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We explore methods for effectively extracting information from clinical narratives, which are captured in a 
public health consulting phone service called HealthLink. Our research investigates the application of 
state of the art natural language processing and machine learning to clinical narratives to extract 
information of interest. The currently available data consists of dialogues constructed by nurses while 
consulting patients by phone. Since the data are interviews transcribed by nurses during phone 
conversations, they include a significant volume and variety of noise. When we extract the patient-related 
information from the noisy data, we have to remove or correct at least two kinds of noise: the first is 
explicit noise, which includes spelling errors, unfinished sentences, omission of sentence delimiters, 
variants of terms, etc. Second is implicit noise, which includes non-patient’s information and patient’s 
untrustworthy information. To filter explicit noise, we propose our own biomedical term 
detection/normalization method: it resolves misspelling, term variations, and arbitrary abbreviation of 
terms by nurses. In detecting temporal terms, temperature, and other types of named entities (which show 
patients’ personal information such as age, and sex), we propose a bootstrapping-based pattern learning 
process to detect a variety of arbitrary variations of named entities. To address implicit noise, we propose a 
dependency path-based filtering method. The result of our de-noising is the extraction of normalized 
patient information, and we visualize the named entities by constructing a graph which shows the 
relations between named entities. The objective of this knowledge discovery task is to identify associations 
between biomedical terms, and to clearly expose the trends of patients’ symptoms and concern; the 
experimental results show that we achieve reasonable performance with our noise reduction methods.  
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1. INTRODUCTION 
Extraction of clinical information such as medications, symptoms, diseases, and 
patient’s personal information from clinical text is an important task of clinical 
natural language processing. Most clinical data consists of unstructured natural 
sentences, and there are few standard templates for the description format. Even 
existing templates are limited in scope, brittle in structure, and are often adjusted so 
that calibration is difficult. It is also difficult to automatically extract that  
information which health care professionals believe are important to improve 
healthcare, because there is much noise in most directly captured health data. 
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Our data comes from captured Tele-Health dialogues in Alberta, Canada from a  
publicly accessible system that is called HealthLink. With HealthLink, the public can 
access health advice and information by calling a phone line and discussing real time 
with a registered nurse who simultaneously transcribes the conversation in text. The 
data are complex, highly heterogeneous, and generally not convenient for querying or 
extracting trends. HealthLink transcripts contain unstructured details regarding a 
patient’s concerns, symptoms, personal information, previous diseases, etc. An 
example is provided in Figure 1. 
The development of a tool to parse patient records in order to automatically detect 
signs of a possible health issue would be a tremendous help for epidemiologists and 
other health professionals, and could allow them to react more rapidly to a variety of 
trends. Recent advances in a variety of Artificial Intelligence (AI) Natural Language 
Processing (NLP) techniques, such as information extraction, named entity 
recognition, and factual assessment, support the development of such tools. As an 
integral part of Electronic Health Records (EHR), clinical notes pose special 
challenges for analyzing EHRs due to their unstructured nature and substantial 
noise, since they are written by health practitioners in real time, while talking with 
patients.  
The noise can be divided into two types: First is explicit noise, such as spelling errors, 
abbreviations, unspecified acronyms, unfinished sentences, term variants, and 
omission of sentence delimiters. Second is implicit noise which is revealed only by a 
variety of inference methods: we have to figure out the intended meaning and 
linguistic structure of sentences to detect implicit noise. Written information, which 
is not about a patient, and untrustworthy information which may not be true, are 
examples of implicit noise. The following are example sentences that show both types 
of noise. The spelling errors, such as 'feve', 'somone', and 'concerend' were written by 
a nurse.  
 

Example sentence:  "Son has feve, and not feeling well, caller has flu like symptoms, 
he has been in contact with somone from Mexico". Mom concerend about H1N1”. 

! Explicit noise : feve (fever) 

! Implicit noise : flu  (disease not for the patient), 

                             Mexico (travel history not for the patient),  

"CHIEF COMPLAINT: 
calling for 14 yr old with stomach pain  and feels chils. wants to know the symptoms of swine 
PRIORITY SYMPTOMS: 
Alert. No difficulty breathing. No vomitng. 
HISTORY/ASSESSMENT OF PRESENT ILLNESS OR DETAILS OF CC: 
Writer talked to patient 
What is child saying about abdominl pain? hurts mid section,below the belly button in the middle, feels really 
bad nausa 
How long having abdominal pain? 30 min ago 
Describe the nature of the pain (constant, intermittent, etc): constant 
When did the child last stool? 3 hrs ago,normal 
Underlying medical problems? no 
Current medications? Nyquil 
Allergies? Cats 
DID CALLER AGREE WITH RECOMMENDATION:YES.rellevant emergent  and 24 hrs symptoms  
reviewed with caller. Aware to call Link back with new symptoms or concerns( vomiting).Interim care given 
on all situations.Info on swine given” 
 

Figure 1. Example of a HealthLink call record 
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                        H1N1 (virus which is not confirmed for the patient). 

As part of our noise identification process, we have to detect biomedical named 
entities -- such as disease, virus, drug, and symptom -- as well as temporality, 
temperature, travel history, and other kinds of patient’s personal named entities (e.g., 
age and sex). Biomedical named entity recognition is the recognition of technical 
terms in the biomedical fields such as diseases, drugs, symptoms, etc. Examples of 
biomedical named entity recognition systems include extracting clinical information 
from radiology reports [Fiszman et al. 2000], identifying diseases and drug names in 
discharge summaries [Uzuner et al. 2011], and detecting gene and protein mentions 
in biomedical paper abstracts [Yeh et al. 2005].  
To identify explicit noise, we embed a misspelling correction module in our 
unsupervised language-model-based biomedical term detection method. For 
temporality and other types of named entities, we set up seed patterns and run our 
own bootstrapping method: it detects variants of the seed patterns in the data using 
Damerau-Levenshtein distance [Damerau 1964]. To identify implicit noise, we use 
more detailed natural language processing method employing syntactic analysis, and 
filter out untrustworthy information.  
The contents of this paper are as follows. In Section 2, we explain how to identify 
explicit noise. In Section 3, we describe our own method for identifying implicit noise 
by classifying named entities into facts, non-facts, and concerns for a patient. Section 
4 shows some experimental results, and related work is described in Section 5. 
Section 6 concludes with a summary and future work. 

