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ABSTRACT

Associative classification is a rule-based approach to classify
data relying on association rule mining by discovering asso-
ciations between a set of features and a class label. Support
and confidence are the de-facto “interestingness measures”
used for discovering relevant association rules. The support-
confidence framework has also been used in most, if not all,
associative classifiers. Although support and confidence are
appropriate measures for building a strong model in many
cases, they are still not the ideal measures and other mea-
sures could be better suited.

There are many other rule interestingness measures al-
ready used in machine learning, data mining and statistics.
This work focuses on using 53 different objective measures
for associative classification rules. A wide range of UCI
datasets are used to study the impact of different “inter-
estingness measures” on different phases of associative clas-
sifiers based on the number of rules generated and the accu-
racy obtained. The results show that there are interesting-
ness measures that can significantly reduce the number of
rules for almost all datasets while the accuracy of the model
is hardly jeopardized or even improved. However, no single
measure can be introduced as an obvious winner.

Categories and Subject Descriptors
H.2.8 [Database management|: Data Mining
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1. INTRODUCTION

Associative classification [4, 23, 24] is a rule-based ap-
proach recently proposed to classify data by discovering as-
sociations between a set of features and a class label. To
build an associative classification model, association rules
whose consequent is a class label are generated using an as-
sociation rule mining technique. Research shows promising
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results for associative classification and its potential for im-
provement to a more powerful classification paradigm.

Support and confidence are the default “interestingness
measures” universally used for discovering relevant associa-
tion rules. The support-confidence framework is similarly
the most common framework used for mining and select-
ing rules of associative classifiers. Although these two mea-
sures are widely used, they are still not necessarily the ideal
measures. This is because in many situations a huge set
of rules is generated which could hinder the effectiveness in
some cases for which other measures could be better suited.
Yet, no systematic study has been done to identify a better
framework or the most appropriate measure.

1.1 Background and Problem Definition

The associative classifier is a classifier that uses associ-
ation rule mining in the training phase in order to gener-
ate classification rules. To use this classifier, datasets have
to be transformed in a transactional format. Considering
each attribute-value pair in a dataset as an item results in
a transactional dataset in which a row of data looks like a
transaction of items. Among items of each transaction, one
is the class label of the related object. Using an association
rule mining technique (e.g., Apriori [3], Eclat [36] or FP-
growths [14]) on the resulting transactional data, frequent
itemsets are mined and the ones of the form {4, c} are ex-
tracted where A is a set of features and c is a class label (A
and c¢ are disjoint subsets of items). Among these frequent
itemsets, the confident ones are chosen to build classifica-
tion rules of the form A — c¢. Then, these rules are used to
predict class labels for objects with an unknown class.

As mentioned above, the support-confidence framework is
the standard framework in association rule mining and in-
herited by associative classification. For a rule A — ¢, sup-
port is the fraction of data samples having A and c together
(i.e., P(Ac)). A ruleis frequent if its support is greater than
a minimum support threshold. Confidence is the conditional
probability that a record is of class ¢ given that it includes A
(i.e., P(c|]A)). A rule is confident if its confidence is above a
minimum confidence threshold. To build an associative clas-
sifier, only strong rules, i.e., the rules that are both frequent
and confident are used. Even with these two constraints,
still a huge set of rules may be generated. Different ap-
proaches are used to prune the rules in the second phase of
associative classifiers [9]. Finally, to classify an object O,
two different approaches are typically used. The first way is
to take into account only the best rule by choosing the rule
that applies to O with the “highest rank” based on a defined
ordering. The other way is to consider all rules that apply



to O by calculating the “average” value of the measure used
in the defined ordering for the matching rules for each class
label and choose for O the label with the highest average as
prediction.

1.2 Disadvantages of Support and Confidence

While powerful in pruning the search space due to the
antimonotonicity of support, the support-confidence frame-
work has been criticized in the context of association rule
mining by many authors [7, 2, 1]. For instance, it is diffi-
cult to tune. Choosing a large minimum support may lead
to having only rules that contain obvious knowledge and
missing exceptional cases that are interesting. On the other
hand, assigning a low minimum support yields a huge num-
ber of rules which could be redundant or noisy.

Similarly, confidence is not a perfect measure as it consid-
ers nothing beyond the conditional probability of rules which
may lead to confident associations but between statistically
independent items.

Brin et al. show that with high support and confidence,
a rule can even have negative correlation between its an-
tecedent and consequent [7].

