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Abstract

Communities in social networks may overlap, with some
hub nodes belonging to multiple communities. They may also
have outliers, which are nodes that belong to no community.
The criterion to locate hubs or outliers is network dependent.
Previous methods usually require this information as input
parameters, e.g., an expected number of communities, with
no intuition or assistance. Here we present a visual data
mining approach, which first helps the user to make appro-
priate parameter selections by observing initial data visual-
izations, and then finds and extracts overlapping community
structures from the network. Experimental results verify the
scalability and accuracy of our approach on real network
data and show its advantages over previous methods.

1. Introduction

There has been a recent surge of research on finding
communities in networks, which can be used to represent
various kinds of complex systems in the real world. A
community (orcluster) can be considered a subgraph such
that the density of edges within is greater than the density
of edges between its nodes and nodes outside [1]. Recent
studies have also revealed that network models of many
real world phenomena exhibit an overlapping community
structure, i.e., a node can belong to more than one commu-
nity. The participation of nodes in two or more communities
is hard to manage with classical graph clustering methods
where every vertex of the graph belongs to exactly one com-
munity [2]. This is especially true for social networks, where
individuals can connect to several groups in the network
as hubs. However, in real networks we also have another
node category, which belongs to no community, i.e.,outliers.
Therefore, a typical social network consists of communities,
hubs and outliers. It is essential for community discovery
methods to identify nodes in these three categories, since
the isolation of hubs and outliers can be crucial for many
community-based applications.

Unfortunately, there doesn’t yet exist a precise description
of what a communityreally is. Moreover, the definition
would naturally be different across domains, or even across
different networks of the same domain. Therefore, most
proposed approaches [1], [3], [4], [2], [5] require the userto

describe the communities they are looking for by providing
initial parameters, e.g., community size, density value, etc.
However, appropriate parameters are usually extremely hard
to determine without tedious and repeated testing.

In this paper, we describe ONDOCS (Ordering Nodes to
Detect Overlapping Community Structure). Our visual data
mining approach first generates visualizations of the network
in question by ordering nodes based on their reachability
scores; this helps the user understand the emerging network
structure in order to choose appropriate parameters. After
the initial visualization, selected parameters are used for
extracting communities, hubs and outliers from the network.
Similar visual data mining ideas are applied in [6], [7], [8]
to help users determine parameters for decision tree con-
struction, rule discovery, etc. Our work makes the following
contributions:

• A visual data mining approach to assist the user in find-
ing appropriate parameters to describe the communities
they are looking for.

• A scalable and accurate method to discover communi-
ties, hubs, and outliers in social networks.

The rest of the paper is organized as follows. We discuss
related work in Section 2. Section 3 presents the ONDOCS
approach. We report experimental results in Section 4,
followed by conclusions in Section 5.

2. Related Work

In general, there are two ways to detect overlapping
communities in a network. One natural idea is to first
globally partition the network and then locally expand the
discovered communities to locate overlapping components.
For example, for overlapping community discovery in a
name-entity network, Li et al. [9] generate community cores
by merging triangles (3-cliques) so that one vertex can be
part of different communities if it belongs to several cliques.
Similarly, Baumes et al. [10] initialize community cores
using the Link Aggregate (LA) Algorithm and then refine
the peripheries by an Iterative Scan (IS) procedure. Another
mainstream research direction for this problem is based on
fuzzy clustering. Zhang et al. [11] combine modularity and
a fuzzy c-means clustering algorithm to identify overlapping
communities. Nepusz et al. [4] propose a similarity function



based on membership, and solve the fuzzy community
detection problem as a constrained optimization problem.
Recently, Palla et al. [2] propose the CFinder system to
partition complex networks tok-clique communities, where
k is a given as clique size. Gregory proposes the CONGA
algorithm [1] based on the ”betweenness” score [12] and
later extends it to the CONGO algorithm to improve scal-
ability [3]. He also shows that CONGO provides the same
level of performance as CFinder, on synthetic networks.