2. REMOVING EXPLICIT NOISE 

2.1 Language model-based biomedical named entity recognition 
Here we describe our method to recognize biomedical terms such as symptom, 
disease, drug, virus, etc. Because nurses may arbitrarily write different forms for the 
same term, we also perform normalization of terms. For literature mining in medical 
records, the medical ontology known as Unified Medical Language System (UMLS) 
[Dai 2008] enables physicians to classify signs, symptoms, and diseases using 
accepted medical concepts. The UMLS integrates over 2 million names for some 
900,000 concepts from more than 60 families of biomedical vocabularies, and includes 
12 million relations among these concepts. Vocabularies integrated in the UMLS 
Metathesaurus include the National Centre for Biotechnology Information  (NCBI) 
taxonomy, Gene Ontology, the Medical Subject Headings (MeSH), Online Mendelian 
Inheritance in Man (OMIM) and the Digital Anatomist Symbolic Knowledge Base. 
Our hypothesis is that, combined with an integrated information retrieval method, 
the UMLS is a powerful and appropriate tool to use as the basis for automatically 
mapping biomedical names with variant forms into one concept.  UMLS contains over 
a million medical and general English concepts, which are further organized under a 
hierarchy of 134 semantic types. Each concept is assigned one or more high level 
semantic types. More specifically, we only keep concepts belonging to the following 
semantic types as biomedical concepts: {disease or syndrome, finding, sign or 
symptom, virus, pharmacologic}, and exclude other concepts because those are not 
relevant to biomedical terms (e.g., animal, plant, chemical). We chose these five 
concepts as relevant to the biomedical concepts, according to the example entities in 
UMLS. 
A central architectural aspect of our processing of medical documents is based on 
treating sentences of those documents as queries and UMLS entries as documents. In 
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this Information Retrieval (IR) model, we infer a language model for each UMLS 
concept entry, and rank each related entry according to how likely it generates the 
input sentence based on its language model. However, our model is different from 
traditional IR models such as language model-based IR [Ponte and Croft 1998], and 
BM25 [Robertson Walker 1994] in three ways. First, the characteristics of a query 
and a document in our experiments are different from those in traditional IR, since a 
query is longer than a document in our model, and the frequency of most words in a 
document is uniform.  
Second, our purpose is to retrieve all and only matched biomedical concepts for a 
query sentence, while the purpose of traditional document retrieval is to retrieve a 
list of documents ranked by their relevance to a query.  
In traditional IR formulation, for a word w that is included in a document but not 
included in a query, one assigns a penalty by computing the probability that the 
language model does not generate w based on the term frequency. 
There is some risk of assigning a penalty based on only term frequency in a document 
for words that have different information content, as measured by document 
frequency. To assign a small penalty to the words that are common to the domain but 
do not have a large amount of information content (e.g. the words ‘disease’, ‘disorder’, 
and ‘symptom’), we add a document frequency measure. The document frequency of a 
word helps determine its information content: the smaller the document frequency of 
a word, the bigger information content it has. 
Finally, our purpose is to detect medical terms in a sentence, but medical terms are 
often formulated with multiple words. Traditional IR does not consider distance 
information. In term detection, the distance between words of a multi-word term t 
provides a clue on the likelihood that those words belong to a common term. 
Therefore, we add a distance measure. In the following subsections, we will explain 
our method in detail. 

2.1.1 Information retrieval based on a language model 
We consider each input sentence as a query and UMLS entries as documents. Then, 
we would like to estimate )|(ˆ dMQp , the probability of the query Q given the 

language model of document d as follows.  
 
p̂(Q |Md) = p̂(w |Md)

w∈Q
∏ × (1.0−

w∉Q
∏ p̂(w |Md)) . 

The first term is the probability of generating words in the query and the second 
term is the probability of not generating other terms. The specific probabilities for 

)|(ˆ dMQp  are defined as follows: 
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),(ˆ dwpml  is the maximum likelihood estimate of the probability of term w under the 

term distribution of document d, where ),( dwwf  is the raw term frequency of term w 

in document d and ddl  is the total number of tokens in document d.  We use 
Damerau-Levenshtein distance to identify explicit noise such as misspelling, and 
arbitrary abbreviations. When we compute term frequency, we include the term 
variants of which the Damerau-Levenshtein distance is less than a threshold. We 
constructed a small development set, and determined the threshold number on the 
set, which is the maximum Damerau-Levenshtein distance between term variants. 
By using the Damerau-Levenshtein distance measure, we compute term frequency 
wf(w,d) as follows:   
 

wf (w, d)=   count(t, d)× (1− DL _ dist(t,w)
length(w)

) , 
t ∈ DLw

∑  

where DLw is a group of a variant t for word w where DL_dist(t,w)<=threshold. 
DL_dist(t,w) is a Damerau-Levenshtein distance between t and w. count(t,d) is the 
count of word t in document d. We add up the counts of all variants of w in document 
d after assigning a penalty based on Damerau_Levenshtein distance.  
 cwt/cs is the background probability for the document that is missing one or more of 
the query terms, since we do not want to assign 0 for )|(ˆ dMwp of this document, 

where cwt is the raw count of term w in the collection and cs is the total number of 
tokens in the collection. )(ˆ wpavg is the estimate of the probability of the word w from 

a larger volume of data. dwR ,
ˆ is a risk function based on a geometric distribution, 

selected to benefit from the robustness of the estimator )(ˆ wpavg and to minimize the 

risk of using the estimator. wf  is the mean term frequency of term w in documents 

where w occurs. For more details on each probability, see Ponte and Croft [1998].  