1.3 Approach

There are many rule interestingness measures already used
in machine learning, data mining and statistics. Many differ-
ent measures are introduced in the field of association rule
mining as filters or rankers to weed-out the least relevant
rules. All those measures can be directly applied to asso-
ciative classifiers as well, although never tested or reported
in the literature. This work focuses on probability-based
objective rule interestingness measures for associative clas-
sification. Using these interestingness measures, there are
two questions that should be answered:

First, can “interestingness measures” have any effect on
the associative classifiers on its three different phases: rule
generation, pruning and selection, so that the mining al-
gorithm improves both in terms of increasing classification
accuracy and decreasing the number of rules?

Second, if there are any improvements, is it possible to
probe the best measure or measures which can beat the
other measures for improving the results base on either the
accuracy or the number of rules in all cases? There is a
possibility that no one measure can be found to be effective
in all circumstances. In this case, are there any relevant
dataset characteristics or measure properties that can help
build a classifier in order to predict an effective measure for
a dataset?

To attempt to answer the above questions 20 different UCI
datasets are used with 53 different measures to study the im-
pact of “interestingness measures” on associative classifiers.

Section 2 describes the interestingness measures and their
properties and introduces 53 different probability-based ob-
jective measures reportedly used in association rule min-
ing. In Section 3 some related works studying interesting-
ness measures are highlighted. The methodology of using
interestingness measures in the three different phases of an
associative classifier is discussed in Section 4. Experimental
results, comparing the impact of interestingness measures
on classification accuracy and the number of generated clas-
sification rules, are illustrated in Section 5.

2. INTERESTINGNESS MEASURES

Generating rules in association rule mining or with as-
sociative classifiers can lead to a very large set of rules
which make it impossible, for even domain specialists, to
study. Sifting through thousands or even millions of rules,
inevitably containing irrelevant ones and noise, is impracti-
cal. To solve this problem, interestingness measures can be
used for filtering or ranking association rules.

There are many different rule interestingness measures
widely used in machine learning, data mining and statistics.
In a study of 38 different measures, Geng and Hamilton [12]
classify the interestingness measures in 3 main categories:
objective, subjective and semantics-based measures. Objec-
tive measures are those that are not application-specific or
user-specific and depend only on raw data. Subjective mea-
sures are those that consider users’ background knowledge
as well as data. As a special type of subjective measures,
semantic-based measures take into account the explanation
and the semantic of a pattern which are, like subjective mea-
sures, domain specific. For simplicity, our work only focuses
on objective measures.

2.1 Objective Interestingness Measures

There is a large number of objective interestingness mea-
sures available in the literature. The 53 probability-based
objective rule interestingness measures that we could find in
all related literature are shown in Table 1.

To be able to analyze the objective measures, some prop-
erties are proposed for these measures in the literature. Four
sets of properties are considered for objective interestingness
measures. Piatetsky-Shapiro [29] has proposed the three
main properties which are desirable for any objective inter-
estingness measures. There are also other properties intro-
duced by Major and Mangano [25], Tan et al. [32], Lence et
al. [21, 22], and Geng and Hamilton [12], in total 16.

All the properties were introduced in the context of asso-
ciation rules. They can be used for finding similar measures
or to find the appropriate measure for a problem domain if
the required measure properties for that domain are known.

Using these properties, we clustered all the 53 measures
in Table 1 with an agglomerative hierarchical clustering al-
gorithm using average linkage. Having each measure as a
vector of properties, the distance of two measures is based
on a Hamming distance. Figure 1 shows different levels of
this clustering till the maximum distance among measures
in each cluster is 0.25.

The clustering can be compared with the work done by
Tan et al. who clustered 18 measures with 8 properties[33],
or Lenca et al. who clustered 20 measures using 6 properties
[22]. Extensive comparison is reported in [16]. Here we only
convey that groupings of interestingness measures are very
similar with an Adjusted Rand Index [35] of 0.67 and an
F-1 measure of 0.88. Discrepancies due to the fact that
we are using a larger space with more measures and more
properties, are outlined in [16].