While all these methods successfully detect overlapping
communities, some major problems remain. Most methods
do not consider outliers, thus many outliers would be clas-
sified into communities. These methods also intentionally
focus on overlapping communities to the extent they find
or force overlap even for data without such structure. More
importantly, many approaches [1], [3], [9], [2], [11] require
initial parameters that are not only difficult to determine but
also highly sensitive.

3. Our ONDOCS Approach

3.1. Relationship Definition

Originally, ONDOCS is inspired by the OPTICS algo-
rithm proposed by Ankerst et al. [13], where points are
ordered for data clustering. However, unlike their clustering
approach, we do not have a distance measure between nodes.
Since the neighborhood around any two nodes in question is
important in assessing their relationship in social networks,
we define the relationshipR between nodei and j as
follows:

R(i, j) =

∑

x∈Nj
r(i, x) +

∑

x∈Ni
r(x, j)

2
(1)

whereNi is the neighbourhood of nodei, including i itself
and all nodes that connect toi. The similarity between nodei
andj is defined as the average ofR(i → j), representing the
relations fromi to j’s neighbourhood, andR(j → i), repre-
senting relations fromj to i’s neighbourhood.R(i → j) is
defined as the sum of relation scores betweeni and all nodes
in j’s neighbourhood, similarly forR(j → i) with respect
to j and i’s neighbourhood. Next, in order to quantify the
relationshipr(i, j) between nodei and j, we compare the
probability of the event thati and j are connectedin the
original graphG, to a random modelG′, where we keep
only the same node numbern and node degreek1, ..., kn

and leave the rest random. Only if the probability of having
two nodes connected in the random model is low, does
the fact that they are indeed connected show us a strong
relationship. InG′, it is obvious that the probability of node
i having a connection to any other node isP (i) = ki

n−1

(similarly, P (j) =
kj

n−1 ). Here we assumeG′ is undirected
so that the event ofi connecting toj andj connecting toi is
equivalent, thus the probability ofi andj being connected is

the maximum ofP (i) andP (j). In other words, with respect
to i, the probability of selectingj as one ofi’s neighbours
is ki

n−1 . We cannot achieve a higher score unlesskj > ki,
thus the probability of the fact that two nodes are connected
in our model is decided by the node with the higher degree.
Note thatP (i ↔ j) 6= P (i) ∗ P (j) since the two eventsi
connecting toj andj connecting toi are dependent on each
other. Therefore we have

P (i ↔ j) = max(P (i), P (j)) =
max(ki, kj)

n − 1
(2)

We define the relation scorer(i, j):

r(i, j) = Aij −
max(ki, kj)

n − 1
(3)

whereAij = 1 if i and j are connected,0 otherwise. The
generalization for directed or weighted graphs is straightfor-
ward.

3.2. Ordering Nodes to Visualize Networks

Now we generate network visualizations by ordering
nodes based on their relation scores. Given the relationship
functionR, for nodeni, we create a list of nodesli ordered
by their relation toni from high to low. (Note that we can
limit candidate nodes to those which haveR > 0, i.e., they
are connected to or share at least one neighbour withni.) We
define thekth value in this list to belik. Here, our approach
takes one input parameters. However, as we will show in
Section 4,s does not strongly affect the output. In practice,
we usually generate several visualizations, withs ranging
from 2 to 8, and let the user select ans based on their
observations. For a nodeni, we define its community score
Cs to be thesth value in its node listli, i.e., Cs(ni) = lis,
andCs(ni) = 0 if there are less thans nodes in the list. We
define the reachability of nodej with respect toi as

reachs(i, j) =

{

R(i, j) if Cs(ni) > R(i, j)
Cs(ni) otherwise

Intuitively, the parameters represents the expected number
of nodes that one node is similar with in order to be a
member of any community.Cs is the lowest relation score
between nodei and its similar neighbours in one community.
In this way,reachs(i, j) measures the community relation-
ship betweeni and j. It is their direct distance score ifi
and j are far away from each other, and is equal to the
community radius ofi if j is close enough. Therefore, a
decreasing order of the reachability scores (RS) indicates a
node list fori, starting fromi’s most related neighbours to
the least ones.

