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ABSTRACT
Over the last two decades, Associative Classifiers have shown com-
petitive performance in the task of predicting class labels. Along
with the performance in accuracy, associative classifiers produce
human-readable predictive rules which is very helpful to under-
stand the decision process of the classifiers. Associative classifiers
from early days suffer from the limitation requiring proper thresh-
old value setting which is dataset-specific. Recently some studies
eliminated that limitation by producing statistically significant rules.
Though recent models showed very competitive performance with
state-of-the-art classifiers, their performance is still impacted if the
feature vector of the training data is very large. An ensemble model
can solve this issue by training each base learner with a subset of
the feature vector. In this study, we propose an ensemble model
Classification by Frequent Association Rules (CFAR) using associa-
tive classifiers as base learners. In our approach, instead of using
classical ensemble and a votingmethod, we rank the generated rules
based on frequency and select a subset of the rules for predicting
class labels. We use 10 datasets from the UCI repository to evaluate
the performance of the proposed model. Our ensemble approach
CFAR eliminates the limitation of high memory requirement and
runtime of recent associative classifiers if training datasets have
large feature vectors. Among the dataset we used, along with in-
creasing accuracy in most cases, CFAR removes the noisy rules
which enhances the interpretability of the model.
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1 INTRODUCTION
With the steady increase in use of machine learning in real-life
scenarios, the importance of classification is de facts increasing.
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Classification is supervised machine learning that labels the data in
different distinct class labels. In the last few decades, myriads classi-
fication algorithms have been developed. Among the classification
algorithms, associative classifier is quite little known. Most state-of-
the-art classification algorithms work in a black box fashion, that
is, the decision process of the model remains opaque. For example,
the performance of deep learning model is very good for many
classification tasks but the model reveals far less information about
the learned parameters and the decision process. Even though it is
possible to get the learned edge weight and the node bias, they are
not interpretable. This becomes troublesome in applications where
it is important to know and understand the decision process, like
medical diagnosis, financial decision making, etc. As machine learn-
ing is becoming popular, the explanation of the decision process of
the machine learning model has also become a point of interest and
with this, the importance of the rule-based classifier is returning.
Associative classifiers are one of those rule-based classifiers which
use association rule mining techniques [1] to discover frequent
patterns in the training data. From these rules, class association
rules are derived and used for the classification task. The test data
is labeled with the class association rules that are generated dur-
ing the training phase. A class association rule is in the form of
𝑋 → 𝑌 where the antecedent X is a conjunction of co-occurring
features and the consequent Y is the associated class label. Several
associative classifiers have been proposed namely CBA [2], ARC
[3], CMAR [4], CPAR [5]. One big advantage of associative clas-
sifiers is the human readability of the rules which are generated
and used for predicting the class label. Thus the decision process
becomes easier to understand. Though the associative classifiers
show competitive performance against state-of-the-art classifiers
and have interpretability, they suffer from the limitation of requir-
ing threshold values, namely support and confidence, which are
dataset-specific.

To solve this limitation, Li and Zaiane [7] proposed Sigdirect
where they used the Kingfisher algorithm [8] to find statistically
significant classification rules. Sood and Zaiane [9] showed SigDi-
rect produces noisy rules which impact the performance of the
predictive model. Thus, they proposed SigD2, a classifier based on
SigDirect with a two-stage rule pruning strategy that removes the
noisy rules, The improvement is promising as it reduces the number
of rules without compromising the accuracy. It was shown that
SigD2 outperforms other rule-based classifiers as well as classical
classifiers such as SVM, Bayesian, C4.5, and even simple neural
networks. However, the performance of both SigDirect and SigD2
is limited in terms of required memory and runtime if the feature
vector of the feature space is large. An ensemble of classifiers each
trained on a subset of the feature space could address this issue.
Random forest[11] is a famous ensemble model which uses deci-
sion trees as base learners and showed competitive results over
the years. Recently, Welke et al. [12] proposed Decision Snippet
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Features where instead of classical max-vote strategy, they mined
small frequent branches as decision snippets from the learned deci-
sion trees of the ensemble. They showed a linear model on top of
the snippets provides competitive results and reduces the model
size.