2.1.2 Penalty information for domain-specific common terms 
In the IR formulation of subsection 2.1.1, for the word w that is included in a 
document but not included in a query,	   we assign a penalty by computing the 
probability that Md  does not generate w based on the term frequency. However, in 
our task, the term frequency of most terms in a document is uniform. So, there is 
some risk of assigning a probability measured by only term frequency for words with 
different information content. To assign a small penalty to the domain-specific 
common words, we add a document frequency measure which is: 

DF(d,Q) = df (w)
Dw  in d,w∉Q

∏ 	  

where df(w) is the frequency of documents that contain w, and D   is the number of 

all documents. 

2.1.3 Distance information 
We need to consider distance among words to detect whether the words in a query 
indicate one common term. We modify the distance measure of Gaudan et al. [2008], 
as follows: 
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Let W be the set of words of a document d found by a query sentence Q. Then W is: 
           )()( dtokQtokW ∩= ,  

    where n is the number of words in W. Then, 

∑∑
−

=

−

=

−=
1

0

1

0
,),(_

n

i

n

j
jiQddistmin   

current _ dist(d,Q) = position(wi,Q)− position(wj,Q)
wi∈W,  wj∈W

∑   , 

where position(wi, Q) is the position index of wi in the query sentence Q.  
 The p(Q|Md) (probability of generating Q based on the language model Md), DF(d,Q) 
(document frequency measure), and dist(d,Q) (distance measure) are three factors 
that are combined to score the mention of d in a query Q. The three criteria may be of 
various importance and must be weighted accordingly. Finally, the three criteria are 
combined by the product of the functions, and the integrated formula is: 

score(Q,d) = p̂(Q |Md)×DF(d,Q)θ1 × 1
dist(d,Q)

"
#
$

%
&
'

θ 2

, 

where document frequency and distance measure are weighted by the parameterθ1 , 

θ2 , and how to estimate each parameter is explained in the next subsection. 

 

2.1.4 Parameter estimation 
Since our approach is unsupervised, we need to set a loss function f(θ) from the 
retrieved results, and we estimate parameter θ through iterative scaling that 
minimizes the difference between loss functions )()(1 θθ tt ff −− .  We set f(θ) as the sum 

of frequencies of the words that are included in the relevant top-K ranked documents 
but not included in the query. The intuition is that the smaller f(θ) becomes, the 
better performance we have. In other words, f(θ) is: 
        f (θ ) = tf (w,doc(θ, i,Um ))

w∉Um

∑
i

K

∑
m

U

∑ , 

where tf (w,doc(θ, i,Um ))  is term frequency of w in the document ),,( mUidoc θ which is 

retrieved with the ith rank for the mth query mU  using parameter θ . In our 

experiments, K is 10 and U  is the number of input query sentences. We update the 

parameter using  
{ })()(1,  ,  ,1 θθηθθ nnininin ff −−+=+ , 

where f 0(θ ) = 1
w∉Um

∑
1

K

∑
m

U

∑ , and { 2,01,0 ,θθ }={1, 1}. 

The initial value f0(θ) means that the frequency of the words that are not included in 
the query in each document is one, and we assign 1 for the initial parameter values. 
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For the update of parameter value θ1 of the document frequency measure, we set 
1,n

η  

to be proportional to )_/()_( 1−nn dfavgdfavg . 
ndfavg _  is the average document 

frequency of a word that is included in the top-K ranked documents but is not 
included in the query at the nth iteration. We perform an update of θ1 using the 
following 

1,n
η : 

1
1, _

_
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n

n
n dfavg

dfavg
αη , 

avg_ dfn =
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 Similarly, for the update of parameter value θ2 of the distance measure, we set 
2,n

η  

to be proportional to )_/()_( 1 nn distavgdistavg −
. ndistavg _  is the average distance of 

words per document in nth iteration. We perform an update of θ2 using the following 

2,n
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The α and ß are constants that control the convergence speed of the iterations. In 

our experiments, we set α and β to 0.01, and the initial values of {
1,n

η
2,n

η } to 

{0.01,0.01}. We stop iterating when 10)()(1 ≤−− θθ nn ff . The threshold 10 was 

determined on a small development set. 
We obtain ranked relevant concepts according to the integrated IR model. Figure 2 
shows one retrieval example using this model.  

2.2 Step 2: Clustering retrieved concepts 

 

Figure 2. Top-10 biomedical term candidates example 
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We assume there is only one concept ID corresponding to a medical term. But since it 
is typical that more than one concept is retrieved for each medical term mentioned in 
a sentence, we need to cluster the concepts according to their shared words.  
To do so, we apply a Hierarchical Agglomerative Clustering (HAC) algorithm which 
is commonly used for document clustering [Willet 1988], and which does not require a 
pre-specified number of clusters. This algorithm begins with each document as a 
cluster of its own (lines 1-4 in Figure 3), and iterates by merging the two most similar  
clusters (lines 6-7), and then terminates when there are no more non-overlapping sets 
to merge (lines 8-9). This HAC algorithm requires the definition of a similarity 
function between documents and between sets of documents. Each document (UMLS 
concept entry) is represented as an attribute vector, with each word in the input 
sentence being an attribute in this vector. If a word in the input sentence occurs in a 
concept entry, the corresponding attribute value of the vector is ‘1’. Otherwise, it is ‘0’. 
The similarity of two documents is often taken as a normalized function of the dot 
product of their attribute vectors. 
The HAC algorithm that we use is shown in Figure 3. This algorithm groups the two 
most similar clusters at each iteration, and then recalculates the similarity between 
clusters. It terminates if the iteration is performed N (number of documents)-1 times 
or the maximum similarity between clusters becomes 0. We use cosine similarity 

Figure 3.  Modified HAC algorithm for our task 

 

Figure 4. Example of clustering and retrieved examples 

HAC(d1, …., dN) 
1 for n ß 1 to N 
2     do for i ß 1 to N 
3          do C[n][i] ß SIM(dn, di) 
4     I[n] ß 1  (keeps track of active clusters) 
5 A ß [ ]  (assembles clustering as a sequence of merges) 
6 for k ß 1 to N-1 
7     do <i,m> ß argmax{<i,m>:i≠m ^ I[i]=1 ^ I[m]=1}C[i][m] 
8          if C[i][m] = 0  
9              return A 
10        A.APPEND(<i,m>)  (store merge) 
11        I[m] ß 0  (deactivate cluster) 
12  return A 
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between vectors as a similarity measure. We assume that there is a hierarchical 
relation between concept entries ‘A’ and ‘B’ only if all the common words between ‘A’ 
and the input sentence occur in the entry ‘B’. When A and B are represented as 
vectors, this property can be described as following: there is a hierarchical relation 
between concept entries ‘A’ and ‘B’ only if ).)},{min(    toequals )( 2BABA ⋅  Finally, we 

assign the similarity value as shown in Figure 3. 
A clustering example using the top K-ranked list (K=10) is shown in Figure 4. 