We present our algorithm for generating node lists ordered
by their RS scores as Algorithm 1. More specifically, our
algorithm creates an ordering of network nodes, additionally
storing a reachability scoreRS(i) for each nodei. It starts
at a given nodenstart and insertsnstart into a max-heap



Algorithm 1 The ONDOCS Algorithm
Input: A social networkG with n nodes andm edges, a
start nodenstart and possibles valuess0, s1, s2....
Output: A list of nodesL with their Reachability Scores
RS for eachs.
1. Sort a node listli for each nodeni, ordered by their
relation score toni, from high to low.
2. For eachs :

Initialize a max-heaph, insertnstart in h with RS = 0.
Select thesth largest element inli for each nodeni as
its community scoreCs(ni).
While (there is still nodes in heaph) :

Pop the nodeα in h with largest valueǫ.
Storeα in Ls with RSα = ǫ.
For all nodesx in lα:

If x /∈ h, insertx into h with reachs(α, x).
If x ∈ h, update its value ifreachs(α, x) is larger.

Update max-heaph.
3. Return listLs with RS values for eachs value.

structureh, which is maintained to store the reachability
of candidate nodes. At each step, the nodej, which has the
highest reachability score inh, is chosen to be the next node
in order and the popped score is stored asRS(j). All nodes
that are inj’s neighbourhood are then inserted intoh with
their reachability according toj, if they are not yet inh.
The value inh is updated if the node is already inh and
its new score is higher. Thenh is updated to maintain its
max-heap property. The algorithm stops after all nodes in
the network are visited and produces a sequence of nodes
with their reachability scores for eachs value, which can be
visualized as a 2D graph by GNUplot [14] (See Figure 2).

The overall complexity of ONDOCS isO(n log n). The
list generation and sort step takesO(cn) where constantc
is the average number of similar nodes for each node. Note
that, based on our relationship function, one node can only
be similar to another if they are connected or share one or
more neighbours. In step 2, there aren insertions to the heap
h and updatingh for each insertion takesO(log n) time in
the worst case. However, as shown in Section 4, the actual
running time of our algorithm is close toO(n).

3.3. Extracting Overlapping Communities

We have generated lists of nodes given specifics values,
where we found that the ordering of the correspondingRS
values has interesting community properties. For example,
if we start from one nodei, we will first visit other nodes in
i’s community in sequence. This is because the reachability
score fromi to these nodes are always higher than nodes
outsidei’s community. Therefore, each community can be
seen as a group of consecutive nodes with highRS scores.
In other words, each “mountain” in the 2D visualization

represents a community. A noticeable drop of subsequent
RS scores after a “mountain” indicates that this community
has ended. The “valley” between two “mountains” represents
a collection of hubs, which belong to several communities
(See Figure 3). For instance, if we start from nodes in
community α, the fact that hubs have neighbours from
different communities makesRS scores of hubs lower than
that of those single-community nodes inα but still higher
than nodes in communities other thanα. Therefore, after all
single-community nodes inα are visited, hubs are next to
follow before nodes in other communities; these form the
“valley” between “mountains.”

As we have discussed in the introduction, there is no
global community definition, thus communities in specific
networks need to be defined by parameters given by the
user. While parameters for previous methods are hard to
determine, our visual data mining approach generates visu-
alizations with differents values first. After the user chooses
the suitable one based on their observations, they need to
further provide two parameters to define the communities
in this network, Community Threshold (CT)and Outlier
Threshold (OT). From the first node as the starting com-
munity, we scan all nodes along the list. One nodeni

is merged into the current community ifRS(ni) ≥ CT .
If CT > RS(ni) > OT , ni is classified as a hub. If
OT ≥ RS(ni), it is an outlier. Since the first node of a
community in the list always has low RS scores, e.g., the
starting node always hasRS = 0, we refine the outlier
and hub nodes by moving any nodeni into corresponding
communities if we haveRS(ni+1) ≥ CT .

