Breadth-First

- It uses current items at level k to generate items of level $\mathrm{k}+1$ (many database scans)
- Depth-First
- It uses a current item at level k to generate all its supersets (favored when mining long frequent patterns)
- Hybrid approach
- It mines using both direction at the same time
- Leap traversal approach
- Jumps to selected nodes

There is also the notion of :
Top-down (level k then level $k+1$)
Bottom-up (level $\mathrm{k}+1$ then level k)

Breadth- First (Bottom-Up Example)

Depth First (Top-Down Example)

One Hybrid Example

Leap Traversal Example

Restricting Association Rules

- Useful for interactive and ad-hoc mining

- Reduces the set of association rules discovered and confines them to more relevant rules.
- Before mining
\checkmark Knowledge type constraints: classification, etc.
\checkmark Data constraints: SQL-like queries (DMQL)
\checkmark Dimension/level constraints: relevance to some dimensions and some concept levels.
- While mining
\checkmark Rule constraints: form, size, and content.
\checkmark Interestingness constraints: support, confidence, correlation.
- After mining
\checkmark Querying association rules

Constraint-based Data Mining

- Finding all the patterns in a database autonomously?
- unrealistic!
- The patterns could be too many but not focused!
- Data mining should be an interactive process
- User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
- User flexibility: provides constraints on what to be mined
- System optimization: explores such constraints for efficient mining-constraint-based mining

Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

- Given a frequent pattern mining query with a set of constraints C, the algorithm should be
- sound: it only finds frequent sets that satisfy the given constraints C
- complete: all frequent sets satisfying the given constraints C are found
- A naïve solution
- First find all frequent sets, and then test them for constraint satisfaction
- More efficient approaches:
- Analyze the properties of constraints comprehensively
- Push them as deeply as possible inside the frequent pattern computation.

Rule Constraints in Association Mining

Two kind of rule constraints:

- Rule form constraints: meta-rule guided mining.
- $\mathrm{P}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Q}(\mathrm{x}, \mathrm{w})$-> takes(x , "database systems").
- Rule content constraint: constraint-based query optimization (where and having clauses) (Ng, et al., SIGMOD'98).
- $\operatorname{sum}($ LHS $)<100 \wedge \min ($ LHS $)>20^{\wedge} \operatorname{count}($ LHS $)>3 \wedge$ sum(RHS) >1000

1-variable vs. 2-variable constraints

(Lakshmanan, et al. SIGMOD'99):

- 1-var: A constraint confining only one side (L/R) of the rule, e.g., as shown above.
- 2-var: A constraint confining both sides (L and R).
- $\operatorname{sum}($ LHS $)<\min (\text { RHS })^{\wedge} \max ($ RHS $)<5^{*} \operatorname{sum}($ LHS $)$

Monotonicity in Constraint-Based Mining

- Monotonicity
- When an intemset S satisfies the constraint, so does any of its supersets
- $\operatorname{sum}($ S.Price $) \geq v$ is monotone
$-\min ($ S.Price $) \leq v$ is monotone
- Example. C: range(S.profit) ≥ 15
- Itemset $a b$ satisfies C
- So does every superset of $a b$

TID	Transaction	
10	$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}$	
20	$\mathrm{~b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \mathrm{h}$	
30	$\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$	
40	$\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}$	
	Item	Profit
	a	40
	b	0
	-20	
	d	10
	e	-30
	f	30
	g	20
	h	-10

Which Constraints Are Monotone or

SQL-based Constraints Anti-Monotone?

Constraint	Monotone	Anti-Monotone
$\mathbf{v} \in \mathbf{S}$	yes	no
$\mathbf{S}_{\supseteq} \mathbf{V}$	yes	no
$\mathbf{S} \subseteq \mathbf{V}$	no	yes
$\min (\mathbf{S}) \leq \mathbf{v}$	yes	no
$\min (\mathbf{S}) \geq \mathbf{v}$	no	yes
$\max (\mathbf{S}) \leq \mathbf{v}$	no	yes
$\max (\mathbf{S}) \geq \mathbf{v}$	yes	no
$\operatorname{count}(\mathbf{S}) \leq \mathbf{v}$	no	yes
$\operatorname{count}(\mathbf{S}) \geq \mathbf{v}$	yes	no
$\operatorname{sum}(\mathbf{S}) \leq \mathbf{v}(\mathbf{a} \in \mathbf{S}, \mathbf{a} \leq \mathbf{0})$	no	yes
$\operatorname{sum}(\mathbf{S}) \geq \mathbf{v}(\mathbf{a} \in \mathbf{S}, \mathbf{a} \leq \mathbf{0})$	yes	no
$\operatorname{range}(\mathbf{S}) \leq \mathbf{v}$	no	yes
$\operatorname{range}(\mathbf{S}) \geq \mathbf{v}$	yes	no
$\operatorname{support}(\mathbf{S}) \geq \xi$	no	yes
$\operatorname{support}(\mathbf{S}) \leq \xi$	yes	no