2.3 Step 3: Choosing answer concepts from clusters 
Once the clustering has been completed, we select a concept that shows the highest 
rank in each cluster and is within a given threshold. We select the threshold 
dynamically based on the ranking score distribution, specifically choosing the point 
at which there is a significant drop in ranking scores which means the ratio of 
score[i]/score[i+1] is biggest.  
Figure 4 shows clustering results for our example, and the selected biomedical 
concept IDs.  In this case, five clusters are constructed according to the HAC 
algorithm.  If we choose a concept that shows the highest rank in each cluster, then 
we get "h1n1 virus", “diarrhea”, and  "vomiting". Even though there were 
misspellings such as “vomting”, and “diarhea” in the input query, we obtained the 
correct terms.  The 7th-10th results are dropped because at this point there is a  
significant difference in the ranking scores. 

2.4 Recognition of non-biomedical named entities based on bootstrapping 
Temporality, temperature, location, and other personal named entities -- such as age, 
and sex -- also have various surface forms including misspelling, and arbitrary 
abbreviations. Given these considerations, we address the following question: How 
can the named entities having arbitrary different surface forms be automatically 
learned from the data, with minimal effort using lexical and part-of-speech patterns?  
Ling and Weld [2010] detect temporal named entities using the semantic role 
labeling tool of Koomen, however this tool is not publicly available. Wang et al. [2010] 
added the concept of temporal fact, in addition to the YAGO ontology using regular 
expression, to extract temporal information from Wikipedia Infobox. Li and Patrick 
[2012] use surrounding word features to extract temporal information. They show 
that the contexts that surround the temporal expressions are not sufficient, since the  
same temporal expressions can be mentioned in various contexts. 
Previous work on temporal information detection manually constructs regular 
expressions for the anticipated patterns. We want to avoid human labor to collect all 
variations of patterns, so we propose a bootstrapping algorithm with a single seed 
and non-recursive lexical pattern learning using the WordNet lexicographic 
dictionary.   
 Many successful methods have used an unsupervised iterative bootstrapping 
framework [Riloff and Shepherd 1997]. Bootstrapping has since been effectively 
applied to extract general semantic lexicons [Riloff and Jones 1999], and facts 
[Carlson et al. 2010]. This kind of bootstrapping is considered to be minimally 
supervised, as it is initialized with a small set of seed terms of the target category to 
extract. These seeds are used to identify patterns that can match the target category, 
which in turn can be used to extract new patterns [McIntosh 2010].  
Starting from the original seed, each new pattern produced by the Damerau-
Levenshtein distance algorithm can be considered an input seed for another instance 
of the algorithm. This procedure can be iterated over all the new patterns. This 
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approach increases the number of retrieved patterns, but can create unwanted noise. 
At each bootstrapping step, the produced patterns can diverge from the original seed. 
We tackle this problem by introducing a stop criterion in the bootstrapping 
framework, whose goal is to select only those new patterns that are semantically 
similar to the original seed. Our measure of semantic similarity between a surface 
pattern and the seed is approximated by using Damerau-Levenshtein distance, the 
WordNet dictionary, and part of speech tagging. We assume that the firstly obtained 
new patterns produced by the expansion of the original seed are the most 
semantically similar. Therefore, we stop after one iteration. The stop criterion 
reduces the number of computations and guarantees a semantic similarity between 
the original seed and the new patterns. The final output of the bootstrapping process 
is the union, without duplicates, of all the new patterns that are evaluated as correct 
by the stop criterion. 
The more specific description of our method is in the following: There are many types 
of temporal words, e.g., “this morning”, “last Wednesday”, “April 24th”, etc.  Since 
manually constructing seed patterns cannot cover all types, we use WordNet to 
retrieve all words related to time. We collect all the words of which semantic category 
is <noun.time> from WordNet, and then annotate the words in our data as “temporal 
noun (TEM)” if they are included in the <noun.time> category. There are 930 words 
in the <noun.time> category in WordNet 3.0. We regard each temporal noun as a 
seed. The examples of seed patterns are “April”, “evening”, “Friday”, “minute”, 
“yesterday”, “year”, etc. We input each seed s to the bootstrapping algorithm and get 
the output of the seed variants s' if Damerau-Levenshtein distance(s, s') does not 
exceed a threshold. We set the threshold value as 2, except for the short words, where 
the length is the same as or less than 4, we set the threshold value as 1, according to 
the development set.     
We have to check if new patterns are semantically similar with the original seed. To 
do that, we use WordNet dictionary and part of speech tagging. If an obtained 
pattern word occurs in the WordNet dictionary with a different meaning or has a 
different part-of-speech (POS) tag from that of the seed word, then we consider the 
new pattern has a different meaning, and we filter them from the obtained pattern 
set. We use the POS-tag results of the Stanford parser 
(http://nlp.stanford.edu/software/lex-parser.shtml). For example, we can obtain the following 
new variations by running bootstrapping:  
 
  days -->says,  april -->advil, year-->ear,  

today-->body, today-->okay. 
 
