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Abstract. Machine learning models are ubiquitous today in most ap-
plication domains and are often taken for granted. While integrated into
many systems, oftentimes even unnoticed by the user, these powerful
models frequently remain as black-boxes. They are black-boxes because
while they are powerful predictive models, it is commonly the case that
one cannot understand the decision-making process behind their predic-
tions. Even if we understand the inner workings of a learning algorithm
building a predictive model, the mechanism during inference is more of-
ten than not obscure. How can we trust that a certain prediction from a
model is correct? How can we trust that the model is making reasonable
predictions in general? Debugging a predictive model is unworkable in
the absence of explanations.
We propose herein a new framework, called BARBE, a model-independent
explainer, that learns a surrogate rule-based model on data labeled by the
black-box. BARBE makes use of an interpretable associative classifier to
create a rule-based model that provides various explanations, including
salient features, associations between features, and rule-based represen-
tations. Our experimental analysis illustrates the effectiveness of BARBE
in generating rule-based explanations for both numerical and text data,
when compared to state-of-the-art explainers. Our study demonstrates
the faithfulness of BARBE to black-box models. The text-based expla-
nations generated by BARBE are more meaningful to show the fidelity
and trustworthiness of the explanation.

Keywords: Machine Learning, Explainable AI, Associative Classifica-
tion, Model Independent Explanation

1 Introduction

Explainable Artificial Intelligence (XAI) has attracted the attention of many
researchers in recent years. This surge in interest is prompted by the need to
obtain explainability in different AI domains. Providing an explanation is indeed
a requirement in many jurisdictions when an AI system is used to make critical
decisions for humans [1], [23]. The objective of augmenting systems with ex-
plainability is to provide supplementary information on top of the main output
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created by them (such as the class label in a classifier). This new information
allows or empowers the user to know why the AI system provided the aforemen-
tioned output. One example is a model trained to detect colon cancer in people
based on their medical records. Researchers later noticed the data included the
name of medical clinics in which patients were admitted later. The presence of
this feature was erroneously picked up by the trained model and had caused a
significant fictitious boost in the performance of the system [26]. In all such cases,
some sort of explainability providing transparency could have helped them avoid
the consequences, consequences that are often far-reaching like contributing to
the distrust of machine learning.

To tackle this issue, various XAI methods have been developed in recent years
that attempt to provide explainability in one way or another. Most effort has
been on attempting to justify or elucidate neural networks since the spotlight is
currently on deep learning. However, there is also an effort for more generic ap-
proaches. For the classification task, in particular, methods have been developed
in which the explanation framework is either independent of the classifier or is
integrated into it. The former approach is called model-independent explanation
(or sometimes called model-agnostic), while the latter is called model-dependent.
One significant advantage of model-independent approach frameworks is that
these frameworks can be added to different classifiers. This addition allows ma-
chine learning enthusiasts to inject some sort of explainability into any existing
classifier and leverage them readily.

One problem with some of the current model-independent approaches is that
they do not provide highly precise explanations. In other words, regardless of
what the “real” explanation is, the user can ask for a fixed number of important
features (e.g., give me top k features relevant to the decision), and the system
then provides k important features accordingly. Additionally, another notable
aspect is to take into account the correlations among input features. Some ap-
proaches, as we discuss in the next section, pay no attention to this aspect. In
our view, this is a critical part in which the end-user should be able to depend
on to better understand the underlying “reasoning” of the black-box model.

In this work, we introduce BARBE, for Black-box Association Rule-Based
Explanation, a model-independent method that explains the decisions of any
black-box classifier for tabular and text datasets with high precision. More-
over, the black-box classifier is not required to provide any probability score
to take advantage of BARBE. Furthermore, BARBE presents explanations in
three alternative forms: 1) the importance score for salient features, which many
methods also benefit from; 2) significant associations between pertinent features;
and 3) the construction of classification rules, which distinguishes BARBE from
other methods. BARBE exploits association rules, a particular kind of rules that
take into account the associations between features, helping users grasp different
underlying potential causes of a decision.

The rest of this paper is organized as follows. We discuss a few of the main
XAI approaches in the next section. Section 3 contains some preliminaries on
associative classification. This section is needed as we take advantage of an as-
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sociative classifier as the core of our work. We introduce BARBE, the main
contribution of this paper, in Section 4. Later, we report the experiments we
conducted in Section 5 and Section 6 to show correctness and fidelity to the
black-box predictions. In this section, we show how BARBE performs and com-
pare it against other methods. We conclude this work in Section 7 and provide
some thoughts about future work.

