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ABSTRACT
Structured information revealed by manual annotation of disease 

descriptions with UMLS meta-thesaurus concepts, can provide 
high-quality reliable data sources for the research community. 
While progress in both extent and annotation has been made, only 
a limited scope of diseases has been annotated, largely because of 
the required human resources. Since annotating text is time 
consuming and the variation of disease descriptions makes the 
annotation task difficult, it is useful to develop systems for 
automatic mapping of biomedical sentences into an ontology. Our 
goal is to automatically map biomedical sentences into UMLS 
disease concepts. Previous methods including statistical methods, 
are still weaker than dictionary-based simple matching methods. 
To consider an alternative to both, we demonstrate how the 
mapping problem can be viewed as a document retrieval problem: 
under this perspective, the mapping integrates information based 
on a language model, document frequency, and distance measures. 
Our improvements are based on a three-step method using 
information retrieval and clustering. In the first step, we retrieve 
the top-10 ranked relevant UMLS concept entries using an 
integrated information retrieval model. In the second step, we 
cluster the retrieved concept entries according to shared words. In 
the final step, we select one answer for each cluster using a 
threshold. Our experiments are promising, and on typical data 
show a precision of 73.28%, recall of 77.51%, and F-measure of 
75.34% significantly outperforming previous methods based on 
statistics, dictionaries, and the MetaMap by 6.95 to 9.95 percent.   

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Application and Expert Systems – 
Natural language interfaces, Medicine and science.

General Terms
Algorithms, Experimentation, Languages. 

Keywords
Text mining, mapping of biomedical terms, information retrieval, 
bioinformatics 

1. INTRODUCTION 
Text mining in molecular biology or medicine – defined as the 
automatic extraction of information about genes, proteins, 
diseases, treatments and their functional relationships from text 
documents – has emerged as a hybrid discipline at the intersection 
of the fields of information science, bioinformatics and 
computational linguistics [1]. Literature mining in bioinformatics 
broadly consists of two parts. One part is the identification of 
biological or medical entities, and the other is mining for 
interactions and relations amongst those entities [2-7]. For the 
literature mining of medical records, the medical ontology known 
as Unified Medical Language System (UMLS) [8, 9] enables 
physicians to classify signs, symptoms, and diseases using 
accepted medical concepts. The UMLS integrates over 2 million 
names for some 900,000 concepts from more than 60 families of 
biomedical vocabularies, and includes 12 million relations among 
these concepts. Vocabularies integrated in the UMLS 
Metathesaurus include the National Center for Biotechnology 
Information (NCBI) taxonomy, Gene Ontology, the Medical 
Subject Headings (MeSH), Online Mendelian Inheritance in Man 
(OMIM) and the Digital Anatomist Symbolic Knowledge Base. 
Our hypothesis is that, combined with an integrated information 
retrieval method, the UMLS is a powerful and appropriate tool for 
automatically mapping disease names with variant forms into one 
concept. 

Even though manual annotation provides highly reliable data 
sets, it is time consuming for biologists/physicians to annotate a 
large volume of biomedical sentences. Therefore we need 
automatic methods to detect biomedical terms in sentences, 
without requiring a large annotated corpus. There is some 
previous work to detect genes/proteins in sentences using 
annotated data [2-4]. However, for the detection of diseases, a 
large volume of annotated corpora is not currently available in the 
open domain. In order to improve the general situation with the 
annotation of disease descriptions to a common vocabulary, our 
goal here is to automatically and in an unsupervised way, map 
biomedical sentences into UMLS disease concept IDs according 
to the corresponding disease terms. Previous research either 
requires a large volume of annotated corpora as training data, or 
uses extensive linguistic knowledge [10].  Even though there is 
some previous work that provides their own custom statistical 
methods, they perform even more poorly than alternative 
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dictionary-based simple matching methods.  In view of the 
seriously limited volume of training data in the domain of disease 
name recognition, we develop an information retrieval technique 
to find disease names in the UMLS metathesaurus, based on 
identifying those that are most related to a given zone (usually a 
sentence) in free text. We view the problem as determining 
likelihood of a sentence based on a list of candidate disease names. 
In the end, only the most likely disease names are chosen as final 
answers.  