 
We remove these from the obtained new patterns, because of two reasons. First, for 
the cases of ‘advil’, ‘ear’, ‘body’, and ‘okay’, each meaning is different from its 
original word according to the WordNet dictionary. The words of the same meaning 
share the same database location number in WordNet.  Second, for the case of ‘says’, 
the word is not shown in the WordNet dictionary, but the part of speech tag of the 
Stanford parser for “says(verb)” is different from “days(noun)”. This process of 
bootstrapping is shown in Figure 5.  
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We extract temporal NP, temperature, sex, age, and location using the regular 
expressions of Figure 6. In the Figure, [ ] is surrounding context information, and ( ) 
is the corresponding named entity. For the age, we use the pattern 'age+num' and 
'num-year-old'. For the temperature, there should be words such as ‘temperature’ and  
‘fever’ in the surrounding context within the sentence, and we also limit the 

                      Figure 7. Syntactic dependency example 

 

Figure 6. Regular expressions 

1. Temporality 
               ($NUM)*  ($temporal_noun)+ ($NUM)* 

               ($determiner)  ($temporal_noun)+ 

               [when|time] [$any_word]* ($NUM) 

2. Age 
 [age] [$any_word]* ($NUM) (year|month)* 
 ($NUM) (year|month) (old) 
3. Temperature 
   [temperature|fever] [$any_word]* ($NUM)  
                 where 35<=($NUM)<=41 or 92<=($NUM)<=106 
4. Sex 
   Choose the more frequent category between 'woman'  and 'man' category words  
5. Location 
            ($location_noun) 
 

 
Figure 5. Bootstrapping algorithm 
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boundary of numbers between 35 and 41, or between 92 and 106, which indicates the 
boundary of human fever as Centigrade and Fahrenheit respectively.  For the sex, we 
choose the more frequently appearing category between 'man' and 'woman' in the 
data. For the pronouns, we simply used ‘he’, ‘him’, and ‘his’ as the male information, 
and ‘she’, and ‘her’ as the female information. We can also get the noun's sex 
information from the definition of the noun in WordNet using the words “male”, and 
“female”. For travel information, we use the city information of the <noun.location> 
category of WordNet.   
The following are examples of patterns obtained from the regular expressions.  
 

<Age>19 yr old, three year old, 6 yrs old, aged 4 onth, 
<temporality> this orning, three day, 10days, tonigt,    
<sex> husband (male) 
<location> Mexico 
<temperature> 39c 

 
Even though the above examples include spelling errors ("orning", "onth", "tonigt", 
“39c”), abbreviations ("yr", "yrs"), grammatical errors ("year", "day"), and space error 
("10days"), our regular expressions successfully obtained all the patterns.   We also 
use the abbreviation forms provided by WordNet such as Mon (Monday), Sat 
(Saturday), eve (evening), Mar (March), yr (year), etc. Since an abbreviated term is 
already a variation of the standard word, we do not use the bootstrapping algorithm 
for confirmed abbreviated terms. 

3. REMOVING IMPLICIT NOISE 
  We want to extract facts on patients by removing implicit noise. We need to do two 
tasks: the first task is to extract the information only for patients, not any other  
person mentioned in text such as friends, or family members. The second task is to 
identify facts from the patients’ information. Details are given in the following 
subsections. 

3.1 Extracting information only for patients 
We need to know the subject of each named entity to distinguish and remove named 
entities not associated with a particular patient. Based on the syntactic analysis, we 
determine the subject of a named entity, and then filter it if the subject is not the 
patient. The following is an example. 
  
 
Example: fiance works with someone who returned from mexico with symptoms. 
fiance has symptoms of fever, cough and sore throat........ 
 
We perform syntactic analysis using the Stanford parser, and detect the subject role 
of each named entity. To improve the syntactic analysis results, we replace all 
misspelled words with the corrected results according to Section 2. Figure 7 shows 
the syntactic dependency result of the first sentence in the above example. We make 
the following two assumptions. 
1. The patient is the most frequent person noun. 
2. If the parser does not explicitly indicate the subject of a named entity, then we 
regard the nearest person noun or pronoun is the subject. 
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Person noun means the noun which has a semantic category <noun.person> in 
WordNet. The subject of “Mexico” in Figure 7 becomes “someone” since “someone” is 
nearest person noun from “Mexico”, and we know the patient is “fiancé” because it is 
the most frequent person noun in this example paragraph. Since “fiancé” is different 
from “someone”, we remove Mexico from the patient-related named entities. 

3.2 Removing untrustworthy information of patients 
Identifying the factuality status of mentioned events is fundamental for reasoning 
about events in discourse [Sauri and Pustejovsky 2012]. Inferences derived from 
events judged as not having happened, or as being only possible, are different from 

 
Figure 8.  Heuristic patterns for factuality degree of events 

Figure 9. Example parse tree 1 for negation 

Figure 10. Example parse tree 2 for negation 
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those derived from events evaluated as factual. Karttunen and Zaenen [2005] discuss 
its relevance for information extraction. In the area of textual entailment, factuality-
related information (modality, intensional contexts, etc.) has been considered as a 
basic feature. The need for this type of information is also acknowledged in the 
annotation schemes of corpora devoted to event information, such as the ACE corpus 
for the Event and Relation recognition task (e.g., ACE 2008), or TimeBank, a corpus 
annotated with event and temporal information [Pustejovsky et al. 2006]. 
Significantly, in the past few years this kind of information has been the focus of 
much NLP research dedicated to the biomedical domain. Factuality-related 
information was the main focus in the CoNLL-2010 shared task on Learning to 
Detect Hedges and their Scope in Natural Language Text [Farkas et al. 2010]. The 
topic in a subtask of the BioNLP ’09 and BioNLP ’11 shared task editions on Event 
Extraction [Kim et al. 2009], dedicated to predict whether the biological event is 
under negation or speculation.  
We assess the factuality degree of events (whether they correspond to facts, counter-
facts, or only concerns) based on heuristic patterns as shown in Figure 8.  We detect  
polarity based on the negation words such as “no”, “deny”, “not”, “impossible”, and 
“refuse”. The scope of polarity is determined based on syntactic analysis.  
As an example, note that the presence of a medical term in a clinical note does not 
necessarily imply its presence in a patient. Our negation annotator looks at the 
surrounding text of each medical term annotation and filters term mentions 
appearing in negated contexts based on simple heuristics such as presence of 
negation related words noted above. In principle, negative medical term findings can 
also indicate interesting relationships. However for this work, we focus only on 
positive medical term occurrences. For the detection of “concerns”, we simply use the 
following word patterns: “concern”, “worry”, and “review”. We regard obtained named 
entities are “concerns” if their surrounding context words include these word 
patterns. We collect negation words, and then prune negations based on the negation 
words and determine the boundaries of negation based on parsing information.  
Negation words can either be adjectives or verbs. The two cases show different kinds 
of syntactic graphs, and we need different rules for each case.  
 First, if the POS-tag of a negation word is an adjective, its main syntactic function is 
to modify the following noun. Therefore, the boundary of negation includes its 
governor, which is the following noun, and all the children/descendant nodes of the 
governor. For example, for the sentence “PRIORITY SYMPTOMS: no shortness of  
breath, no  chest pain, no hemoptysis-14.”, the Stanford parsing result is shown in  
Figure 9. This figure includes an adjective “no” as a negation word. In the figure, the 
governor of “no-4” is “shortness-5”. The governor “shortness-5” and all the 
children/descendant nodes of the governor are included in the boundary of negation 
word “no-4”. In a similar way, “pain-11” and all children/descendant nodes are 
included in the boundary of negation word “no-9”. For the negation word “no-13”, only 
“hemoptysis” is included in the negation boundary.  
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Second, if the negation word is a verb, its main function is to govern its dependents. 
In this case, we just include its children/descendant nodes within a negation 
boundary. Figure 10 is the parse tree of the sentence "PRIORITY SYMPTOMS: 
denies respiratory distress, denies chest pain, denies fever.”. The example in Figure 
10 shows how the verb “deny” is used as a negation word. Since the negation word is 
a verb, all children/descendant nodes are included within the boundary of negation.  
In this figure, the negation boundary of “denies-4” includes “distress-6” and 
“respiratory-5”, and the negation boundary of “denies-8” includes “pain-10” and 
“chest-9”. For the negation word “denies-12”, only “fever-13” is included.  