2 Related Work

Attempts to explain classification decisions are not new. ExplainD is a tool
introduced by Poulin et al. [19] that visualizes the decisions of well-known
classifiers, which helps users understand their behavior during inference. Most
researchers focus on explaining Deep Neural Networks (DNNs), particularly for
image classification, by exposing the internals of the model using methods such as
computing gradients and propagating them back to input to capture important
pixels, which can be presented as the explanation [7], [25] (e.g., Grad CAM [24]).

LIME [21] is a popular model-agnostic method that uses perturbed samples
to train a linear regression model for explaining black-box models. It relies on
the input and output of the model to generate explanations, without knowledge
of the internal structure of the black-box model, and its explanation is a ranked
list of important features for the prediction of each data point.Anchor [22] is an
approach for explaining black-box models that provides a set of salient features
in the form of a single “if-then” rule to overcome the limitation of the linear
model associated with LIME. A weakness of this approach is that it does not
reveal the associations among features. Also, in contrast to LIME, it cannot
provide any relative feature importance scores anymore.

Guidotti et al. introduce LORE [6] that takes advantage of rules for pro-
viding explanations. In their method, they create a neighbourhood around the
instance using a Genetic Algorithm. Moreover, they enforce the data point se-
lection algorithm to choose at most half of the data points from the class of
the original data point. Note that while data points are created by the genetic
algorithm, the class labels are obtained by querying the black-box model. With
the labeled synthetic data points they train a decision tree. They take advantage
of the decision tree to produce two types of rules; a single decision rule, and a
set of counter-factual rules.

Pattern Aided Local Explanation (PALEX) is another method proposed to
provide explanations for black-box models. In their method, Jia et al. [10] sug-
gest a set of patterns as the explanation using FP-Growth algorithm [9]. Their
method, however, requires defining a few hyper-parameters such as minimum
support, and minimum growth ratio thresholds as well as the probability score
provided by the black-box model. Alternatively, LACE [17] directly learns an as-
sociative classifier by exploiting the nearest data points in training data. Their
method, however, requires the training data to be available, and this may not
always be realistic. Additionally, the sparsity of the training data in that neigh-
bourhood, can have a substantial impact on the performance of their system.
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CoSP (Co-Selection Pick) is a recent framework proposed by Meddahi et al. [15],
which aims to provide global explainability for black-box machine learning mod-
els. It does not explain a specific prediction but piggybacks on an existing ex-
plainer to co-select the most important test instances and features of the model
as a whole. The framework selects individual explanations based on a similarity
preserving approach, achieving a co-selection of instances and features. Unlike
submodular optimization methods, CoSP considers the problem as a co-selection
task and can be applied in both supervised and unsupervised scenarios with sup-
posedly any local explainer. In their paper they used LIME.

3 Associative Classification

Rule-based classifiers, such as Ripper [4] or SigDirect [11], generate easily inter-
pretable models by learning classification rules of the form “If condition Then
class”. Being known as transparent classifiers, they use attribute-value pairs as
the antecedent and a class label as the consequent. During inference, applica-
ble rules are selected based on whether their antecedent matches the instance’s
features, and a heuristic is used to assign the consequent as the prediction.

Associative classifiers learn their classification rules by applying association
rule mining, a canonical task in data mining on the data after modeling the
training data into transactions, each transaction being a set of attribute-value
pairs and the class label. The rules are conjunctions of feature-values implying
a class label: f1, and f2, and f3, and f4, and ..., fn → class1.

Associative classifiers have, for the most part, after the rule generation, a
rule pruning phase to weed out redundant and noisy rules, and this is where
the various approaches differ, in addition to the heuristics used to select rules at
inference time. The most recent associative classifier approach that outperforms
all preceding algorithms is SigDirect [11], which we take advantage of in our
framework BARBE. The authors of SigDirect showed that not only did their
algorithm outperform the other associative classifier contenders in accuracy on
various datasets, it also generates a classification model with significantly less
rules. Having fewer and more accurate rules is particularly pertinent for provid-
ing explanations in BARBE. Another advantage is the lack of cumbersome pa-
rameters. With other associative classifiers like CBA [13], CMAR [12] or ARC [3]
hyper-parameter tuning is required. They heavily rely on support and confidence
thresholds which are notoriously difficult to assess. SigDirect uses instead sta-
tistical significance to appraise rules.