The originality of our method is two-fold.  First, to our 
knowledge, this is the first time that the problem is modeled as a 
generation process based on information retrieval techniques 
using a language model. Second, the method does not require any 
preprocessing of sentences into noun phrases or pre-identification 
of disease terms, but jointly identifies and maps disease terms 
mentioned in a sentence to the UMLS metathesaurus.  To 
accomplish this, we develop an integrated model by combining 
the conventional IR model, document frequency information, and 
a heuristic distance measure. 

To improve performance in mapping sentences into UMLS 
concepts, we propose a three-step method based on an 
information retrieval technique and clustering. In the first step, we 
retrieve the top-10 ranked relevant UMLS concept entries using 
an integrated model by combining information retrieval technique 
based on a language model, distance information between words, 
and document frequency measures. In the second step, we cluster 
retrieved concept entries into group concepts based on the 
common words that they share. In the final step, we select one 
concept for each cluster based on our ranking score and a 
heuristic cut-off threshold. 

Through experiments, we show that our proposed method 
significantly outperforms existing methods, and provide an 
analysis of how each step contributes to that overall performance. 

The remainder of the paper is organized as follows. Section 2 
presents previous work on identifying and mapping biomedical 
terms into an ontology. Section 3 explains the details of our three-
step method. Section 4 describes the data used for our 
experiments and presents experimental results which demonstrate 
the performance of our three-step method. Finally, we provide our 
conclusions. 

2. Previous Work 
Automatic annotation methods for biomedical terms have been 
studied extensively in recent years, including the mapping of text-
phrases to UMLS concepts [10,11]. Most of these approaches are 
focused on automatic indexing of biomedical literature, and have 
proved inadequate for processing annotations of high-throughput 
datasets [12,13]. It has also been shown that for the task of 
identifying concepts from annotations of high-throughput datasets, 
simple methods perform as well or better than MetaMap 
[12,13,14,15].  In previous work, some approaches of S. Gaudan 
et al. [16,17] are based on the identification of weighted words 
that compose terms denoting ontology concepts. They integrate 
two new aspects in their scoring method: the proximity between 
words in text and the amount of information carried by each 
individual word. Their method is a statistical method based on 
specificity, evidence, and proximity.  Specificity and evidence are 
based on the frequency of a word in a corpus, and proximity is 

based on the distance between words in a corpus. They adopt 
TFxIDF used in information retrieval to measure the evidence and 
specificity, but the performance is worse than dictionary-based 
simple matching methods, and they do not use any threshold 
methods to choose relevant concepts among the ranked concepts. 

 F. Mougin et al. [18] mapped gene terms into UMLS based on 
normalization of words using UMLSKS API and exact match. 
A.Mottaz et al. [19] tried to map disease names into MeSH 
terminology. They used manually curated disease annotations to 
extract disease names, and applied exact and partial match to map 
the disease names into MeSH. To consider the information 
content of each word, they applied a TFxIDF weighting schema. 

 MetaMap is viewed as the state of art in mapping biomedical 
terms in free text to UMLS concepts. It first extracts noun phrases 
from a sentence based on syntax analysis. Then, synonym 
lexicons generated by experts are applied to generate variations of 
the extracted noun phrases. In the end, candidates are found from 
UMLS ranked by their matching score. The rules for generating 
those scores are purely heuristic. 

 J. Hakenberg et al. [20] introduced a method based on context 
models. In processing texts related to genomic analysis, they 
consider functions, processes, locations and tissue specificities as 
gene context. When trying to disambiguate a specific gene 
mention in free text, those kinds of information are compared 
with contexts that co-occur with the focus gene in the text. It is 
possible that different names are used to describe the same gene, 
as a result, to normalize variations in gene names, previous work 
has applied some heuristic rules [21]. Inspired by such work, Y. 
Tsuruoka et al. [22] tried to learn such rules automatically by 
minimizing ambiguity and variability of a lexicon. Their method 
shows significant improvement in matching rate for gene names. 
However, their learned rules are not general enough for handling 
disease names. 

