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Motivation

High Dimensional Issues
Full Dimensional Clustering Issues
Accuracy Issues

Curse of Dimensionality
As dimensionality D → ∞, all points 
tend to become outliers, e.g. [BGRS99]
Clustering definition falters
Thus, often little value in seeking either 
outliers or clusters in high D especially 
with methods that approximate 
interpoint distances

Exact Clustering

Is expensive (how much?)
Is meaningless since real world 
data is never exact
Anyone want to argue for full D 
clustering in high D? Please 
do…



Increasing Sparcity Full Space Clustering Issues

k-Means can’t cluster this

Approximation (Accuracy)

D > 10, accurate clustering
tends to sequential search

Or inevitable loss of 
accuracy -

Houle and Sakuma (ICDE’05)



Why Subspace Clustering?

Unlikely that clusters exist in the full 
dimensionality D
Easy to miss clusters if doing full D 
clustering
Full D clustering is very inefficient

Two Challenges

Find Subspaces
Number exponential in D

Perform Clustering
Efficiency issues still exist

Can be done in either order

Approach Hierarchy [PHL04] Three Approaches
Feature Transformation + Clustering

SVD
PCA
Random Projection

Feature Selection + Clustering
Search using heuristics to overcome 
intractability

Subspace Discovery + Clustering



Feature Transformation

Linear or even non-linear combinations 
of features to reduce the dimensionality
Usually involves matrix arithmetic so 
expensive O(d 3)
Global so can’t handle local variations
Hard to interpret

SVD Example

http://public.lanl.gov/mewall/kluwer2002.html

SVD Example Output

Synthetic: 
sine genes 
(time series) 
with noise
+ noise 
genes

SVD Pros and Cons

Can detect weak signals
Preprocessing choices are critical
Matrix operations are expensive
If large singluar values r (< n) is not 
small, then difficult to interpret
May not be able to infer action of 
individual genes



PCA
Uses the covariance matrix, otherwise related to SVD
PCA is an orthogonal linear transformation that 
transforms the data to a new coordinate system such 
that the greatest variance by any projection of the 
data comes to lie on the first coordinate (called the 
first principal component), the second greatest 
variance on the second coordinate, and so on
Useful only if variations in variance is important for 
the dataset
Dropping dimensions may loose important structure –
“…it has been observed that the smaller components 
may be more discriminating among compositional 
group.” – Bishop ’ 05

PCA Example

http://csnet.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

Covariance matrix

Sensitive to noise. To be robust, outliers 
need to be removed but that is the goal 
in outlier detection
Covariance is only meaningful when 
features are essentially linearly 
correlated. Then we don’t need to do 
clustering.

Other FT Techniques
Semi-definite Embedding and other non-
linear techniques – non-linearity makes 
interpretation difficult. 
Random projections (difficult to interpret, 
highly unstable [FB03])
Multidimensional Scaling – tries to fit into a 
smaller (given) subspace and assesses 
goodness [CC01]. Exponential number of 
subspaces to try, clusters may exist in many 
different subspaces in a single dataset while 
MDS is looking for one. 



Feature Selection
Top-down wrapper techniques that iterate a clustering 
algorithm adjusting feature weighting – at mercy of ability of 
full D clustering, currently poor due to cost and masking of 
clusters and outliers by sparcity in full D. E.g. PROCLUS 
[AWYPP99], ORCLUS [AY00], FindIt [WL02], δ-clusters  
[YWWY02], COSA [FM04] 
Bottom-up. Apriori idea, if a d dimensional space has dense 
clusters all its subspaces do. Bottom-up methods start with 
1D, prune, expand to 2D, etc., e.g. CLIQUE, [AGGR98]
Search: Search through subsets using some criterion, e.g. 
relevant features are those useful for prediction (AI)[BL97], 
correlated [PLLI01], or whether a space contains significant 
clustering. Various measures tried like ‘entropy’ [DCSL02] 
[DLY97] but not actually clustering the subspace (beyond 
1D) 

CLIQUE (bottom-up) [AGGR98]

Scans the dataset building the dense 
units in each dimension
Combines the projections building 
larger subspaces

CLIQUE Finds Dense Cells CLIQUE Builds Cover



CLIQUE

Computes a minimal cover of 
overlapping dense projections and 
outputs DNF expressions
Not actual clusters and cluster members
Exhaustive search
Uses a fixed grid – exponential blowup 
with D