SigDirect uses an Apriori-like strategy to first generate the rules and then
leverage a new instance-based approach for the pruning step to only keep rules
with the highest quality [11]. Similar to Apriori [2], it expands one level at a time
but uses the Kingfisher algorithm [8] to find globally optimum, non-redundant
dependencies with a scalable branch and bound approach with supplementary
pruning by means of Fisher exact test and a P-value for statistical significance.
Therefore we use SigDirect, a strong interpretable rule-based classifier that gen-
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erates a minimal number of statistically significant classification rules, as the
core of our model-independent explanation framework.

4 BARBE: Black-box Association Rule-Based
Explanation

4.1 Shortcoming of other methods

Take what LIME generates for the text “A movie where tensions build and
conflicts arise” as shown in Figure 6A. The number below each feature is simply
the “importance scores” used for ranking. For example, 0.10 for movie and 0.06
for conflicts highlight that movie has slightly higher importance than conflicts
in making the sentence negative. This leads us to the conclusion that only the
order among features matters to the users and not the numbers generated in
the explanations. Sine LIME uses a weighted loss function for its linear model
that also benefits from regularisation, it is likely that the instances which are
not in the very close proximity of the original instance would be misclassified
by this linear model, thus providing wrong explanations to the user. Ribeiro et
al. [22], the same authors of LIME, also point out the fact that features are taken
independently (see example in Figure 6B). They introduce Anchor to overcome
this issue. In their new method, an explanation is a set of features that whenever
they co-occur, the class label is determined with a 95% confidence. This Anchor
essentially resembles a rule (with a high confidence threshold of 95%).

The authors of LORE [6] benefit from the idea of using a set of counter-
factual rules as the explanation in their method as well. Despite the fact that
these methods, to some degree, overcome the problem mentioned above, one
issue remains: is there always only one set of correlative features (and hence
one reason) behind the final outcome of the model? What if there were multiple
sets of correlative features that independently derive the final conclusion of the
system [16]. Therefore an explanation should not solely focus on independent
features or one unique set of associated features but on possibly a set of causes.
Hence the interest in an associative classifier that can provide a set of rules as
an explanation.

To overcome the above shortcomings, we introduce Black-box Association
Rule-Based Explanations or BARBE. Our method, unlike LIME, provides a set
of rules as the explanation, where not only do rules provide users with important
features (what LIME does), but also takes care of the associations among them
(what LORE and Anchor do). In addition, since we provide multiple rules as an
explanation, we can hint at multiple causes that have led to that decision by the
system, something that the aforementioned methods are unable to provide. Note
that using a decision tree (in systems like LORE [6]) the path in the tree leading
to the predicted label results in a single applicable rule which constitutes only
one unique cause.
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4.2 Explanations by BARBE

BARBE generates a descriptive model learned on data labeled by the black-box
and provides as the explanation a subset of rules from the model that apply to
the instance for which the explanation is expected. From this set of rules and
their individual measure of confidence and significance, BARBE can provide an
ordered set of important features as an alternative way of providing explanations.
This allows the users to have the choice to look at these two types and get a
better understanding of the underlying causes. Moreover, as mentioned earlier,
each rule in addition to the items in its antecedent and the class label, comes
with added information such as its confidence, support value, and p-value. Not
only does this provide an alternative means for users to comprehend black-box
models, but it also opens the door for researchers to conduct comparisons with
other techniques such as LIME.

Figure 1 shows an example of what BARBE outputs for an instance of the
Glass dataset [5]. In this example, BARBE produces three rules in which they
not only provide important features to the users but also hint at the associations
among the features. For compactness, the feature number in both the table and
histogram is displayed instead of the full name. The first rule could be written as
“Magnesium = [0.38, 2.13], Aluminum = [1.64, 1.76], Calcium = [7.80, 8.23] →
Vehicle Window”. The second rule could be expressed as “Magnesium = [0.38,
2.13], Potassium = [0.00, 0.61] → Vehicle Window” and the third rule could be
written as “Potassium = [0.00, 0.61] → Vehicle Window”. Here, the rules are
inferring class label 3.