 Some other machine learning approaches have also been 
investigated. H.W. Chun et al. [23] used a maximum entropy-
based method to filter candidate disease names found by 
dictionary-based methods. Various features are selected, e.g., 
context words, part of speech tag, word affix, etc. M. Bundschus 
et al. [28] tried cascaded CRF using various features based on 
contexts, dictionary and orthogonal form to detect disease terms 
and the functional relations between them, and they need 
annotated data set for training. In the methods of A. Neveol et al. 
[24], a priority model [25] was used to find noun phrases that are 
possibly disease names. However, the mapping process is still 
done with the MetaMap program. 

 We conclude that most previous work uses simple exact or partial 
matching based on a dictionary, and performs deep preprocessing 
such as noun phrase detection and normalization of variant words. 
Some statistical methods try TFxIDF to measure the information 
content of a word as used in the information retrieval field, but 
show poorer performance than the dictionary-based matching 
methods.  

 We approach the mapping problem of sentences into an ontology 
as an information retrieval problem and show that the 
performance can be greatly improved by applying a clustering 
technique. We regard a biomedical sentence as a query, and a 
UMLS ontology entry as a document, and try to apply a language 
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modeling-based information retrieval method as currently used in 
the document retrieval field. 

 The language modeling approach to information retrieval [26] 
directly implements the following idea: a document is a good 
match to a query if the document model is likely to generate the 
query, which will in turn happen if the document often contains 
the query words. This model shows better performance than those 
which use TFxIDF and BM25 weights. 

 Our approach is to infer a language model for each concept entry 
and to estimate the probability of generating the query according 
to the model. We then rank the concepts according to these 
probabilities. Based on the IR model and clustering, this paper 
proposes a three-step based method for mapping sentences into 
UMLS.  In the next section, we explain our method in detail. 

3. Method
Our method is summarized as follows. To deal with the variation 
between plural and singular forms, we simply truncate nouns 
ending with ‘-(e)s’ by trimming the ‘-(e)s’ suffix (stemming). Our 
method does not require other natural language processing 
strategies such as normalization or noun-phrase recognition. 
 We then map sentences to UMLS concepts in three steps. In the 
first step, we apply our integrated model which combines a 
language model-based information retrieval with a distance 
measure and document frequency measure to generate the top 10 
candidate concepts.  In the second step, we cluster the retrieved 
concepts according to the common disease-related words. Finally, 
we select one concept from each cluster based on ranking and a 
cut-off point. Details of each step will be presented in the 
following subsections. 

3.1 Step 1: Retrieval of Relevant UMLS Disease    
Concepts

We consider each input sentence as a query and UMLS entries 
as documents. We infer a language model for each UMLS 
concept entry, and rank each related entry according to how likely 
it generates the input sentence based on its language model. 

However, our model is different from traditional IR models in 
three ways.  First, the characteristics of a query and a document in 
our experiments are different from those in the traditional 
information retrieval field, since a query is longer than a 
document in our model, and the frequency of most words in a 
document is uniform.  

Second, our purpose is to retrieve all and only matched disease 
concepts for a query sentence, while the purpose of traditional 
document retrieval is to retrieve a list of documents ranked by 
their relevance to a query. In traditional IR formulation, for a 
word w that is included in a document but not included in a query,
one assigns a penalty by computing the probability that the 
language model does not generate w based on the term frequency. 
There is some risk of assigning a penalty based on only term 
frequency in a document for the words that have different 
information content, as measured by document frequency. To 
assign a small penalty to the words that are common to the 
domain but do not have a large amount of information content 
(e.g. the words ‘disease’, ‘disorder’, and ‘symptom’), we add a 

document frequency measure. The document frequency of a word 
helps determine its information content: the smaller the document 
frequency of a word is, the bigger information content it has.  