To represent the idea that hubs can belong tok commu-
nities, for each hub nodei, we use a vector of “belonging
factors” v = (f(i,1), f(i,2) ... f(i,k)) where each coefficient
f(i,k) measures the strength of the relationship between
nodei and communityk. For every communityCk, we can
quantify the Overall Relationship betweeni andCk as

OR(i,k) =

{ ∑

x∈Ck
R(i, x) if

∑

x∈Ck
R(i, x) > 0

0 otherwise

We then normalize the vector to get the coefficients so
that we have

∑k

x=1 f(i,x) = 1. Therefore, one node can
belong to many communities at the same time, weighted
by the relationship value in the range[0, 1] and the sum of
belonging coefficients to communities is the same for all
nodes in the network, except outliers.

In summary, our approach to the community mining
process is aided by visual data mining. Instead of asking
the user to arbitrarily provide vital initial parameters, we
generate network visualizations so that the user can observe
the emerging community structure before appropriate pa-
rameters can be determined. While parameters can be easily
altered, the impact on the change can be clearly visualized.



Datasets Vertices Edges
Runtime / s

CONGO [3]
CF [2] ONDOCS

h = 3 h= 2
football [5] 180 787 8 2 1 < 1

protein protein [2] 2640 6600 114 11 3 11
blogs [3] 3982 6803 41 8 4 12
PGP [15] 10680 24316 772 104 >20000 62

word association [2] 7207 31784 15922 230 102 161
blogs2 [3] 30557 82301 15148 380 319 269

cond-mat [16] 27519 116181 > 20000 1486 490 544

Table 1. Results on Real World Networks

Figure 1. Algorithm Running Time

4. Experiment Results

Here we evaluate the ONDOCS approach using both syn-
thetic and real world datasets. The performance of ONDOCS
is compared with CFinder [2] and CONGO [3], which are
shown to be two of the most efficient algorithms for finding
overlapping communities [3]. The comparison is measured
by the well known F-measure score and Adjusted Rand
Index (ARI) [17]. All experiments were conducted on a PC
with a 3.0 GHz Xeon processor and 4GB of RAM.

4.1. Scalability

To evaluate the scalability of our algorithm, we generated
ten random graphs of vertices ranging from 10,000 to
500,000 and the number of edges ranging from 20,000
to 1,000,000. The edges are randomly distributed in the
network. Figure 1 shows the performance of our algorithm
on those networks. It clearly illustrates that although the
running time of ONDOCS isO(n log n), in the worst case,
our approach actually runs very close to linear time with
respect to the number of vertices and edges.

To further evaluate the efficiency of the algorithm, we
apply all three algorithms on several real-world networks.
Table 1 shows the source of each network, its statistics,
and the execution times for CONGO to compute the en-
tire dendrogram, CFinder (v1.21) to generate solutions for

3 ≤ k ≤ 8 and ONDOCS to create dataset visualizations
for 2 ≤ s ≤ 8. From the table, we can see that ONDOCS
works well overall, while CONGO’s running time increases
dramatically with respect toh and CF’s clique detection
becomes slow on some specific networks. However, for lack
of ground truth with these datasets, to validate the accuracy
of our results we use other real world datasets for which we
have ground truth.

4.2. Accuracy

The first dataset we examine is the schedule for 787
games of the 2006 National Collegiate Athletic Association
(NCAA) Football Bowl Subdivision (also known as Division
1-A) [5]. In the NCAA network, there are 115 universities
divided into 11 conferences. In addition, there are four
independent schools, namely Navy, Army, Notre Dame and
Temple, at this level, and 61 schools from lower divisions.
Each school in the division plays more often with schools
in the same conference than schools outside. Independent
schools do not belong to any conference and can play with
teams in all conferences, while lower division teams only
play very few games. In other words, this network contains
180 vertices (115 nodes as 11 communities, 4 hubs and 61
outliers), connected by 787 edges.

First, the ONDOCS approach generates several visualiza-
tions with differents values for the user to choose. We show
three of them in Figure 2. As we can see, the images are
very similar. The larger thes value is, the smoother the
curves are and the fewer “spikes” we have. Nevertheless, all
three visualizations clearly represent the network structure,
where there are 11 communities, a few hubs and a bunch of
outliers.