Fig. 1. The explanation provided by BARBE for an instance of the Glass dataset [5].
Here, feature tokens are shown for conciseness. The right side contains the important
features ranked based on their importance. The left side contains important rules with
their support, confidence, and the logarithm of the p-value reported by SigDirect.
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4.3 How does BARBE work?

A high-level representation of BARBE’s activity diagram is shown in Figure 2.
BARBE creates a neighbourhood around the instance to explain with synthetic
data points produced by perturbing the features of the instance. The synthetic
data points are labeled by the black-box which produces a training set for the
SigDirect classifier. The outcome of the training is a set of rules. Rules from the
trained model relevant to the original instance are extracted. Lastly, BARBE de-
rives important features from these rules. BARBE needs to have access to the set
of possible values for each attribute. Moreover, SigDirect, the heart of BARBE,
relies on associations between discrete features. Indeed numerical values of con-
tinuous attributes need to be discretized into intervals. Associative classification
rules demand ordinal features. Therefore, if buckets are not predefined, and in
order to define buckets for continuous data, BARBE needs to access a sample
of data from which the instance to be explained was drawn.

Fig. 2. Coarse representation of BARBE’s framework.

BARBE receives an instance and a label to explain. If there are continuous
features, and buckets for value intervals are not defined, a dataset of data points
is used to discretize numerical attributes and define buckets. These buckets are
then used to perturb the original instance and generate a neighbourhood of
synthetic data points around the original instance. All these points are then
labeled by the black-box after being converted to the input format of the black-
box. For instance, before the labeling by the black-box, a reverse quantization
may be required for continuous values that were mapped to the set of discrete
finite buckets. This reverse transformation creates a normal distribution for each
bucket of a feature and then randomly samples from the distribution. For text
data, BARBE uses a simple strategy to generate a synthetic dataset around the
original instance. BARBE takes advantage of random word removal from the
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sentence. The algorithm takes the input sentence and a number which tells the
algorithm to iterate the process for n times to generate n number of synthetic
text data. It selects a set of random positions within the input sentence and
deletes the words from those positions. The resulting sentence after deleting
random words is returned as the synthetic sentence. This process is repeated n
times to generate n new sentences which form the neighbourhood dataset around
the original text.

The resulting set of classification rules is relevant to the original instance
since the training data is made of instances from its vicinity. The set is further
reduced by selecting the most relevant rules to the instance to explain. The
most important features are thereafter selected from these selected rules. We
have experimented with different metrics to rank the features and found that
summing the supports of all applied rules in which a feature f appears provides
the best accuracy when compared with the features used by the black-box.

5 Experiments

5.1 Experiments Setup

To evaluate our method, we compare the explanation produced by BARBE
against the true explanation. We replace the black-box model with a fully-
transparent model and conduct experiments on this “open box”. The inter-
pretable model we leverage in our experiments is a Decision Tree (DT)3. Not
every DT is interpretable. Its depth should be limited to a reasonable level so
humans can track different paths in this data structure [7]. We limit the depth
of the DT to a specific level k at train time, with k set at 5 in our experiment.

5.2 Experiments’ Metrics

We use Precision, Recall, Fβ-score, and Rank-Biased Overlap (RBO) as our
comparative metrics in the experiments. We make use of F0.5-score in our ex-
periments to put more importance on Precision than Recall. If the explanation
includes only a few of the features which are mostly tagged correctly as impor-
tant (i.e., a case where Precision is high but Recall is low), then the end-user can
still trust the system as this case indicates the black-box model is focusing on
some of the right features. Moreover, since BARBE is presenting a ranked list of
features as explanation, we take advantage of Rank-Biased Overlap (RBO) [27]
to evaluate the order of important features compared to the ground truth expla-
nation4.

In our experiments, we compare the explanation provided by BARBE with
the ground truth explanation obtained from the DT for each instance in the
dataset. We then calculated the metrics for each one. These metrics are later
averaged over all instances used in the experiment and finally reported in Table 1

3 We use scikit-learn [18] for implementing the DT.
4 We used the implementation in https://github.com/changyaochen/rbo.
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and Figure 3 in the next section. All results are averages for 100 experiments of
explanation evaluations.