3. RELATED WORK

Interestingness measures are used in different aspects of
data mining. McGarry et al. [27] have used these mea-
sures to evaluate the worth of rules extracted from neural
networks to discover their internal operation. Buntine [8]
took advantage of these measures in probabilistic graphical
model. Romao et al. [30] have used interestingness mea-



No. Measure Abbr Ref
1 1-way support 1lwaySup 12
2 2-way support 2waySup 12
3 2-way support variation 2waySupVar 12
4 Accuracy Acc 12
5 Added value AddVal 12
6 Certainty factor CerFac 12
7 Chi-square Chi2 31
8 Class correlation ratio CCR 34
9 Collective Strength CollStr 12
10 | Complement class support | CCS [5]
11 | Confidence Conf 12
12 | Confidence causal ConfC 17
13 | Confirm causal CnfrmC 17
14 | Confirm descriptive CnfrmD 17
15 | Confirmed-confidence CCC 17

causal
16 | Confirmed-confidence CCD [17]
descriptive
17 | Conviction Conv 12
18 | Correlation coefficient Corr 12
19 | Cosine/IS Cos 12
20 | Dilated chi-square D-Chi2 20

21 | Example and Ex&Cex 12

counterexample rate

22 | F-measure FM 28
23 | Ganascia Gan 19
24 | Gini index Gini 12
25 | Goodman-Kruskal GK 12
26 | Hyper confidence HConf 13
27 | Hyper lift HLift 13
28 | Implication index ImpInd 22
29 | Information gain InfoGain 12
30 | Intensity of implication IntImp 20
31 | Interestingness Weighting | IWD 12
Dependency
32 | Jaccard Jacc 12
33 | J-measure JM 12
34 | Kappa Kappa 32
35 | Klosgen Klos 12
36 | K-measure KM 28
37 | Laplace correlation Lap 12
38 | Least contradiction LC 12
39 | Leverage Lev 12
40 | Lift/interest Lift 12
41 | Loevinger Loe 12
42 | Mutual information MutInfo 12

43 | Odd multiplier OddMul 12

44 | Odds ratio OddR 12
45 | Piatetsky-Shapiro PS 12
46 | Recall/local support LocSup 12
47 | Relative risk RelRisk 12
48 | Sebag-Schoenauer SS 12
49 | Specificity Spec 12
50 | Support/global support GlbSup 12
51 | Yule’s Q YulQ 12
52 | Yule’'s'Y YulY 12
53 | Zhang Zhang 12

Table 1: A list of objective rule interestingness mea-
sures, their abbreviations and references.
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Figure 1: An agglomerative hierarchical clustering
of measures based on their properties

sures in a genetic algorithm that optimizes expert beliefs
to rank the interestingness of fuzzy prediction rules. Hil-
derman et al. [15] compared the various diversity measures
used for ranking data summaries. Kononenko [18] discov-
ered the properties of measures used in decision trees. And
Gavrilov et al. [11] and Zhao et al. [37] compared objective
functions used in clustering approaches.

The focus of this work is on interestingness measures (IM)
for association and classification rules, hence, only the works
related to these two areas are introduced in this section.

3.1 IM in association rule mining

Tan et al. [32, 33] have introduced five key properties
that should be considered for selecting the right interest-
ingness measure for a specific application. To study these
properties, 21 different objective rule interestingness mea-
sures have been used. Using these five properties as well as
three properties introduced by Piatetsky-Shapiro [29], Tan
et al. have grouped some of these measures based on the
correlation between their property vectors.

The work of Tan et al. also addresses finding the best mea-
sure for specific application domains using experts. Having
a set of patterns, different measures can be used to rank
these then the rankings compared using Pearson correlation
to a manual ranking done by experts.

Lenca et al. [21] use a different way to find the best mea-
sure for a domain. They rank the measures based on their



properties rather than using a set of patterns. For each ap-
plication domain, a specialist assigns weights to each prop-
erty of measures. Each weight shows the importance of that
property in the given domain. Then using all properties
and also the weights assigned to each of them, measures are
ranked by applying a multi-criteria decision process. The
measure with the highest rank can be selected to be used in
that specific domain.

In another work, Lenca et al. [22] compare interestingness
measures based on formal definitions and experimental re-
sults. 5 interestingness measure properties were described.
Three of these properties along with three other properties
were used to group 20 different interestingness measures. 5
different groups have been obtained with a hierarchal ascen-
dant clustering using the average linkage and Manhattan
distance. Another clustering was done based on experimen-
tal results from 10 different datasets. They also found 5
clusters that match the previous clustering.

There are also two excellent surveys [12, 26] with useful
information about interestingness measures.