Figure 11. Visualization example of Tele-health data 

 

Figure 12. Precision/recall when top-K ranked biomedical entries are retrieved  
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4. EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 Performance of our system 
We constructed a small development set consisting of 100 sentences, and the set was 
used to determine threshold values in our experiments. We evaluated our system's 
performance on our HealthLink data, which consists of 5,297 sentences for 300 
patients, and average 7.42 words/sentence. The anonymized data was provided by 
Alberta Health Services. We annotated the data with 10 named entities such as 
“disease”, “finding”, “symptom”, “virus”, “pharmacologic”, “temporality (onset)”, “age”, 
“sex”, “temperature”, and “travel”.  We can visualize the HealthLink data as shown 
in Figure 11. In the graph, a node name indicates a detected named entity term and 
an edge tag indicates the type of the corresponding named entity. We linked a 
temporal named entity node with the related medical named entity node that 

Table 1. Performance of our system 
 Precision Recall F-measure 

Biomedical term detection 0.6820 0.8929 0.7733 
Temporality 0.8905 0.9035 0.8970 
Age 0.9304 0.8602 0.8939 
Sex 0.9484 0.8743 0.9098 
Temperature 0.9203 0.9038 0.9120 
Travel info. 0.7392 0.9553 0.8335 
Factuality Assessment 0.9520 0.8930 0.9216 
 

Table 2. Comparison of our biomedical term detection system with others 
 Precision Recall F-measure 

Our Biomedical term detection in EBI [Jimeno et al. 
2008] data 

0.7303 0.7769 0.7529 

Performance of EBI’s statistical method  0.6617 0.6710 0.6663 
Performance of EBI’s dictionary lookup method  0.7940 0.6006 0.6839 
MetaMap  0.8390 0.5357 0.6539 
  

Table 3. Comparison of our temporality system with others 
 Precision Recall F-measure 

Our temporality method 0.8905 0.9035 0.8970 
HeldelTime  0.8726 0.7538 0.8089 
SUTIME  0.9463 0.7792 0.8547 
 

Table 4. Change of performance when each step is removed 
 Precision  Recall  F-measure  
Using all steps 0.6820 0.8929 0.7733 
Change in 1st step Without damerau-levenstein distance 0.6967 0.8302 0.7576 

Without distance measure 
(IR formula + DF)  

0.7763 0.7286 0.7517 

Without document frequency  
+distance (only IR formula) 

0.8822 0.4729 0.6157 

Change in 2nd step Without Clustering 0.5472 0.9157 0.6850 
Change in 3rd step Without cutting threshold 0.6398 0.9172 0.7538 
When we input noun phrases, not a whole sentence 0.7036 0.7618 0.7315 
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occurred nearest in the same sentence.  We obtained the following experimental 
results. 
 1. Our proposed method in biomedical term detection achieved 77.33% in F-measure 
(see Table 1). 
2. Our method significantly outperformed MetaMap [Aronson 2001] by 9.9%, and 
EBI's system [Jimeno et al. 2008] by 8.6% (see Table 2). 
3. Temporality achieved 89.70% in terms of F-measure and other named entity 
detection approaches also showed reasonable performance (see Table 1 and 3). 
4. Factuality for patients showed the F-measure of 92.16%  (see Table 1). 
5. We can see the convergence of the precision/recall points for higher ranks (see 
Figure 12). 
 