Finally, our purpose is to detect medical terms in a sentence. 
Traditional IR does not consider distance information. In term 
detection, the distance between words of a term t provides a clue 
on the likelihood that those words belong to a common term. 
Therefore, we add a distance measure. In the following 
subsections, we will explain our method in detail. 

3.1.1 Information Retrieval Based on a Language 
Model 

We consider each input sentence as a query and UMLS entries 
as documents. Then, we would like to estimate )|(ˆ dMQp , the
probability of the query given the language model of document d
as follows. 
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The first term is the probability of generating words in the query 
and the second term is the probability of not generating other 
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)|(ˆ dml Mtp shows the maximum likelihood estimate of the 
probability of term t under the term distribution of document d,
where ),( dttf  is the raw term frequency of term t in document d

and ddl is the total number of tokens in document d. cft/cs is the 
background probability for the document that is missing one or 
more of the query terms, since we do not want to assign 0 for 

)|(ˆ dMtp of this document, where cft is the raw count of term t
in the collection and cs is the total number of tokens in the 
collection. )(ˆ tpavg  is the estimate of the probability of the word 

t from a larger volume of data. dtR ,ˆ  is a risk function based on a 
geometric distribution, selected to benefit from the robustness of 
the estimator )(ˆ tpavg and to minimize the risk of using the 
estimator. For more details on each probability, refer to Ponte and 
Croft [26]. 
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3.1.2 Document Frequency Information 
In the IR formulation of subsection 3.1.1, for the word t that is 

included in a document but not included in a query we assign a 
penalty by computing the probability that Md does not generate t
based on the term frequency. However, in our task, the term 
frequency of most terms in a document is uniform.  So, there is 
some risk of assigning a probability measured by only term 
frequency for words with different information content. To assign 
a small penalty to the domain-specific common words, we add a 
document frequency measure which is:  

Qt D
tdfQDF )()(  ,

where df(t) is the frequency of documents that contain t, and 

D  is the number of all documents.  

3.1.3 Distance information 
We need to consider distance among words to detect whether the 

words in a query indicate one common term. We modify the 
distance measure of S. Gaudan et al. [16] , as follows: 
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Let W be the set of words of a document d found in a query 
sentence Q. Then W is: 
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where position(wi, Q) is the position index of wi in the query 
sentence Q.
   The p(Q|Md)(probability of generating Q based on the language 
model Md), DF(Q)(document frequency measure) , and 
dist(d,Q)(distance measure) are three factors that are combined to 

score the mention of d in a query Q. The three criteria may be of 
various importance and must be weighted accordingly. Finally, 
the three criteria are combined by the product of the functions, 
and the integrated formula is: 

2
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where document frequency and distance measure are weighted by 
the parameter 1, 2 , and how to estimate each parameter is 
explained in the next subsection. 

3.1.4  Parameter estimation 
Since our approach is unsupervised, we need to set a loss 

function f( ) from the retrieved results, and we estimate parameter 
 through iterative scaling that minimizes the difference between 

loss functions )()(1 tt ff .  We set f( ) as the sum of 

frequencies of the words that are included in the relevant top-10 
ranked documents but not included in the query. The intuition is 
that the smaller f( ) becomes, the better performance we have. In 
other words, f( ) is: 

U
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where )),,(,( mUidocttf  is term frequency of t in the 

document ),,( mUidoc which is retrieved with the ith rank for 

the mth query mU  using parameter . In our experiments, K is 

10 and U  is the number of input query sentences. We update the 
parameter using  

)()(1,  ,  ,1 nnininin ff ,

where 
U

m

K

i Ut m

f 1)(0 , and { 2,01,0 , }={1, 1}. 

The initial value f0( ) means that the frequency of the words 
that are not included in the query in each document is one, and we 
assign 1 for the initial parameter values. 