3.2 IM for associative classifiers

In an effort to present better alternatives to the confi-
dence measure in classification based on associations, Lan
et al. proposed two novel interestingness measures, intensity
of implication and dilated chi-square [20]. These measures,
which are used to sort generated rules, statistically reveal
the interdependence between the antecedent of a rule and
its class. They showed that on 16 UCI datasets the result-
ing rule set is 90% more compact that the one generated
by a confidence-based classifier and the accuracy improved
between 1% and 4%.

After showing that even confident rules can have negative
correlations, Arunasalam and Chawla propose a new mea-
sure called Complement Class Support (CCS) which guaran-
tees rules to be positively correlated [5]. Their experiments
on 8 UCI datsets show that their measure is better suited
than simple confidence for imbalanced datasets.

Verhein and Chawla utilize the Fisher Exact Test’s (FET)
p-value to extract only statistically significant rules and in-
troduce a new measure, Class Correlation Ratio(CCR), to
select only the rules that are more positively correlated to
the class they predict rather than the other classes[34]. For
classification, they use a strength score to rank the rules,
a combination of p-value, confidence and CCR. They show
on 6 UCI datasets that they can outperform other classifiers
including a confidence-based associative classifier.

Azevedo and Jorge compared 10 different interestingness
measures in the selection phase of an associative classifier[6].
Using 17 different datasets from the UCI repository they
showed that the strategy selecting the applicable rule with
the highest conviction measure yielded the best result. Over-
all, conviction, confidence and Laplace were the only mea-
sures that could produce competitive classifiers in their ex-
periments.

Azevedo and Jorge also attempted to find which measure,
conviction, confidence or Laplace, is better suited in the se-
lection phase given some features about the dataset at hand
[6]. While the study was not conclusive, it was noted that
conviction is the best measure for unbalanced datasets.

While there is a wide range of interestingness measures,
most are only studies in the context of association rule min-
ing. Few are proposed exclusively for associative classifiers

but all studies on interestingness measures for associative
classifiers consider only the rule selection phase. We inves-
tigate all these measures on all 3 phases of an associative
classifier.

4. INTERESTINGNESS ON ALL PHASES OF

AN ASSOCIATIVE CLASSIFIER

As mentioned above, an associative classifier is composed
of three major phases: rule generating, rule pruning and
rule selection. It is possible that the proper choice of an
interesting measure could have an impact on each of these
phases. At a higher level though, one can generalize the
associative classifier into two stages: the learning, which
encompasses the rule generation and pruning; and the clas-
sification, which is the selection of appropriate rules to fire.

In the first step of an associative classifier, using an as-
sociation rule mining technique, rules with class labels as
consequent are generated. For generating rules, an anti-
monotonic measure, am, and a threshold, ¢, is required to
efficiently prune the search space. Only measures with an
anti-monotonic property can be used in this phase. This
property is not obviously known for all 53 measures listed in
Table 1. In this study, only global support (i.e. support in
the whole dataset) and local support (i.e. support in a class)
are used for this phase. However, the interestingness mea-
sures are used as filters after generating all possible rules us-
ing a low support. In other words, using a support generates
a learned model (i.e. a set of classification rules). Applying
the different interestingness measure filters generates other
learned models. Conflicting and redundant rules are later
eliminated in the rule pruning phase. Redundancy removal
pruning depends upon the strategy used in the rule selection
phase and we refer the reader to [16] for more details. In
brief, one strategy in rule selection during classification to
order rules that apply based on some ordering and select the
highest ranked rule. Pruning rules would not have an effect
on the accuracy as rules lower in the rank are weeded out.
However, when using a strategy where the interestingness
measure of all rules predicting the same class is averaged
to select the class label based on highest obtain average, a
pruning would impact the calculated average and thus may
lead to a different prediction.

The last phase of an associative classifier is to select a rule
or a set of rules for predicting a class label of an object. For
classifying a new object, an ordering should be defined. In
this work, we use an ordering that is based on the used inter-
estingness measure. Let sm be an interestingness measure.
Based on this ordering and considering the highest ranked
rule, 7 <or 7; (75 gets a higher rank than r;), if:

o sm(r;) < sm(r;)
e or sm(r;) = sm(r;) A support(r;) < support(r;)

o or sm(r;) = sm(r;) A support(r;) = support(r;) A
length(r;) < length(r;)

Where sm is the selecting measure, support is the support
of the rule, and length denotes the length of the rule which
is equal to the number of attribute-value pairs in the ante-
cedant.