The selection of parameters is based solely on users’
visual interpretation of the visualized network. First we
choose the visualization withs = 2, where the community
structure is shown in most detail since pair relations are
mostly measured as direct distance. In Figure 2, we note
that nodes in sequence from 120 to 180 are barely related
to the rest and can be considered as outliers, therefore we



CoreThreshold (CT) OutlierThreshold (OT)

S = 7S = 2

S = 4

Figure 2. Visualization for Football Dataset

Algorithm
115 Nodes in 11 Clusters Plus 4 Hubs Plus 4 Hubs and 61 Outliers
cluster Hub ARI cluster Hub Fm# cluster Hub Fm# Outliers Fm#

CONGO (h=2) 11∗ 92 0.047 11∗ 100 0.038 11∗ 96 0.04 0 0
CF (k=4) 11 6 0.945 12 8 0.167 12 8 0.167 61 1.00

ONDOCS (s=2)
11 0 1.00 11 3 0.857 11 3 0.857 61 1.00

(CT = 4.5, OT = 2)

Table 2. Result Comparison on the Football Dataset. (∗The right cluster number is provided as a
parameter for the CONGO algorithm.) (# Fm represents F-measure score.)

Mexican Politician Dolphin NetworkPolitical Books

Figure 3. Visualization for Other Datasets

setOT = 2. Furthermore, we see a community usually ends
with a RS score between 3 and 5, thus we setCT = 4.5
so that all communities are separated. The thresholds are
shown as disconnected lines in the figure.

To evaluate how these algorithms detect overlapping com-
munities, we provide the data to in three different ways. At
first, we only give 115 community nodes and connections
between them, then we measure the accuracy of output
communities by the ARI score based on the ground truth,
which is the conference assignment. Then we add the 4
hubs and their connections into the network. Although these

hubs clearly belong to multiple communities, we do not have
exact ground truth for which communities these hubs should
go. Therefore, we measure the accuracy of the output hubs
by the F-measure score, which is defined as the harmonic
mean of precision and recall. Finally we give the complete
network with communities, hubs and outliers. Table 2 shows
the experimental results for three algorithms. As we can see,
the CONGO algorithm always detects overlaps, even for the
first network where there are only community nodes. Addi-
tionally, it requires the cluster number as the input parameter,
which is usually unavailable for real world networks, and it



still fails to find any outliers. The CF algorithm gives its best
result whenk = 4, where it detects all outliers and finds 12
clusters, which is very close to the truth. However, CF also
finds hubs when there is no overlap and the accuracy of its
overlap detection is low with only a 0.167 F-measure score.
Our ONDOCS algorithm works the best overall. It finds all
outliers and only detects hubs when there is indeed some
overlap between communities. The hub detection accuracy
is not perfect, however, when we look more closely at the
data, we find that the only missing hub team (Temple) plays
half of its games (6 out of 12) with teams from the Mid-
American conference, which explains why it is classified
into that community.

We also apply our algorithm on other real world networks,
including Political Book network [18], Mexican Politician
network [19] and Dolphin network [12]. Although we do not
have overlapping truth for these networks, approximate com-
munity information is provided by previous research: The
political books can be categorized into two big communities,
“liberal,” “conservative” and one small community “neutral”
in between; The Mexican politicians can be classified based
on their backgrounds as “citizen” or “military”; Finally,
the dolphins can be divided into four main groups. Due
to lack of space, we only show visualizations for these
datasets generated by ONDOCS in Figure 3. One can see
that the images correctly depict the approximate community
information we have. AccurateCT and OT values should
be easy to determine by observation.

5. Conclusions

This paper proposes a visual data mining approach to
detect overlapping communities in networks. Our method
first generates lists of nodes, ordered by their reachability
scores. Network visualizations are then provided to help the
user incrementally determine important parameters. Finally,
overlapping communities, i.e., communities, hubs and out-
liers, are extracted based on these parameters. Experimental
results show that our approach not only scales well for large
networks, but also achieves high accuracy for real world
networks. Unlike previous approaches, our method only
detects overlap when overlap exists. Moreover, appropriate
parameters are easy to obtain by means of visual data
mining.
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