In this paper, we propose Classification by Frequent Association
Rules (CFAR), to improve the performance of SigD2 in terms of
memory requirement and run time for datasets having a large num-
ber of features without affecting the accuracy. As a base learner,
we consider SigD2 as Sood and Zaiane [9] showed SigD2 outper-
forms other associative classifiers. In our model, instead of using
the classical ensemble approach that is training each base learner
with a subset of the features and predicting the final class by the
max-vote of the base learners, we aggregate all the rules learned
by the base learners and rank the rules based on their frequency of
appearance among the base learners. We then predict the class label
using the frequent rules. We start predicting with the most frequent
rules and gradually add more rules which are less frequent. We
keep adding rules while there is an increase in the accuracy. If after
adding some less frequent rules, the accuracy does not increase, we
stop adding rules and the highest accuracy till this step is reported
as final accuracy. The main contributions of our work are:

(1) Our proposed model CFAR shows better performance in
terms of accuracy compared to SigD2, classical ensemble,
C4.5, Random forest and the decision snippet features (DSF)
algorithm.

(2) CFAR significantly lessens the limitation of SigD2 of high
memory requirement and long runtime for dataset with large
feature vector space.

(3) CFAR uses frequent rules from the base learners which helps
to remove noisy and less important rules. Thus with less
rules the ensemble becomes more interpretable.

The following sections are organized as follows: Section 2 pro-
vides the necessary background and related works, Section 3 de-
scribes the methodology that we follow in our experiments, Section
4 is the evaluation and analysis of the performance of CFAR, and
finally, Section 5 is the conclusion with some future research direc-
tion.

2 RELATEDWORK
Though little known, many researchers worked extensively in the
last few decades on associative classifiers. Apriori algorithm pro-
posed by Agrwal and Srikant[1] first introduced the association
rule mining technique. Further Liu et al. [2] proposed Classification
By Association(CBA) where they use the association rule mining
technique for the classification task. They used an apriori-based
approach to mine class association rules from the training data
and ranked them based on metrics and the rule with the highest
rank is used for the classification task. In CBA, many noisy rules
are generated which affects the performance of the model. Thus in
their subsequent work [13], they attempt to remove the noisy rules.
This approach improves the performance of the classifier by choos-
ing the most accurate class association rules for the classification
task. The success of using association rule mining in classification
tasks grabbed the attention of many researchers. Several initiatives
were taken to improve the performance of associative classifiers.

Classification based on Predictive Associative Rules (CPAR)[5] was
proposed by Yin and Han. CPAR uses a greedy approach to generate
association rules from the training data and evaluate each of the
rules by an expected accuracy. Finally, best k rules are selected from
the generated rules for the classification task. Another approach
to improve the classification by association rule is CMAR (Classi-
fication based on Multiple Association Rules) [4] which extends
the FP-growth [6] method to build an FP-tree for class distribution
association. In this approach, the class association rules are stored
in a special data structure. The generated rules are pruned based
on confidence, correlation, and database coverage. Using multiple
strong association rules with a Weighted 𝜒2 measure, a datapoint
is labeled to the appropriate class.

Antonie and Zaiane [3] proposed another Association rule-based
classifier that they apply for text categorization. They put forward
two different approaches; one, ARC-AC, considering all generated
rules from the whole training set, and one, ARC-BC, where data
from each class is mined separately allowing the handling of unbal-
anced datasets. Another approach, CCCS, proposed by Arunasalam
and Chawla [14] introduces a measure named "Complement class
support" (CCS). The authors claim CCS guarantees a positive cor-
relation between the class label and the generated rules. Antonie
et al. [15] propose a two-stage associative classifier where associa-
tive classification rules are discovered in the first stage and in a
second stage, another algorithm learns how to use those rules for
class prediction. Instead of basing the selection of rules to apply
during inference on some heuristics, they use a neural network to
learn how to predict the best rules to apply. This approach showed
improved efficiency in terms of accuracy.