For taking into account the average of measures for all
matchable rules, first all rules that apply to the unknown
object should be grouped based on their class labels. If R.



Highest ranked Average
Datasets # of rules Max acc % FM% Acc% FM% Acc%
Anneal 309,828 98.11 64.32 88.98 66.64 89.76
Breast 6,936 100.00 94.55 95.12 96.08 96.42
Census 63,226 98.35 65.11 81.69 73.50 83.89
Colic 188,278 98.63 62.48 72.57 80.36 82.57
Credit 299,311 99.42 74.55 76.68 87.64 87.97
Diabetes 923 97.79 66.87 73.83 68.54 74.09
German 223,508 99.00 48.80 71.50 43.62 70.10
Glass 1,599 88.51 55.35 69.31 54.85 66.97
Heart 41,096 100.00 66.05 70.27 80.37 80.85
Hepatitis 1,150,690 100.00 44.26 79.42 67.17 83.65
Iris 108 99.33 95.19 95.33 91.06 91.33
Labor 44,203 100.00 50.10 68.67 82.02 82.33
Led7 473 86.98 73.26 74.00 70.97 72.00
Pima 988 97.53 66.96 74.35 68.64 74.48
Tictactoe 7,398 100.00 70.30 78.72 88.06 90.19
Vote 955,659 99.77 85.17 87.12 95.69 95.87
Vowel 18,501 87.88 61.00 62.73 56.24 58.38
Waveform 35,626 100.00 79.98 80.32 75.57 76.54
Wine 185,942 100.00 76.76 79.87 95.60 95.48
Zoo 971,581 100.00 66.00 81.16 91.26 94.99
[Average | 225,294 | 07.56 | 68.35 | 78.08 | 76.60 | 82.39 |

Table 2: Results on 20 datasets using global support
with threshold of 1%, with selecting based on the
highest ranked rule and the rules’ average of mea-
sures. “Max acc” denotes the maximum possible ac-
curacy, “FM” denotes the macro average f-measure
and “Acc” denotes the accuracy of the classifier.

denotes a rule set which all rules have the class label ¢, based
on this ordering, R <oravg R’ e, if:

o Avgrser.{sm(rj)} < Avgrer, {sm(ri)}

o or Avgr;er {sm(r;)} = Avgr,err, {sm(ri)} A
Avgr;er.{support(r;)} < Avg,.ers_, {support(r;)}

e or Avgr,er {sm(r;)} = Avg,,ers , {sm(ri)} A
Avgr;er {support(r;)} = Avg,,ers , {support(ri)} A
Avgr,er , {length(ri)} < Avgr;er.{length(r;)}

Both these approaches are used in this study. If no rule
can match the object, the dominant class is assigned to it.

S. EXPERIMENTAL RESULTS

The impact of using different interestingness measures is
explored individually for each phase. Then, the combination
of the best measures in each phase is studied.

20 datasets having different characteristics, were chosen
from the UCI repository. To convert the relational datasets
into transactional datasets, all numeric attributes are dis-
cretized using the entropy-based discretization method [10]
used in CBA [24] to categorize the continues attributes.

For evaluation, each classifier is assessed based on the
number of rules its model contains, the macro average fi-
measure, accuracy and maximum possible accuracy. Hence-
forth, f~-measure refers to macro average fi-measure.

The maximum possible accuracy shows the maximum ac-
curacy that is achievable if for each test object, the right
rule is selected from the set of available rules. Hence, if for
a test object there exists at least one rule that applies to that
object with the same class label, that object is considered
as a correct classification, otherwise, it is a misclassification.
This evaluation measure is useful to evaluate the pruning
and see whether the essential rules are pruned or preserved.

All the results are based on 10-fold cross validation and
the folds used for all classifiers are the same for each dataset.

5.1 Global vs. Local Support

Local and global supports with a threshold of 1% are used
as anti-monotonic measures.To remove the conflicting rules,

Datasets | RR % | FC% | AC%
Anneal 99.86 | -38.98 -9.78
Breast 95.23 | -1.18 | -1.04
Census 92.49 | -22.09 -5.43
Colic 96.69 | -8.23 | -4.24
Credit 97.62 | -1.68 | -1.64
Diabetes 83.42 -2.51 -0.88
German 95.36 -5.61 -0.14
Glass 82.47 | -12.11 | -10.86
Heart 96.72 -0.03 | +0.33
Hepatitis 99.74 | -34.10 | -5.06
Iris 69.65 | +0.90 | +0.73
Labor 99.23 | -8.19 | -6.88
Led7 31.85 | -0.30 | -0.78
Pima 83.47 | -2.20 | -0.88
Tictactoe 69.79 | -49.92 | -25.81
Vote 99.53 | -6.21 -5.29
Vowel 88.52 | -6.23 | -6.75
Waveform 71.58 -3.57 -2.85
Wine 99.14 | -13.73 | -11.69
700 99.77 | -32.45 | -21.31