Figure 12 shows each precision/recall of our system when we retrieve top K ranked 
biomedical entries in Step 1 of Section 2.1, with K=1 to 10. We can note the 
convergence of the precision/recall points for higher ranks, and we see that K=10 is 
enough for the convergence of precision/recall. In all the experimental results of this 
paper, we set K=10. 
We measure the performance of our system based on precision and recall as follows: 
Precision = (the number of correctly detected terms)/(the number of all detected 
terms), and Recall = (the number of correctly detected terms)/(the total number of 
existing terms in the data). F-measure is the harmonic mean of precision and recall, 
and computed by (2*precision*recall)/(precision+recall). 
As shown in Table 1, among those systems using the same evaluation data, our 
system outperformed all previous reported systems with a precision of 68.20%, recall 
of 89.29%, and F-measure of 77.33%. We compare our method with MetaMap 
[Aronson 2001] (http://metamap.nlm.nih.gov/), a tool developed at the National 
Library of Medicine, for mapping raw English text to standardized medical concepts 
in the UMLS metathesaurus, and EBI (European Bioinformatics Institute)’s system 
[Jimeno et al. 2008]. In our experiments of Table 2, all the systems used the data 
that EBI provided, and the EBI's system and MetaMap program trained and tested 
the same set of data. The precision, recall, and F-measure represent proportions of 
populations. In trying to determine the difference in performance of two systems, we 
employ the z-test on two proportions. We test the significance of differences in F-
measures between 3 kinds of system pairs: {our  system, EBI's statistical system}, 
{our system, EBI's dictionary-based system}, and {our system, MetaMap}. Given two 
system outputs, the null hypothesis is that there is no difference between the two 
proportions, i.e., H0: p1=p2. The alternative hypothesis states that there is a 
difference between the two proportions, i.e., p1 =/ p2. A z-statistics of ±1.96 means 
that the difference between the two proportions is significant atα=0.05. Z-values in 
all three significance tests are bigger than 2.58, and shows that the null hypothesis of 
no difference in the two proportions is rejected.  
We also compared our performance of temporality extraction with the methods of two 
previous systems; HeidelTime [Strötgen and Gertz 2010] and SUTIME [Chang and 
Manning, 2012]. HeidelTime is the best performing system from SemEval-2, and 
SUTIME is a rule-based system that outperformed HeidelTime. Even though 
SUTIME outperformed HeidelTime as shown in Table 3, it did not outperform our 
system.  
Of course our performance is partly explained because our system is optimized for 
our data, and the other two systems are not. In addition, in detecting temporality, 
both previous systems show lower recall than ours, because our data has many 
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variations and misspelled words. Those previous systems do not have rules to deal 
with those arbitrary variations.  

4.2 Significance of each step 
We now summarize the significance of each step introduced in Section 2.1. As shown 
in Table 4, each step has a significant impact on the system’s performance based on 
z-test at alpha=0.05. 
Without using Damerau-Levenshtein distance, the recall was significantly reduced, 
because we missed all named entities with explicit noise. Without using the 
document frequency and distance measures for the model in Step 1, the recall is 
significantly reduced, because the retrieved concept entries can include words that 
have high information content but are not related to the query, and we can miss the 
true answers. 
Without the clustering of Step 2, the precision is significantly reduced, since more 
than one concept can be chosen for each disease-related term in the input sentence. 
The performance without clustering shows reduced performance, compared to the 
method with clustering.  
Likewise, without the cut-off threshold restriction in Step 3, the recall improves, 
which we attribute to the selection of more concepts. However, the precision is 
reduced. 
One might consider the addition of noun phrase detection, and then use each noun 
phrase as an input, rather than the whole sentence. However, the experiment after 
noun phrase detection shows reduced performance compared with the method using 
a whole sentence as an input. That indicates that, in many cases, a disease term is 
not embedded in one noun phrase. 
In conclusion, the experiments demonstrate that the second and third steps 
contribute to the improvement of precision, and the first step to the improvement of 
recall. We conclude that all three steps are important for mapping of sentences into 
an ontology. 

4.3 Discussion 
In the process of identifying biomedical terms, our system shows lower precision than 
recall. This is because some frequently occurring words are treated as biomedical 
terms because they are included in the UMLS metathesaurus. For example, “be”, 
“problem”, “other”, “is”, and “cc” are considered as biomedical terms. Our system 
shows good recall because we exploit our variation dictionary and our method 
includes an arbitrary lexical word variation detection module. 
Of course we also have some incorrect detection examples in temporality. In the 
example “chill will stop for a second”, “for a second” is recognized as temporality as a 
duration for the symptom “chill”, which is not correct. 
Note that we consider POS-tags when detecting variations of patterns. As a result, 
precision was improved. For example, “eeting” (verb) was recognized by our system 
as a variation for “evening” (noun), and then we filtered it because the POS-tags are 
different. In the sentence, “eeting” was actually used as the misspelling for “eating”. 
In similar examples, there are "hours(noun)!shouls(verb)", 
"march(noun)!much(adverb)", etc. In this example, “shouls” is a misspelled word for 
“should”, not for “hours”. In addition, the method could filter wrong variants if they 
occurred in the WordNet dictionary with another meaning, e.g., "hour!thur (which 
means thursday)", "moment!movement", etc.  
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Figure 13. Trend analysis example of a symptom ‘fever’

 
Figure 14. Trend comparison between two symptoms ‘fever’ and ‘cough’ 

 
Figure 15. Retrieval of associated symptoms of a disease ‘pneumonia’ 
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As incorrectly obtained examples, there are "hours!hoarsy", "march!ach" , 
"minute!sinue", "month!outh", "noon!noo” (in reality, it was actually a 
misspelling of “no”), "Today!onday (which was misspelled for Monday)".  
For age detection, the reason for recall loss is the patterns which do not include  
“old”. In our data, there are cases that include only  “num” + “year”. For example, 
"caller has one son, 11 year, school sent home..".  
To identify and remove implicit noise with high performance, we need information 
about the verbs that indicate some speculation on  “thinking”. e.g., “concern”, “worry”, 
“review”, etc. In addition, we are now using the parser for factuality assessment, so 
parsing performance also affects our system. Since our data is imperfect, it creates 
low accuracy of parsing results, so also impacts system's performance. We first need 
to remove sentence noise by detecting sentence boundaries and recovering sentence 
marks, before applying a parser.  
In our system, when we identify misspellings, we partly solve space errors. For 
example, “10days”, and “2day” are detected as variants of “days”, so they can be 
recognized as items in the temporality category.  
As future work, we can investigate the trend of a symptom/disease for a specific 
region and time period based on our method, and we can also retrieve the 
associations between symptoms/diseases. Figures 13-15 show preliminary results of 
future research. Figure 13 is the trend of ‘fever’ for each region for a specific period of 
time, after applying our named entity recognition method. In the Figure, R1 to R9 
are regions. Figure 14 compares the trends of two symptoms. Figure 15 shows the 
associated symptoms for a medical term ‘pneumonia’ based on the chi-square test.  