F0.5-score RBO

dataset LIME Anchor BARBE LIME Anchor BARBE

Glass 0.736 0.534 0.796 0.777 0.287 0.796

Wine 0.554 0.656 0.680 0.314 0.484 0.416

Hungarian 0.483 0.508 0.570 0.776 0.264 0.427

Poker 0.666 0.331 0.637 0.353 0.713 0.368

Breast 0.633 0.497 0.715 0.300 0.246 0.332

Image 0.566 0.570 0.852 0.483 0.321 0.500

Magic 0.596 0.729 0.712 0.684 0.835 0.515

Vowel 0.526 0.683 0.840 0.671 0.444 0.675

Hepatitis 0.432 0.492 0.340 0.106 0.218 0.055

WPBC 0.489 0.536 0.642 0.543 0.594 0.606

WDBC 0.468 0.131 0.494 0.228 0.056 0.320

Average 0.559 0.515 0.662 0.476 0.406 0.455

Nb. Wins 1/11 2/11 8/11 1/11 4/11 6/11
Table 1. F0.5 and RBO for different methods and datasets with sample size at 5, 000.

5.3 Comparison with Other Explainers

We choose LIME and Anchor to compare with BARBE through different exper-
iments with an interpretable decision tree disguised as a black-box. We exploit
11 different UCI datasets [5] (Table 1) to conduct these experiments where the
results we report are averages over five runs with different random seeds. In Fig-
ure 3, we provide Precision, Recall, and F0.5-score for all data points that the
method has predicted the class label correctly when the generated sample size
around the instance increases from 1,000 to 5,000. For lack of space, we report
here the results of the average for all 11 datasets.

To estimate the faithfulness of LIME, we examine its prediction score. Be-
cause the regression model is trained on values originating from a probability
space, we can expect the regression model to generate a number in the same
domain. Additionally, for the original point, if the interpretable model is trained
properly, the predicted value should be close to 1. If the score, however, is be-
low 1

n , where n is the number of classes, that explanation is not faithful, and
thus we do not include the incorrect case. Our criterion generously considers the
outcome of LIME’s regression model faithful, since most instances would belong
to the target class and thus their probability score should be close to 1, yet,
we observe BARBE providing competing results throughout our experiments.
Anchor, however, does not rely on any interpretable model, and therefore, we
are not able to determine its fidelity with the ground truth. Consequently, we
assume in our experiments that all its explanations are faithful, and as a result,
we include all instances of Anchor in the evaluation.
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We also report the F0.5 and RBO for the three methods and for all the
datasets in Table 1 where the sample size is 5, 000.

Fig. 3. Performance of LIME, Anchor, and BARBE.

In terms of F0.5-score, BARBE displays the best results for all datasets but
two, for which it was still a good contender. This good performance of BARBE
is mainly due to the very high Precision. It was able to pinpoint correct features
as per the ground truth. Moreover, LIME had typically higher Recall as LIME
ranked all available features and therefore would rarely miss relevant ones. In-
terestingly, BARBE outperforms Anchor in not only for the F0.5-score, but also
Precision in most datasets, even though Anchor depends on a high precision
rule to explain an instance. Moreover, the results demonstrate that BARBE has
a better capacity to order the importance of features. In more than half the
datasets, BARBE gives a betterRBO score, followed by Anchor which beats
LIME in terms of arranging the discovered salient features by importance.

5.4 Faithfulness to the Black-Box

To show the real importance of the features claimed important by BARBE on the
decision of the black-box model, we make changes to the values of those features
and request the black-box to do another classification. The more those changes
are significant, the higher the chance that the black-box flips its decision. This
is illustrated in Figure 4. We changed the value of the most important features
by 1 standard deviation up to 2 standard deviations for 100 randomly selected
data points from the Pen Digits dataset of UCI repository and classified by a
neural network with 2 hidden layers as a black-box. The accuracy clearly and
steadily drops as we increase the extent of the change which indicates that the
features highlighted by BARBE are indeed the influencers for the black-box.

6 Experiments on BARBE for Text

In this section, we discuss the settings under which we conduct experiments
to evaluate BARBE for text. Our goal is to develop a framework that can be
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Fig. 4. Impact on Accuracy of changing values of important features.

employed not only on tabular datasets but also on text datasets. For text data, we
demonstrate the efficacy of BARBE for binary classification tasks in this paper.
We choose the IMDB movie review dataset [14] for the binary classification task
since it is widely used in the literature for text classification.