For the update of parameter value 1 of the document frequency 
measure, we set 

1,n  to be proportional to 

)_/()_( 1nn dfavgdfavg .
ndfavg _  is the average document 

frequency of a word that is included in the top-10 ranked 
documents but are not included in the query at the nth iteration. 
We perform an update of 1 using the following 
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<original sentence>                                                    
Using dna of a patient with piebaldism mental retardation and 
multiple congenital anomalies associated with a 46,, xy, del( 4 
karyotype we carried out quantitative southern_blot 
hybridization analyses of the kit gene and the adjacent pdgfra 
genes.
<top-10 ranked results>                                                 
RANK  SCORE     CONCEPT_ID  CONCEPT_ENTRY              
<1>  5.944104e-91  C0000772  anomalies congenital multiple 
<2>  1.130237e-91  C0080024  piebaldism 
<3>  1.074931e-91  C0025362  mental retardation 
<4>  4.237612e-93  C0000768  congenital anomalies 
<5>  4.126886e-102 C0004936 disorder mental 
<6>  5.574557e-103 C0242354 congenital disorder 
<7>  1.603987e-107 C0494422 other mental retardation 
<8>  6.323268e-109 C0158795 other congenital anomalies 
<9>  6.210680e-113 C0275544 congenital infection 
<10> 3.192410e-113 C0037268 congenital skin anomalies 

Figure 1. Example of concept retrieval 
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 Similarly, for the update of parameter value 2 of the distance 
measure, we set 

2,n  to be proportional to 

)_/()_( 1 nn distavgdistavg . ndistavg _  is the average 

distance of words per document in nth iteration . We perform an 
update of 2 using the following 

2,n  : 

n

n
n distavg

distavg
_

_ 1
2,

 , 
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The  and are constants that control the convergence speed 
of the iterations. In our experiments, we set  and to 0.01, 
and the initial values of {

1,n 2,n } to {0.01,0.01}. We stop 

iterating when 10)()(1 nn ff .

We obtain ranked relevant concepts according to the integrated IR 
model. Figure 1 shows one retrieval example using this model. 

3.2 Step 2: Clustering retrieved concepts

We assume there is only one concept ID corresponding to a 
disease term. Since it is typical that more than one concept is
retrieved for each disease term mentioned in a sentence, we 
cluster the concepts to group them according to the shared words.  
We then apply the Hierarchical Agglomerative Clustering (HAC) 
algorithm which is the most commonly used method for 
document clustering [27]. It does not require a prespecified 
number of clusters. This algorithm begins with each document as 
a cluster of its own(lines 1-4 in Figure 2), and iterates by merging 
the two most similar clusters (lines 6-7), and terminates when 
there are no more non-overlapping sets to merge (lines 8-9). The 
HAC algorithm requires the definition of a similarity function 
between documents and between sets of documents. Each 
document (UMLS concept entry) is represented as an attribute 
vector, with each word in the input sentence being an attribute in 
this vector. If a word in the input sentence occurs in a concept 
entry, the corresponding attribute value of a vector is ‘1’. 
Otherwise, it is ‘0’. 

The similarity of two documents is often taken as a normalized 
function of the dot product of their attribute vectors. 
The HAC algorithm that we use is shown in Figure 2. This 
algorithm groups the most similar two clusters at each iteration, 
and recalculates the similarity between clusters. It terminates if 
the iteration is performed N (number of documents)-1 times or the 
maximum similarity between clusters becomes 0. We use the 
cosine similarity between vectors as a similarity measure. We 
assume that there is a hierarchical relation between concept 
entries ‘A’ and ‘B’ only if all the common words between ‘A’ and 
the input sentence occur in the entry ‘B’. When A and B are 
represented as vectors, this property can be described as 
following: there is a hierarchical relation between concept entries 

‘A’ and ‘B’ only if ).)},{min(    toequals )( 2BABA  Finally, 

we assign the similarity value as shown in Figure 3. 

The final result of clustering is a set of tree(s), and we make one 
cluster for each tree. A clustering example using the top 10 
ranked list is shown in Figure 4. 

3.3 Step 3: Choosing answer concepts from 
clusters

Once the clustering has been completed, we select a concept 
that shows the highest rank in each cluster and is within the 
threshold. We select the threshold dynamically based on the 
ranking score distribution, specifically choosing the point at 
which there is a significant drop in ranking scores which means 
the ratio of score[i]/score[i+1] is biggest. 