Table 3: Percentage of rule reduction while us-
ing redundancy removal pruning on rule sets gen-
erated with global support as well as the change of
f-measure and accuracy while the rules’ average of
measures are used for prediction. RR, FC and AC
are short forms for rule reduction, f-measure change
and accuracy change respectively.

a minimum confidence threshold of 51% is used. No pruning
method is used here and the measure used in the selection
phase is confidence with two different approaches, selecting
based on the “highest ranked rule” and based on the “average
of rules”. Rule sets generated only using local/global sup-
port and confidence are called “original rule sets”. All other
results are compared with the results of these rule sets.

The results of the original rule sets show that using local
support yields a very large number of generated rules, espe-
cially when the class labels are imbalanced (i.e., when the
standard deviation of class distributions is high), but it also
creates more accurate models for this kind of datasets as it
also finds frequent patterns in small classes. The results of
the original rule sets using global support is shown in Table
2 in terms of number of rules, maximum possible accuracy,
f-measure and accuracy. The results for local support can
be found in [16].

5.2 Using Redundancy Removal Pruning

While using the highest ranked rule in selection phase,
this pruning can be used to remove the rules that are never
used in prediction. Hence, the f-measure and accuracy does
not change. Table 3 shows a huge percentage of rule reduc-
tion while using the redundancy removal pruning on original
rule sets generated with global support. On the other hand,
using this pruning method while predicting based on the
rules’ average of measures, changes the number of rules as
well as f-measure and accuracy. The percentage of change
in f-measure and accuracy are also shown in Table 3. The
results show large reduction of f-measure in some datasets.
Hence, although redundancy removal pruning can reduce a



Datasets | RR % | FC% | AC% | MPAC% | Measure Highest ranked Average
Anneal 1651 | 21.64 | 727 181 | KM (0.1) Datasets | FO% | ACY% | Moasure FO% | AC% | Moasure
Breast -9.67 1.84 1.52 -1.43 | Lev (0.8) Broast 0.72 0.47 [ Lev, 0.68 0.59 | ConfC
Consus 5570 | 18.64 | 3.03 17.99 | Zhang (0.8) Census 1000 | 874 | CCs, 521 | 008 | ConfC
T M e o e e s
Credit -69.82 | 17.63 | 14.54 -5.38 | Lap (0.9) Diabetes 8.64 0.86 | DORIZ, .45 0.86 | ©OS | )
Diabetes -40.43 8.44 1.40 -19.04 | AddVal (0.2) German 35.97 -0.56 Klos, 32.87 3.71 Conv, Loe
Gorman 9360 | 3532 | 238 0.00 | Acc (0.5) glass 684 | -1.45 | Lev, 5.25 1.01_| ConfC

cart 25.21 17.91 | Intlmp, 1.57 1.23 | Impind
Glass -44.74 | 11.37 2.71 0.00 | FM (0.2) Hopatitis | 63.74 | -0.80 | DChi2, 6.95 | -1.45 | ConiC
Heart -99.87 | 28.01 | 20.68 -0.67 | CollStr (9) TWaySup, Loe, Conv,
Hepatitis -99.86 | 62.66 1.68 -0.59 | CF (0.05) s 0.80 | 070 | o CD ass | ass | TV
Iris -58.67 0.80 0.70 -0.67 | Klos (0.2) InfoGain, Lift, OddMul,
Labor -1.11 | 85.92 | 35.92 -1.67 | Lev (0.9) OddMul, Gan, 58
Led? -16.86 | 0.70 | _0.76 -0.07 | HConf (0.9) pobor R N I e
Pima -40.13 9.00 1.05 -18.97 | AddVal (0.2) Pima 837 | -0.36 | OddMul, 709 122 | Lov
Tictactoo 0891 | 40.01 | 25.97 20.84 | Corr (0.2) Tictactoe | 40.91 | 25.97 | Intlmp, 5.93 6.83 | ConfC
Vote -99.91 | 12.35 10.02 -0.92 | CF (0.4) Vote 12.65 | 10.30 | CnfrmC, 0.00 0.00 gngf,CLer(,JQ
Vowel -8.90 0.15 0.16 -2.76 | CCD (0.1) Conf, Gan
Waveform | -33.55 0.15 0.15 -0.02 | Zhang (0.7) AT 0.90 0.64 | CCS, 6.98 5.36 [ CCS
Wine [t 57T [ e 005 L AR e
700 -94.30 | 19.44 10.50 0.00 | LC (0.7) 700 19.49 | 11.53 | CnfrmC, 0.14 0.00 | BEx&Cex