CLIQUE Compared

Only small difference between largest and 
smallest eigenvalues

100K synthetic data with 5 dense hyper-rectangles 
(dim = 5) and some noise

CLIQUE Compared

Note: BIRCH - Hierarchical medoid approach, DBSCAN – density based

MAFIA [NGC01]
Extension of clique that reduces the number 
of dense areas to project by combining dense 
neighbours (requires parameter)
Can be executed in parallel
Linear in N, exponential in subspace 
dimensions
At least 3 parameters, sensitive to setting of 
these



PROCLUS (top-down) [AP99]
k-Medoid approach. Requires input of 
parameters k clusters and l average attributes 
in projected clusters
Samples medoids, iterates, rejecting ‘bad’
medoids (few points in cluster)
First, tentative clustering in full D, then 
selecting l attributes on which the points are 
closest, then reassigning points to closest 
medoid using these dimensions (and 
Manhattan distances)

PROCLUS Issues
Starts with full D clustering
Clusters tend to be hyper-spherical
Sampling medoids means clusters can 
be missed
Sensitive on parameters which can be 
wrong
Not all subspaces will likely have same 
average dimensionality

FINDIT [WL03]
Samples the data (uses subset S) and selects a set of 
medoids
For each medoid, selects its V nearest neighbours (in S) 
using the number of attributes in which distance d > ε
(dimension-oriented distance dod)
Other attributes in which points are close are used to 
determine subspace for cluster
Hierarchical approach used to merge close clusters where 
dod below a threshold
Small clusters are rejected or merged, various values of ε
are tried and best taken

FINDIT Issues

Sensitive to parameters
Difficult to find low-dimensional clusters
Can be slow because of repeated tries 
but sampling helps – speed vs quality



Parsons et al. Results [PHL04]

MAFIA 
(Bottom-up) 
vs FINDIT 
(Top-down)

Parsons et al. Results [PHL04]

MAFIA (Bottom-up) vs FINDIT (Top-down)

SSPC [YCN05]
Uses an objective function based on the relevance 
scores of clusters – clusters with maximum number 
of relevant attributes is preferable. An attribute is 
relevant if the variance of its objects on ai is low 
compared with D’s variance on ai (implication?)
Uses a relevance threshold, chooses k seeds and 
relevant attributes. Objects assigned to cluster which 
gives best improvement
Iterates rejecting ‘bad’ seeds
Run repeatedly using different initial seed sets

SSPC Issues

One of the best algorithms so far
Sensitive to parameters
Iterations take time but one may come 
out good
Can find lower dimensional subspaces 
than many other approaches



FIRES [KK05]

How to keep attribute 
complexity to quadratic?
Builds a matrix of shared 
point count between 
‘base clusters’
Attempts to build 
candidate clusters from k 
most similar

FIRES cont.
Authors say ‘Obviously [for cluster quality], 
cluster size should have less weight than 
dimensionality’. They use a quality function 
√(size).dim to prune clusters
Do you agree?
Alternatively, they suggest use of any 
clustering algorithm on the reduced space of 
base clusters and their points
This worked better probably due to all the 
parameters and heuristics in their main 
method

EPCH [NFW05]

Makes histograms in d-dimensional 
spaces by applying a fixed number of 
bins
Inspects all possible subspaces up to 
size max_no_cluster
Effectively projection clustering

EPCH

Efficient only for max_no_cluster small

Adjusting the density 
threshold to find clusters at 
different density levels



DIC Dimension Induced 
Clustering [GH05]

Uses ideas from fractals called intrinsic 
dimensionality
Key idea is to assess local density around 
each point + density growth curve

DIC

Uses nearest neighbour algorithm 
(typically O(n2))
Each point xi is characterised by its local 
density di and di ‘s rate of change ci

These pairs are clustered using any 
clustering algorithm

DIC
Claim: method independent of dimensionality but 
don’t address sparcity issues, NN computation issues
Two points in different locational clusters but with 
closely similar local density patterns can appear in 
the same cluster. Authors suggest separation using 
single-linkage clustering.
Also suggest using PCA to find directions of interest. 
Otherwise can’t find regular subspaces.
Many similarities in core idea to TURN* but without 
resolution scan. DIC fixes just one resolution.

Conclusions

Many approaches but all tend to run 
slowly
Speedup methods tend to cause 
inaccuracy
Parameter sensitivity
Lack of fundamental theoretical work
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