From the three clusters in Figure 5, concept IDs C0000772, 
C0080024, and C0025362 are chosen because they show highest 
rank in each cluster. Then, you can see that the ratio of 
score[4]/score[5] is biggest from Figure 1. We remove the 
concepts with the 5th to 10th rank from the answer list. The final 

Figure 3.  Similarity between concept entries 

HAC(d1, …., dN)
1 for n  1 to N
2     do for i  1 to N
3 do C[n][i]  SIM(dn, di)
4 I[n]  1 (keeps track of active clusters)
5 A  [ ]  (assembles clustering as a sequence of merges)
6 for k  1 to N-1
7     do <i,m>  argmax{<i,m>:i m I[i]=1 I[m]=1}C[i][m]
8          if C[i][m] = 0
9              return A
10        A.APPEND(<i,m>)  (store merge)
11 I[m]  0 (deactivate cluster)
12  return A

0;  )SIM(  otherwise,
);ilarity(cosine_sim  )SIM(   

))},{min( )(( 2

A,B
A,BA,B

BABAif

Figure 4. hierarchical clustering for the concepts
             in Fig.1 

[1]
anomalies 
congenital 
multiple 

[5] 
disorder 

l

[4] 
congenital  
anomalies 

[6] 
congenital
disorder 

[7] other 
mental  
retardation

[3] 
mental  

retardation  

[8]  
other
congenital
anomalies 

[9] 
congenital
infection 

[10] 
congenital  
skin 
anomalies 

[2] 
piebaldism  

Figure 2.  Modified HAC algorithm for our task
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selection of mapped disease concepts is C0000772, C0080024, 
and C0025362. 

4. Experimental Evaluation 

4.1 Performance of our three-step method
We construct a disease lexicon by extracting disease-related 
concepts from UMLS according to J. Antonio et al. [17], and use 
their evaluation data. The data consists of 600 sentences and 924 
disease terms. 

In the experiments, we obtained the following results. 

1. Our proposed method achieved an F-measure of 
75.34%. (see Table 1) 

2. Our method significantly outperformed the statistical 
method and dictionary-based method of EBI (European 
Bioinformatics Institute) by 6.95 to 8.71%, and 
MetaMap by 9.95 %. (see Table 1) 

3. When we did not perform the clustering of Step 2, the 
precision dropped significantly. (see Table 2) 

4. When we did not use distance or document frequency 
measures of Step 1, the precision was better, but the 
recall was reduced. (see Table 2)  

5.  We can see the convergence of the precision/recall points 
for higher ranks (see Figure 6)

As shown in Table 1, among the systems using the same 
evaluation data, our system outperformed all previous reported 
systems with a precision of 73.28%, recall of 77.51%, and F-
measure of 75.34%.  In the Experiments, the EBI’s experiment 
and MetaMap program trained/tested the same set of data.  
Figure 6 shows each precision/recall of our system when we 
retrieve top R ranked concept entries in Step 1, with R=1 to 10. 
We can note the convergence of the precision/recall points for 
higher ranks, and we see that R=10 is enough for the convergence 
of precision/recall. (Figure 6). 
The Precision, recall, and F-measure represent proportions of 
populations. In trying to determine the difference in performance 
of two systems, we therefore employ the z-test on two proportions. 
We test the significance of the differences in F-measures between 
3 kinds of system pairs: {our system, EBI’s statistical system}, 
{our system, EBI’s dictionary-based system}, and {our system, 
MetaMap}. Given two system outputs, the null hypothesis is that 

Figure 6. Precision/recall when top-R ranked concept entries are retrieved in Step 1 

RANK CONCEPT        ENTRY               
[1]  C0000772  anomalies congenital multiple   CHOSEN 
[4]  C0000768  congenital anomalies 
[6]  C0242354  congenital disorder
[8]  C0158795  other congenital anomalies 
[9]  C0275544  congenital infection 
[10] C0037268  congenital skin anomalies 