Table 4: Impact of measure-based filtering when
maximizing the f-measure and the winning measure
(with its minimum threshold used). Global support
is used for rule generation and the selection phase
is based on the highest of rules. RR, FC, AC and
MPAC are short forms for rule reduction, f~-measure
change, accuracy change and maximum possible ac-
curacy change respectively.

large number of rules, it is not safe to be used while predic-
tion is based on the rules’ average of measures.

5.3 Measure-based Filtering

Three different experiments are conducted to find the im-
pact of using 53 different measures in measure-based prun-
ing. Two of these experiments are based on rule reduction.
In the first experiment, the goal is to find the minimum num-
ber of rules without jeopardizing the f-measure (keeping it
above 95% of its original). In the second experiment, the
aim is to find the minimum number of rules without chang-
ing the maximum possible accuracy. The goal of the last
experiment is to eliminate the misleading rules in order to
improve the f-measure. For these experiments the selection
measure is fixed on confidence.

In these experiments the number of rules shrunk by up
t0 99.99% while the f-measure in some cases even improved.
For each experiment, we ranked the measures for each dataset
based on rule reduction achieved (or f-measure improvement
in the third experiment). To find the measures that can have
the highest impact in rule reduction, the number of times
a measure ranked between 1 and 3 are counted. Based on
these counts, IWD, Kappa, GK, Corr, Klos, 2WaySup, CF,
Gini, and Spec are measures that have the highest impact
on rule reduction without jeopardizing the f-measure, while
FM, Cos, Jacc, CollStr, Acc, and Spec have the highest im-
pact on rule reduction whilst not changing the maximum
accuracy possible. Lev, Kappa, Zhnag, Acc, GK, 1Way-
Sup, CF, Cos, FM, LC, and Spec were the high achiev-
ers in the experiment maximizing the f-measure. Interest-
ingly, many measures never achieved a high enough ranking
on any dataset. Table 4 shows the maximum percentage
of f-measure improvement and the measure used for this
achievement. The results show that there are some signif-
icant improvements in f-measure and the rule reduction is
still substantial. The complete results are detailed in [16].

Table 5: Percentage of f-measure change, accuracy
change and the measure used in selection phase to
get the maximum f-measure. Global support is used
for rule generation and the selection phase is based
on both the highest ranked rule and rules’ average
of measures. FC and AC are the short forms for
f-measure change and accuracy change respectively.

5.4 Measures in Rule Selection Phase

The effect of using different selection measures, in the
third phase of the associative classifier, is only on the im-
provement of the f-measure. There is no change in the num-
ber of rules per se as the learning model is already built.
Table 5 shows the best measures for f-measure improvement
for each dataset. From the results, it can be inferred that
there are some significant improvements in f-measure, spe-
cially when predicting is based on the highest ranked rule.

The measures are ranked based on the f-measure improve-
ments in each dataset. OddMul, CCS, CnfrmC, Conv, Lap,
Loe, and Zhang are the measures with the most top ranks
when the highest ranked rule is used for selection and ConfC,
CCC, Lev, Conv, CCS, Loe and Ex&Cex are the measures
with the most top ranks when the rules’ average of measures
strategy is used. Many measures never achieve a top rank
with any dataset.

5.5 Using IM in Both Pruning and Selection

The impact of using different interestingness measures on
each individual phase of the associative classifier was high-
lighted above. Here the goal is to study the impact of using
different interestingness measures both in the pruning and
the selection phases together. For this reason, the best mea-
sures found in measure-based pruning are combined with
the best measures found in selection phase for each dataset.
For cases where the strategy using highest ranked rule is
adopted for prediction, redundancy removal is also used af-
ter the measure-based pruning. The results for f-measure
changes are shown in Table 6. In this table, the percentage
of f-measure changes using measure-based pruning and using
different measures in the selection phase are compared with
that of the combination of these two phases. The results
show that not only combining the best interestingness mea-
sure of each phase does not improve the f-measure, but, there
are some cases with significant decrease in the f-measure.