One limitation of associative classifiers is the rule generation and
the need to evaluate a huge number of rules as there are many noisy
rules among them. To overcome this problem Zaiane and Antonie
[16] performed an extensive study with the focus of reducing the
number of rules without decreasing the accuracy of the classifier.
The authors propose a new pruning strategy to reduce the number
of class association rules. They also propose different heuristics for
selecting rules which can obtain high accuracy for a given instance.
However, it remains that the proper support and confidence val-
ues have to be selected and tuned. This is one major drawback of
associative classifiers inherited from association rule mining. The
performance of the model largely depends on these values. It is
a tedious task to find the proper confidence and support values
for each of the datasets, hampering the adoption of associative
classifiers. To solve this issue, Li and Zaiane [7] propose SigDirect
where they improvised the Kingfisher Algorithm [8] to find the
statistically significant rules for classification, instead of frequent
ones. Their proposed method increases the accuracy of the classifier.
The main contribution of their work is eliminating the necessity of
annoying support and confidence thresholds. However, SigDirect
also has some limitations. Sood and Zaiane [9] showed noisy rules
can be further eliminated by proposing SigD2, a two-stage pruning
technique that can reduce the number of rules without jeopardizing
the accuracy of the classifier and therefore making a learned model
even more practically interpretable.

As we stated earlier, SigDirect and SigD2 suffer from the limita-
tion of high memory requirement and long run time if the feature
vector of the dataset is large, which can be solved by an ensemble
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model where each base learner is trained on a subset of the feature
vector. In an extensive study of ensemble models, Bauer and Kohavi
[17], empirically showed the ensemble models can enhance the
performance of a classifier for most of the classification tasks. But
the classical ensemble models follow the process of training base
learners and taking the vote of the base learners to predict the final
class label. Random forest [11] also follows this architecture but this
affects the interpretability of the model. In recent work, Welke et al.
[12] showed instead of following classical ensemble architecture,
selecting frequent branches from the base learners and making
another simple model using those branches can be efficient both
in terms of accuracy and interpretability. Thus in this paper, we
propose CFAR where we first train each of the base learners with
a subset of the feature vector and generate class association rules.
We then aggregate all the generated rules and rank them based
on their frequency among the base learners, select rules with high
frequency, and make the final prediction using the selected rules.

3 METHODOLOGY
In this section we briefly describe our proposed architecture for the
ensemble model. In the architecture we use SigD2 as base learner
because from the literature we found SigD2 outperforms other
associative classifier in terms of accuracy and number of generated
rules [9]. In our approach at first we tried with classical ensemble
approach. In most of the cases of ensemble, each of the base learner
is trained on a subset of instances. But in our case, we train our base
learners with a subset of the feature vector and all instances, as one
of the limitation of SigD2 is its performance with a large feature
vector size. At first, we experiment with classical ensemble with
random subsampling method. We provide details of this procedure
in the next subsection.

3.1 Classical ensemble approach
In this approach at first, we train 100 base learners each with a ran-
dom subsample of size N of the original feature space. We provide
the process of creating a random subsample in Algorithm 1.

Algorithm 1 Subsample generation by randomly selecting features
Input: features: all features of the feature space; N: Number of
features in each subsample
Output: 100 subsamples of the feature space
1: all_subsamples← []
2: for i in range(100) do:
3: new_subsample← []
4: n← 0
5: while n < N
6: feature← randomly select a feature from features
7: new_subsample.append(feature)
8: 𝑛 ← 𝑛 + 1
9: end while
10: all_subsamples.append(new_subsample)
11: end for
12: return all_subsamples

This classical approach where base learners vote on the output
class label has some limitations. Since the base learners are trained

on different subsets a vote would be biased. Some features which
are selected many times might have a bias on the prediction and
affect the final result. Thus the performance might be hampered.
For this reason, instead of taking the vote of the base learners, we
propose CFAR where we take the rules learned by the base learners
and rank them according to their frequency among base learners. In
the next subsection, we provide a brief explanation of our proposed
model.

3.2 Classification by Frequent Association Rules
One advantage of making an ensemble of Associative classifiers
is that we can collect all the rules learned from the training data
set. These rules are used to label test data to a specified class label.
However, selecting all the rules might include noisy rules which
might affect the performance of the model. To solve this we select
the rules which enhance the performance of the model. For this, we
introduce the term Relative Frequency Ratio(RFR). After collecting
all the rules generated by the base learners, we count the frequency
of the rules. We find the Rule having the maximum frequency that
we note as max_frequency. We calculate the RFR of any rule R by
Equation 1.

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑜 (𝑅) = 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑅)
𝑚𝑎𝑥_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

(1)

To predict the class label, we need to select rules from the gener-
ated rules. We consider a threshold T and select all the rules whose
RFR is greater than or equal to T. The process of selecting rules is
provided in Algorithm 2.