5. RELATED WORK 
Biomedical term detection has been extensively studied in recent years, including the 
mapping of text phrases to UMLS concepts [Aronson 2001]. Most of these approaches 
focus on automatic indexing of biomedical literature, and have proved inadequate for 
processing annotations of high-throughput datasets [Butte and Chen 2006]. It has 
also been shown that for the task of identifying concepts from annotations of high-
throughput datasets, simple methods perform as well or better than MetaMap 
[Aronson 2001]. In previous work, some approaches of Gaudan et al. [2008] and 
Jimeno et al. [2008] are based on the identification of weighted words that compose 
terms denoting ontology concepts. They integrate two new aspects in their scoring 
method: the proximity between words in text, and the amount of information carried 
by each individual word. Their method is a statistical method based on specificity, 
evidence, and proximity. Specificity and evidence are based on the frequency of a 
word in a corpus, and proximity is based on the distance between words in a corpus. 
They adopt TFxIDF, commonly used in information retrieval, to measure the 
evidence and specificity. But the performance is worse than dictionary-based simple 
matching methods, and they do not use any threshold methods to choose relevant 
concepts among the ranked concepts. They also do not consider the noise in the data.  
Holzinger et al. [2008, 2013] used text mining techniques to analyze medical 
diagnoses, and they also studied disesase-disease relationships using web-based 
biomedical text mining techniques [Holzinger et al. 2012].  
Ruch et al. [2003] considered misspelling correction in electronic patient records. 
Their system has three modules, and tries to do spelling correction for all types of 
words considering surrounding words and syntactic function. Since our purpose is 
only retrieving patient-related named entities, we do not need to correct other non-
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valuable words such as prepositions. We just adopt the idea that edit distance is 
useful in correcting spelling errors.  
Mougin et al. [2006] mapped gene terms into UMLS based on normalization of words 
using the UMLSKS API and exact match. Mottaz et al. [2007] tried to map disease 
names into MeSH terminology. They used manually curated disease annotations to 
extract disease names, and applied exact and partial match to map the disease 
names into MeSH. To consider the information content of each word, they applied a 
TFxIDF weighting schema. 
Some other machine learning approaches have also been investigated. Chun et al. 
[2006] used a maximum entropy-based method to filter candidate disease names 
found by dictionary-based methods. Various features are selected, e.g., context words, 
part of speech tag, word affix, etc. Bundschus et al. [2008] tried cascaded conditional 
random fields (CRF) using various features based on contexts, dictionary and 
orthogonal form to detect disease terms and the functional relations between them, 
but they need annotated data for training. In the methods of Neveol et al. [2009], a 
priority model [Tanabe and Wilbur 2006] was used to find noun phrases that are 
possibly disease names. However, the mapping process is still done with the 
MetaMap program. 
We conclude that most previous work uses simple exact or partial matching based on 
a dictionary, and sometimes performs deep preprocessing such as noun phrase 
detection and normalization of variant words. Some statistical methods try TFxIDF 
to measure the information content of a word as used in information retrieval but 
show poorer performance than the dictionary-based matching methods.  
Among the few systems in the medical domain that treat time expressions, the study 
by Denny et al. [2010] is most relevant to our work. They propose timing and status 
descriptors for colonoscopy testing data. They use the KnowledgeMap concept 
identifier to extract colonoscopy concepts, and have developed a rule-based method 
with regular expressions to extract and normalize time descriptors. However, they 
rely on meticulous manual rule writing. Since our ultimate system needs to have 
more explicit understanding of temporal information, in the future we need to 
integrate our approach with other machine-learning based approaches. 
For pattern learning, previous studies have suggested bootstrap-based pattern 
learning [Hao 2012; Nakashole et al. 2010; Riloff and Shepherd 1997; Riloff and 
Jones 1999; Yu and Agichtein 2003; Carlson et al. 2010; Mcintosh 2010; Kozareva 
and Hovy 2010]. Kozareva and Hovy [2010] use graphs to obtain patterns, define a 
vertex and an edge in the graph, and then choose the patterns (vertices) that have 
large edge values.  Hao [2012] used bootstrapping for pattern learning for 
collaborative question answering, and Skeppstedt et al. [2012] also use Levenshtein 
distance for misspelling. We also used bootstrapping based pattern extension and 
showed reasonable performance like the previous work. The difference in our method 
is that we iterated only once. Because the length of a word in our pattern is short, we 
cannot allow much variation.  

6. CONCLUSION 
We propose a method and system for patient information extraction from noisy 
health records written down during phone conversations.  When we extract the 
patient-related information from the noisy data, there are two kinds of noise that we 
have identified for removal: The first is explicit noise, which includes spelling errors, 
unfinished sentences, omission of sentence mark, etc. The second is implicit noise, 
which includes non-patient’s information and patient’s untrustworthy information. 
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To remove explicit noise, we propose our biomedical term detection/normalization 
method, which deals with misspelling, imperfectness, and arbitrary abbreviation by 
nurses. In detecting temporal named entity, temperature, and other types of named 
entities that convey patients’ personal information such as age, and sex, we propose a 
bootstrapping-based pattern learning to detect all kinds of arbitrary variations of the 
named entities. To identify and remove implicit noise, we propose a dependency path-
based filtering method. Finally, we obtain normalized patient information, and 
visualize the patient-related named entities by constructing a graph that indicates 
detected named entity terms, named entity types, and dependency between named 
entities.  
For biomedical term detection, we use our own unsupervised method using a simple 
language model coupled with a measure based on Damerau-Levenshtein distance. 
We also presented a temporality detection system that provides a practical and 
extensible state-of-the-art system for extracting time expressions.  It can be used as a 
basic component for building temporally aware systems and for investigating 
problems requiring temporal information, such as event extraction, temporal 
ordering of events, and question answering even for noisy data. In addition, we 
exploit our regular expression patterns to detect other types of named entities. Our 
system includes a factuality assessment component, used to distinguish between fact 
and non-fact, as well as to remove non-patient's information. Our proposed method in 
biomedical term detection outperformed previous methods. In the temporality and 
factuality assessment, the proposed system showed reasonable performance.  Our 
system is useful for experts to mine patient information, and to analyze trends of 
patients’ concerns/symptoms. 
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