Datasets | Pruning | Selecting | FC% | FC% | FC %
measure | measure | prune | select | combine
Anneal KM Klos 21.64 | 20.25 17.62
Breast Lev Lev 1.84 0.72 0.72
Census Zhang ccs 18.64 | 19.99 19.77
Colic 2waySup | IntImp 34.81 | 30.74 24.82
Credit Lap Lap 17.63 | 15.77 15.58
Diabetes AddVal DChi2 8.44 8.64 9.23
German Acc Klos 35.34 | 35.97 34.78
Glass FM Lev 11.37 6.84 4.36
Heart CollStr IntImp 28.01 | 25.21 22.64
Hepatitis | CF DChi2 62.65 | 63.74 39.37
Iris Klos 1WaySup 0.80 0.80 0.80
Labor Lev IntImp 85.92 | 77.68 91.54
Led7 HConf CnfrmC 0.70 0.31 0.31
Pima AddVal OddMul 9.00 8.37 10.16
Tictactoe | Corr IntImp 40.91 | 4091 40.91
Vote CF CnfrmC 12.35 | 12.65 12.08
Vowel CCD ccs 0.15 0.90 1.09
Waveform | Zhang Lev 0.15 0.02 0.09
Wine Lev Lap 19.41 | 14.35 18.69
Zoo LC CnfrmC 19.44 | 19.49 19.49

Table 6: Comparing the changes of f~-measure with
the best measure used in measure-based pruning for
f-measure improvement, the best measure used in
selection phase, and the combination of these two
measures. Global support is used for rule genera-
tion and the selection phase is based on the highest
ranked rules. FC is the short form for f-measure
change.

Hence, a suitable selecting measure based on an original
rule set is not necessarily a suitable selecting measure for a
pruned version of that rule set. The tables for rule reduction
are not shown for lack of space. What is noteworthy is that
the redundancy removal could even prune more rules from
rule sets already pruned by measure-based pruning.

To summarize the results, there are interestingness mea-
sures that can be used as filtering measures and be able to
reduce the number of rules significantly in all datasets with-
out jeopardizing the accuracy of the model. In other words,
the filters are capable of identifying unnecessary rules from
the model. However, this drastic improvement in the num-
ber of rules is not necessarily observed in terms of accuracy.
The change in accuracy remains stable, but some positive
improvements in the accuracy (f-measure) were noted. An-
other observation is that, no single measure can be declared
as a winner for all types of datasets. There are some mea-
sures that have more impact than others.

6. CONCLUSION AND FUTURE WORK

Associative classification is a relatively new paradigm for
classification relying on association rule mining and natu-
rally inherits the most commonly used interestingness mea-
sures, support and confidence. These are not necessarily
the best choice and no systematic study was undertaken
to identify the most appropriate measures from the myriad
measures already used as filters or rankers for relevant rules
in different fields.

This study is to answer the question whether other mea-

sures are more suited for the different phases of the associa-
tive classifier, and an attempt to identify the best measure
for each phase. The results clearly indicate that many in-
terestingness measures can indeed provide a better set of
classification rules (i.e. a drastic reduction in the number of
rules) and a more accurate classifier. However, there was no
single measure that was consistently impacting the rule set
for all datasets tested, even though for each dataset, some
interestingness measure was successful in reducing the rule
set or improving the effectiveness of the classifier. These
measures are introduced for each individual phase. The re-
sults show that the measures that are the best in one phase
are not necessarily the best measures for the other phase.

Another observation is that using the combination of the
best measures in pruning and selection phases does not im-
prove the accuracy of the classifier which means that the best
selecting measure for an original rule set is not the best for
the pruned version of that rule set. This observation shows
that there might exist some rule set characteristics that have
effect on selecting the best measure. Hence, for each pruned
rule set, the appropriate selecting measure should be probed.

All the measures were clustered in different experiments.
Some of the measures behave similarly in all the cases. Hence,
in future work, selecting only one measure from each group
as a representative, is sufficient.

An interesting future study would be to identify the rel-
evant features of a dataset or a rule set that would help
indicate the appropriate interestingness measure to use, and
in this way exploit these features to build a predictor for best
measure to use in the associative classifier given a specific
training set.
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