Algorithm 2 Rules selection based on RFR
Input: Rules: all rules generated by base learners; T: Threshold
value to select Rules.
Output: Selected_rules: rules with RFR ≥ T
1: Selected_rules← []
2: for r in Rules do:
3: if RFR(r) ≥ T:
4: Selected_rules.append(r)
5: end if
6: end for
7: return Selected_rules

Unfortunately as depicted on figure 1, there is no optimum value
for T with all datasets. Therefore we design our model in such a
way that the model itself can find the value of T for which we can
get maximum accuracy. To achieve this goal, we outline a 3 step
ensemble classifier. We describe each of the steps below:

3.2.1 Rule generation. In the rule generation phase, we follow the
random sub-sampling procedure and train 100 SigD2 base learners.
We divide the dataset into train and validation data. We take 80%
of the whole dataset as training data and the rest 20% as validation
data. Then again we divide the training data as training and test
data in the ratio of 80% and 20% respectively. To train each base
learner we take a subset of the feature vector of size 30. Since the
Flare dataset already has a feature vector of size 30, we take a subset
of size 15 in the case of Flare. After training 100 base learners with
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Figure 1: Performance of the model for different values of
Threshold T on 10 different datasets

the training data, we gather all the rules generated by the base
learners. We calculate the Relative Frequency Ratio (RFR) for each
of the rules using Equation 1.

3.2.2 Find optimum value for T. To find the optimum value for T,
we try with different values in a linear search fashion. We assume,
the importance of a rule depends on its frequency among the base
learners. A rule being more frequent defines more importance. Thus
while experimenting with different values of T, at first we try with
𝑇 = 1. We select rules from the generated rules using algorithm 2
and predict the class label with the selected rules. In the next step,
we decrease the value of T by 0.1 and with that value we perform a
rule selection and class prediction. In each step, we calculate the
accuracy. We continue to decrease the value of T till we get the best
improvement over the accuracy. If for a certain value of T, there is
no improvement, we stop searching and fix the T value from the
previous step as the optimum T value.

3.2.3 Prediction. The last step is the prediction. From the previous
step we get the value of T which provides best result. We select rules
using that value of T and predict the class label of the validation
data. With the predicted class label, we calculate the performance
of the model. The whole architecture is shown in Figure 2.

4 RESULT ANALYSIS
We use 10 different UCI datasets [18] to evaluate our proposed
model CFAR. Before using a dataset we discretize the numerical
values as stated in [19]. We convert the features to a binary feature
vector. We used the same vector form of discretized values for all
our experiments with all contenders. Thus the results of mentioned
algorithms can be slightly different from their original papers. As
we mentioned earlier, to test our model CFAR, we use 20% of the
dataset to validate our model. We further divide the rest 80% of the
data into train and test data in the ratio of 80% and 20% respectively.
For all other models, we use 80% of the data to train the model and
rest 20% is used as test data.

4.1 Performance evaluation
We compare our model with SigD2 as Sood and Zaiane [9] showed
SigD2 outperforms other associative classifiers, rule-based classi-
fiers, and other state-of-the-art machine learning models. To com-
pare the result with another interpretable model we consider C4.5
proposed by Quinlan [10]. As we are making an ensemble architec-
ture we considered the performance of random forest[11] which
is an ensemble of decision trees. Our idea was motivated by the
work of Decision snippet features (DSF) model[12] so we are also
interested to compare the performance of our model with it. We
also considered the classical ensemble architecture where we used
100 base learners each trained with a subset of the feature vector of
size 30. The comparison in the accuracy of SigD2, C4.5, DSF model,
Random forest, classical ensemble approach, and CFAR is provided
in Table 1.

From Table 1, we can see in 5 among the 10 datasets CFAR has
better performance than other classifiers and ensemble models. The
random forest has better performance than CFAR in 3 datasets
among which in Anneal dataset the margin is very large. In Glass
dataset DSF performs better than CFAR and the margin is also very
large. Another interesting observation in these 2 datasets that is in
Anneal and Glass dataset classical ensemble approach has better
performance than CFAR. That means in these two datasets the
approach of CFAR where we select the rules based on the Relative
Frequency Ratio (RFR) does not perform well. Further analysis
is needed on these two dataset to understand why CFAR is not
performing well. Only in one case, Flare, SigD2 performs better
than all other models. On Average, though very close to DSF, CFAR
has better performance than other models.