state Ut 1 ne Art

- Constraint pushing techniques have been proven to be effective in reducing the explored portion of the search space in constrained frequent pattern mining tasks.

- Anti-monotone constraints:

- Easy to push ...
- Always profitable to do ...

FP-Growth with Constraints:
J. Pei, J. Han, L. Lakshmanan, ICDE'01

- Monotone constraints:

- Hard to push ...
- Should we push them, or not?
- Dual Miner: C. Bucil, J. Gherke, D. Kiefer and W. White, SIGKDD’02
- FP-Bonsai: F. Bonchi anf B. Goethals, PAKDD’04
- COFI with constraints: M. El-Hajj and O. Zaiane, Ar05
- BifoldLeap: M. El-Hajj and O. Zaiane, ICDM'05

Finding Maximal using leap traversal approach

Finding Maximal using leap traversal approach

Finding Maximal using leap traversal approach

TID	Items
1,3	ABC
2	ABCD
4	ACDE
5	DE

 paths with each others

Finding Maximal using leap traversal approach

Step3: Remove non

 frequent paths, or requent paths that have superset of other frequent paths
Empirical Tests

When to use a Given Strategy

- Breadth First
- Suitable for short frequent patterns
- Unsuitable for long frequent patterns
- Depth First
- Suitable for long frequent patterns
- In general not scalable when long candidate patterns are not frequent
- Leap Traversal
- Suitable for cases having short and long frequent patterns simultaneously

Finding Maximal using leap traversal approach

Transactional Layouts

- Horizontal Layout

Each transaction is recorded as a list of items

Transaction ID	Items			
1		GD		B
2	B C	C H	H	D
3		DE	A	M
4		EF	A	N
5	A ${ }^{\text {B }}$	B N	,	P
6		C	Q	
7		C	11	G
8		EF		
9		FM	N	0
10		F P	J	,
11		D B		
12		E B	K	L
13	MD	D	G	0
14		F P	Q	
15		DE	EF	1
16		E B	A	D
17	AK	K E	E	
18	C ${ }^{\text {d }}$	D L		

Candidacy generation can be removed (FP-Growth)

Superfluous Processing

Transactional Layouts

- Bitmap Layout Matrix : Rows represent transactions Columns represent item If item exists in transaction then cell value $=1$ else cell value $=0$

Similar to horizontal layout. Suitable for datasets with small dimensionality

Transactional Layouts

- Inverted Matrix Layout

El-Hajj and Zaiane, ACM SIGKDD’03
Minimize Superfluous Processing
Candidacy generation can be reduced
Appropriate for Interactive Mining

Why The Matrix Layout?

Interactive mining

Changing the support level means expensive steps (whole process is redone)

Why The Matrix Layout?

Repetitive tasks, (I/O) readings (Superfluous Processing)

T\#	Items			
T1				
T2	B	C	H	E
T3	B	D	E	A
T4		E	F	A
T5	A	B	N	\bigcirc
T6	A	C	Q	R
T7	A	C	H	
T8		E	F	K
T9	A	F	M	N
T10	C	F	P	J
1	A	-	B	H
T12		E	B	
T13	M	D	C	G
T14	C	F	P	Q
T15	B	D	E	
T16	,	E	B	
T17	A	K	E	

Support > 9

Frequent 1-itemsets $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
Non frequent items
$\{\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}\}$

Transactional Layouts

- Inverted Matrix Layout

Support > 4

Transactional Layouts

- Inverted Matrix Layout

Transactional Layouts

- Inverted Matrix Layout

Apriori

Repetitive I/O scans

Huge Computation to generate candidate items

All-Apriori

Apriori, FP-Growth, COFI*, ECLAT
Closed
CHARM, CLOSET+,COFI-CLOSED
Maximal
MaxMiner, MAFIA, GENMAX, COFI-MAX