[3]  C0025362  mental retardation             CHOSEN
[5]  C0004936  disorder mental 
[7]  C0494422  other mental retardation 

[2]  C0080024  piebaldism          CHOSEN

 C0000772, C0025362, and C0080024 are chosen as the final answer 

<cluster #2> 

<cluster #3> 

Figure 5.  The final concepts that are retrieved as answers

<cluster #1> 

Precision
(%) 

Recall 
(%)  

f-
measure 
(%) 

Our performance 73.28 77.51 75.34
Performance of 
EBI’s statistical 
method [17]

66.17 67.10 66.63 

Performance of 
EBI’s Dictionary 
lookup method [17] 

79.40 60.06 68.39 

MetaMap 83.90 53.57 65.39 

Table 1 Performances of our system and other  
previous systems   

ACM-BCB 2010 327



there is no difference between the two proportions, i.e., H0: p1 = 
p2. The alternative hypothesis states that there is a difference 
between the two proportions, i.e., p1 =/ p2. A z-statistic of 2.58
means that the difference between the two proportions is 
significant at a = 0.01. Z-values in all three significance tests are 
bigger than 2.58, and shows that the null hypothesis of no 
difference in the two proportions is rejected. 

4.2 Significance of each step in our method
We now summarize the significance of each step introduced in 

Section 3. As shown in Table 2, each step has a significant impact 
on the system’s performance.

Without using the document frequency and distance measures 
for the model in Step 1, the recall is significantly reduced, since 
the retrieved concept entries can include words that have a high 
information content but are not related to the query. 

Without the clustering of Step 2, the precision is significantly 
reduced, since more than one concept is chosen for each disease-
related term in the input sentence. The performance without 
clustering shows reduced performance, compared to the method 
with clustering.  

In a similar way, without the cut-off threshold restriction in 
Step 3, the recall improves, which we attribute to the selection of 
more concepts. However, the precision is reduced. 

One might consider the addition of noun phrase detection, and 
then use each noun phrase as an input, rather than the whole 
sentence. However, the experiment after noun phrase detection 
shows reduced performance compared with the method using a 
whole sentence as an input. That indicates that, in many cases, a 
disease term is not embedded in one noun phrase. 

In conclusion, the experiments demonstrate that the second and 
third steps contribute to the improvement of precision, and the 
first step to the improvement of recall. We conclude that all three 
steps are important for mapping of sentences into an ontology. 
In the experiments, we see that word variation results in some 
errors. e.g., ‘hemolysis’ vs. ‘haemolysis’, ‘norrie’ vs. ‘norrie’s’ , 
and ‘cirrhotic’ vs. ‘cirrhosis’.  In future work, such variants can 
be treated by aligning names under the same concept in UMLS. 

5. Conclusion 
To improve the mapping performance of biomedical sentences 

into an ontology, we propose applying an integrated information 
retrieval technique which combines a simple language model, 
document frequency, and distance measure, followed by a 
clustering of answer candidates. We regard a biomedical sentence 
as a query and a UMLS concept entry as a document. The 
proposed method does not require any preprocessing except part-
of-speech tagging, and we do not perform stemming, noun phrase 
detection, or normalization of words. A whole sentence is used as 
an input without using any n-gram window. 

In our proposed three-step method, the first step adopts an 
integrated information retrieval model for our mapping problem, 
and retrieves the top-10 answer candidates using the model. In the 
second step, we cluster the top-10 ranked concepts according to 
the disease-related words in common. In the final step, we choose 
one concept from each cluster based on a cut-off threshold. The 

experimental results show that our three-step method performs 
significantly better than previous methods by 6.95 to 9.95 percent.  

Even though the characteristics of a biomedical sentence and a 
UMLS concept entry are different from those of a query and a 
document in traditional document retrieval, we show that the 
modified information retrieval model is appropriate with 
reasonable performance.  
In future work, we will expand the volume of the evaluation data, 
and attempt to apply this model for the mapping of other types of 
biomedical terms such as genes or drugs. In addition, term 
variations such as the missing of words or substitution of 
synonyms will be also be considered. 
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