Algorithm p-value
CFAR vs SigD2 0.0040
CFAR vs C4.5 0.0019
CFAR vs DSF 0.2303

CFAR vs Random Forest 0.0360
CFAR vs Classical Ensemble 0.0001

Table 2: Statistical result

We also perform a statistical test to understand whether the
improvement in accuracy by CFAR is significant or not. For this,
we use paired t-test from the work of Hsu and Lachenbruch [20].
In the test, our null hypothesis is the improvement in accuracy by
CFAR is not significant. We repeated the whole experiment 20 times
for each of the datasets and calculated the accuracy of each of the
models. Then we calculated the difference in the accuracy for each
pair of the model. With the difference, we calculated the p-value.
This p-value signifies whether the difference is significant or not. If
the p-value is less than the threshold value alpha(0.05) then we can
reject the null hypothesis and say the difference in improvement by
our proposed model CFAR is significant. We provide the calculated
p-value in Table 2. From Table 2, we can say, except for DSF, in
the dataset we used, CFAR shows significant improvement over
accuracy.

Further, we analyze the precision and recall values of the models.
Figure 3 and Figure 4 show the precision and recall values of the
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Figure 2: Proposed model of CFAR: We generate rules by base learners using training data. We apply generated rules on test
data to find the T which provides best performance. With the help of T we select final rules and apply them on validation data
to calculate performance of the model

Dataset #cls #record Feature
Vector
Size

C4.5 RF DSF SigD2 CE CFAR

Flare 9 1389 30 75.54 69.73 78.78 84.39 76.43 79.86
Pima 2 768 36 76.62 67.41 74.92 76.44 78.96 79.22
Glass 7 214 41 62.79 72.09 72.42 48.84 68.13 58.14
Heart 5 303 47 50.82 52.45 52.46 40.98 48.51 57.38

Hepatitis 2 155 54 70.97 78.38 74.19 81.54 76.21 83.87
Wine 3 178 75 91.67 78.78 92.44 92.7 81.29 94.44
Anneal 6 898 67 97.22 98.89 97.78 92.22 88.86 83.33
Horse 2 368 83 78.38 75.67 79.73 75.68 81.25 83.78
Adult 2 48842 95 84.06 84.97 82.53 84.59 81.81 83.31

Ionosphere 2 336 155 88.73 95.78 88.18 90.15 90.77 92.96
Average 77.68 77.42 79.34 76.75 77.22 79.62

Table 1: Accuracy of C4.5, Random Forest (RF), Decision Snippet Features (DSF), SigD2, Classical ensemble approach (CE) and
CFAR

models respectively. From the two figures, we can see CFAR has
a very competitive performance compared to the other models in
terms of precision and recall.

4.2 Memory Requirement
One of our main goals for making an ensemble of SigD2 is to elimi-
nate the limitation of requiring very high amount of memory with
the increase of the feature vector size. We measure the memory re-
quired by the models using the python library psutil. Table 3 shows
the memory requirement for SigD2, CFAR and other contenders.

From Table 3, we can see, in the comparison of memory require-
ment between CFAR and SigD2 has two different scenarios. When
the size of the feature vector is small, the memory requirement
of SigD2 and CFAR are very close. However, with the increase in
feature vector size, the memory requirement of SigD2 increases
drastically while for CFAR the memory requirement remains stable.

Dataset C4.5 RF DSF SigD2 CFAR
Flare 107 132 113 106 105
Pima 103 128 112 102 105
Glass 109 128 112 110 107
Heart 105 129 112 107 119

Hepatitis 103 127 113 113 108
Wine 104 128 112 165 107
Anneal 107 129 113 150 108
Horse 109 128 112 235 108
Adult 195 253 196 257 255

Ionosphere 124 128 113 2519 136
Table 3: Comparison of Memory requirement(MB)
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Figure 3: Precision of C4.5,Random Forest (RF), Decision
Snippet Features (DSF), SigD2, Classical ensemble approach
(CE) and CFAR

Figure 4: Recall of C4.5,RandomForest (RF), Decision Snippet
Features (DSF), SigD2, Classical ensemble approach (CE) and
CFAR

Thus we can say, CFAR eliminates the high memory requirement
of SigD2 in case of a dataset with a large feature vector size.