Problems with Apriori

- Generation of candidate itemsets are expensive (Huge candidate sets)
- 10^{4} frequent 1 -itemset will generate 10^{7} candidate 2 -itemsets
- To discover a frequent pattern of size 100 , e.g., $\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.
- High number of data scans

Frequent Pattern Growth

- First algorithm that allows frequent pattern mining without generating candidate sets
- Requires Frequent Pattern Tree

COFI algorithm big picture

FP-Growth

2 I/O scans

Reduced candidacy generation
High memory requirements
Claims to be 1 order of magnitude faster than Apriori

$1 \infty 0$
$\infty \times 10000000000$
0000
Patterns
Recursive
conditional trees and FP-Trees

All-COFI Co-Occurrences Frequent

 Item tree

Start with item P:
Find Locally frequent
 All subsets of $\mathrm{PC}: 3$ are frequent and have the same support

Co-Occurrences Frequent Item tree

II-COFI

Co-Occurrences Frequent Item tree

Co-Occurrences Frequent Item tree

All-COFI

Co-Occurrences Frequent Item tree
How to mine frequent-path-bases

Three approaches:
1: Bottom-Up

Support of any pattern is the summation of the supports of its supersets of frequent-path-bases

FCA: $3 \longrightarrow$ FCA: 3

Co-Occurrences Frequent Item tree

How to mine frequent-path-bases

Three approaches:
2: Top-down
Support of any pattern is the summation of the supports of its supersets of frequent-path-bases

II-ECLAT

ECLAT

- For each item, store a list of transaction ids (tids) Horizontal

Data Layou	
TID	Items
1	A,B,E
2	B, C, D
3	C, E
4	A,C,D
5	A,B,C,D
6	A, E
7	A,B
8	A,B,C
9	A, C, D
10	B

Vertical Data Layout

A	B	C	D	E
1	1	2	2	1
4	2	3	4	3
5	5	4	5	6
6	7	8	9	
7	8	9		
8	10			
9				

TID̆-list

Co-Occurrences Frequent Item tree

How to mine frequent-path-bases

Three approaches:
3: Leap-Traversal

Support of any pattern is the summation of the supports of its supersets of frequent-path-bases

1) Intersect non frequent path bases FCA: $3 \cap \mathrm{CA}: 1=\mathrm{CA}$
2) Find subsets of the only frequent paths (sure to be frequen
3) Find the support of each pattern

All-ECLAT

ECLAT

- Determine support of any k-itemset by intersecting tid-lists of two of its (k-

1) subsets.

$$
\wedge \begin{array}{|c|}
\hline \mathrm{B} \\
\hline 1 \\
\hline 2 \\
\hline 5 \\
7 \\
\hline
\end{array} \left\lvert\, \longrightarrow \begin{array}{|c|}
\hline \mathrm{AB} \\
\hline 1 \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{array}\right.
$$

Find all frequent patters with respect to item A
$\mathrm{AB}, \mathrm{AC}, \ldots \mathrm{ABC}, \mathrm{ABD}, \mathrm{ACD}, \mathrm{ABCD} \ldots \ldots \ldots$

Then it finds all frequent patters with respect to item B $B C, B D, \ldots . B C D, B D E, B C D E \ldots \ldots$.

- 3 traversal approaches:
- top-down, bottom-up and hybrid
- Advantage: very fast support counting, Few scans of database (best case 2)
- Disadvantage: intermediate tid-lists may become too large for memory

Other Algorithms for Other Patterns

Algorithms for Closed Patterns and Maximal Patterns will be discussed in class with paper presentations.

Which algorithm is the winner?

Not clear yet
With relatively small datasets we can find different winners

1. By using different datasets
2. By changing the support level
3. By changing the implementations

Which algorithm is the winner?

What about Extremely large datasets (hundreds of millions of transactions)?

Most of the existing algorithms do not run on such sizes
Vertical approaches and Bitmaps approaches cannot load the transactions in Main Memory

Reparative approaches cannot keep scanning these huge databases many times

Requirements: We need algorithms that

1) do not require multiple scans of the database
2) Leave small foot print in Main Memory at any given time