4.3 Runtime
Another limitation of SigD2 is the runtime: it increases with the
increase of feature vector space. The architecture of CFAR should
also solve that issue as for each of the base learners, we are taking a
fixed-size subset. To understand this, we also measured the runtime
of CFAR and SigD2. The comparison is shown in Table 4. All the
experiments are done on the machine with an Intel core i7 processor
and 16 GB of RAM.

From Table 4, we can see that C4.5, random forest, and DSFmodel
are faster than SigD2 and CFAR in classification tasks. This was
expected. However, between SigD2 and CFAR, the dataset having
a small size of feature vector, SigD2 is faster than CFAR. This is
also expected since CFAR has 100 base learners which are trained

Dataset C4.5 RF DSF SigD2 CFAR
Flare 1.72 0.85 0.17 13.79 27.79
Pima 1.76 0.15 0.10 0.47 28.32
Glass 0.32 0.12 0.32 1.48 26.46
Heart 0.69 0.13 0.34 8.55 67.51

Hepatitis 0.23 0.11 0.08 10.41 26.58
Wine 0.17 0.11 0.07 0.46 9.61
Anneal 2.10 0.14 0.10 7.99 23.75
Horse 0.92 0.13 0.09 32.49 23.33
Adult 13.20 3.19 1.60 263.12 200.79

Ionosphere 1.86 0.12 0.08 1905.44 27.09
Table 4: Comparison of Run time(seconds)

Figure 5: Average accuracy of 9 datasets for different size of
the subset of Feature vector

sequentially. No parallel processing is performed at this stage in
the experiment. Thus for datasets having small feature vector size,
SigD2 is faster than CFAR. When the size of the feature vector is
large, CFAR wins by a significant amount despite the overhead of
the ensemble running sequentially.

4.4 Performance analysis on different sizes of
the subset of feature vector

In our whole experiments with CFAR we always selected a subset
of the feature vector of size 30. This is because from experiments,
we found, the performance of SigD2 to be affected if the feature
vector size is greater than 30. In this section, we conduct an ex-
periment for a different size for the subset of feature vector. We
start the experiment by selecting subset of size 15 and in each step,
we increase the size by 5 until a size of 40. In Figure 5, Figure 6,
and Figure 7 we can see the average accuracy, average memory
requirement, and average runtime of the datasets for different sizes
of subset of feature vector respectively. In this experiment, we ex-
clude the Flare dataset as this dataset has a feature size less than
the required feature size for this experiment. For the same reason,
we also exclude the Pima dataset when we take a subset of feature
vector with size 40.



Classification by Frequent Association Rules SAC’23, March 27 –April 2, 2023, Tallinn, Estonia

Figure 6: Average Memory requirement (MB) of 9 datasets
for different size of subset of Feature vector

Figure 7: Average Runtime (Seconds) of 9 datasets for differ-
ent size of subset of Feature vector

Figure 5 shows an increase of the accuracy with the increase
of the size of the subset of feature vector. In the beginning, the
rate of increase in accuracy is high but with the increase in the
size of the subset, the rate of increase slows down. This shows
that the more features we can bundle in a feature subspace for a
base learner, the more CFAR can take advantage of possible feature
inter-dependence. Figure 6 and 7 show the memory requirement
and runtime increase with the increase of the size of the feature sub-
space. Beyond 30, this increase accelerates. Therefore we conclude
that 30 is a good compromise for a good accurate while considering
memory requirement and runtime.

4.5 Effect of Number of base learners
In our model, we use 100 base learners. We are interested to know
the effect of the number of base learners in CFAR. Thus we tested
the model with a different number of base learners. In Figure 8 we
can see the performance of CFAR for a different number of base
learners. In this experiment, we consider the size of the subset of
the feature vector to be 30 except for Flare dataset where we use
15.

Figure 8: Effect of number of base learners on average accu-
racy of 10 datasets

From Figure 8, we can see when the number of base learners
is reduced the average accuracy is low. With the increase of the
base learners, accuracy increases. Beyond 100 base learners, the
accuracy almost reaches a plateau then decreases. Considering the
runtime there seems no advantage in having an ensemble larger
than 100.

4.6 Interpretability and explainability
The major advantages of the associative classifier is the production
of human-readable rules and by analyzing the rules it is easier to
understand the decision process of the classifier. The associative
classifier is therefore in itself explainable. An ensemble, however,
is not straight forwardly explainable. In the classical ensemble
approach, each of the base learners predicts the class label of test
instances, and the final prediction is determined by amaximum vote.
In the case of the ensemble of associative classifiers, to interpret
the decision process we need to keep track of the base learners who
voted for the final class label and then get the rules from those base
learners. In this process, the number of base learners who voted
for the final class label can be quite large and we need to consider
the decision process of each of the base learners. Along with this,
there can be some rules which have different weights in different
base learners. This way of interpreting results can be difficult and
time-consuming and create huge confusion.

With the CFAR approach, instead of using the max vote strategy,
we collect all the rules and select rules based on their frequency.
This process reduces the number of rules as well as eliminates the
necessity of understanding the decision process of each of the base
learners who voted for the final class label. In Table 5 we provide a
comparative analysis of the number of total generated rules by the
base learners, number of unique rules, and number of rules selected
by CFAR for the classification process.

FromTable 5we can see, for each of the datasets, the total number
of generated rules is very high compared to the selected rules. For
example in Horse dataset, the total generated rules are 1848. But in
the case of CFAR, only 13 rules are selected for the final prediction.
Thus to understand decision process of the classifier we need to
analyze only 13 rules. In Table 6, we provide the rules selected by
CFAR for the final class prediction from the generated rules with
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Dataset #Total Rules #Unique Rules #Selected Rules
Pima 1462 427 8
Glass 2591 511 134
Heart 3121 1202 37

Hepatitis 1272 251 6
Wine 1339 142 33
Anneal 2258 464 19
Horse 1848 568 13
Adult 1946 160 66

Ionosphere 2118 634 78
Average 1993.11 484.33 43.78
Table 5: Number of rules at each stage of the CFAR

their frequency and Relative Frequency Ratio (RFR). From Table 6
we can see it is very convenient to understand the decision process
of CFAR.

Selected Rules Frequency RFR
0→ 0;(0.5277,0.873,-54.379) 40 1
63→ 1;(0.0340,0.889,-6.068) 39 0.975
49→ 0;(0.0894,0.840,-4.528) 33 0.825
1→ 1;(0.3064,0.791,-57.129) 31 0.775
64→ 0;(0.1447,0.944,-13.211) 26 0.65
55→ 0;(0.1191,0.903,-8.601) 25 0.625
60→ 0;(0.1915,0.738,-4.093) 25 0.625
15→ 0;(0.4000,0.718,-8.093) 25 0.625
48→ 0;(0.1957,0.821,-8.635) 24 0.6
54→ 0;(0.1064,0.833,-5.093) 24 0.6
78→ 0;(0.1447,0.919,-11.476) 24 0.6
62→ 1;(0.0681,0.800,-9.304) 24 0.6
12→ 1;(0.0936,0.595,-5.567) 24 0.6

Table 6: Ranked selected rules for final class prediction by
CFAR with their count and RFR. Each rule is in the form
of "Antecedent → Class label;(support, confidence, -ln(p-
value))" where Antecedent is a conjunction of tokenized fea-
tures. For interpretability, tokens are mapped back to fea-
tures (attribute-value pairs)

5 CONCLUSION AND FUTUREWORKS
We propose an ensemble technique Classification by Frequent As-
sociation Rules (CFAR) using SigD2 as base learner where instead
of the classical max voting strategy we aggregate all the rules
generated by the base learners and select frequent rules for the
classification task. An experiment with 10 different datasets shows
CFAR increases the accuracy in most cases. CFAR also eliminates
the limitation of high memory requirement and runtime of SigD2
in case of a dataset having a large feature vector size. In CFAR,
instead of the classical ensemble process, we design the ensemble
in such a way that the decision process remains human-readable
and explainable, and can be understood by analyzing a very small
number of rules.

Along with providing promising performance in terms of ac-
curacy, memory requirement, and run time, CFAR also preserves
interpretability. Understanding the decision process of CFAR is
easier than any other ensemble model. In our model, we use SigD2
as base learner. We can also use other associative classifiers as base
learners in this model. It would be interesting to use other associa-
tive classifiers as base learners and compare their performance. our
study comprises applying CFAR only to tabular data. In the future,
we want to deploy CFAR on text and image data. In our model,
CFAR is a framework where we replaced the max voting strategy
with aggregating the association rules for final prediction. It would
be interesting to explore the same strategy in other interpretable
ensemble models.
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