6.1 Results

BARBE uses the data labeled by the black-box model to train a descriptive
model that generates a set of rules as the explanation. Each rule has a support,
confidence, and statistical significance value associated with it. The rules corre-
spond to the features in the data which constitute the set of important features
as the form of explanation. We have used support vector machine (SVM) as the
underlying black-box and trained it with the IMDB movie review dataset. TF-
IDF [20] has been used to convert the text into features in BARBE. When the
black-box is ready, we use the neighbourhood generation process as discussed
in Section 4.3 to create the synthetic dataset. This dataset once labeled by the
black-box is used by BARBE to generate the rules in the form of explanation.
Figure 5 shows the result generated by BARBE for a sentence with negative sen-
timent as labeled by the black-box. The sentence depicted in Figure 5A contains
words that have been highlighted with a color gradient of red for negative words
and green for positive words. Figure 5B depicts the rules generated by BARBE.
Here, BARBE generates a total of 5 rules for this sentence to identify the most
important features. The important features are highlighted from strong red to
light red for negative and strong green to light green for positive ones.

It is evident from the figure that the words “conflicts” and “tensions” are the
two negative words that are responsible for labeling the sentence as negative by
the black-box model. It is noteworthy that BARBE generates a set of rules, not a
single rule, and each rule contains a set of words. For the sentence of Figure 5A,
BARBE generates “conflicts arise” as the association rule that essentially has
semantic context in the sentence. “conflicts arise” has more semantic significance
than the word “conflicts” only. The three other rules generated by BARBE are:
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“tensions”, “movie”, and “build” as shown in Figure 5B. It is important to note
that the word “build” has been detected as a feature having a positive label here.
With 31.01% confidence, this rule has a positive label meaning this rule has little
impact on making the sentence positive. Thus, BARBE not only identifies the
rules that explain the negative sentiment of the sentence but also highlights
the rules that may contribute slightly to the sentence being positive. Each rule
has its support, confidence, and the logarithm of statistical significance values
shown in the table in Figure 5B inside brackets. BARBE represents the black-
box prediction probabilities as depicted in Figure 5C. In Figure 5D, the vertical
bar chart showcases the most important features based on their frequency within
the rules, along with the corresponding weighted confidence value. It is evident
from this figure that the word “conflicts” and “tensions” are the most important
feature whereas “movie”, and “arise” are the least important ones.

We also demonstrate the explanation obtained by BARBE for a sentence
having positive sentiment. Figure 5E presents the sentence. BARBE generates 5
rules to explain why the sentence has been labeled as positive by the black-box
model as shown in Figure 5F. The words “wonderful” and “success” are enough
to justify the sentence as positive. Figure 5G is the prediction probabilities of
the black-box model and Figure 5H highlights the most important features in
terms of their frequency weighted by the confidence values within the rules.

6.2 Comparison with Other Explainers

We compare the explanation generated by BARBE with LIME and Anchor for
the text dataset. LIME for text differs from LIME for tabular data in terms of
the neighborhood data generation methodology. Starting from the original in-
stance, new instances are created by randomly removing words from the original
instance. There is a major drawback here. While generating such neighborhood
instances, LIME creates a large number of empty sentences as we explore the
neighborhood generation algorithm of LIME. An empty sentence does not make
any sense when it is used to be labeled by the black-box model. On the other
hand, Anchor deploys a perturbation-based strategy to generate local explana-
tions for predictions of black-box model.

Figure 6 illustrates the explanation generated by LIME and Anchor for the
sentence “A movie where tensions build and conflicts arise”. LIME highlights the
feature “movie” as the most important word for making the sentence negative. It
provides fewer weights to “tensions” and “conflicts”. The word “movie” cannot
justify the decision of the black-box alone with such a significant weight of 0.10.
Besides, there is no association within the features generated by LIME. LIME
provides less significance to “tensions” and “conflicts” whereas BARBE provides
higher significance to them (see Figure 5). Moreover, BARBE discovers the rules
containing a set of features e.g. a conjunction of features that makes more sense
when explaining the decision of the black-box. All the rules have their support,
confidence, and statistical significance values which are not available in LIME.
On the other hand, Anchor generates only a single feature “conflicts” and treats
this word as solely responsible for making the sentence negative. It misses the
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Fig. 5. The explanation provided by BARBE for two instances of the IMDB movie
review dataset labeled by the black-box model. (A) shows a negative sentence with
features highlighted. Red presents the negative words and green presents the positive
ones. (B) presents the set of important rules with their support, confidence, and loga-
rithm of statistical significance values Found by BARBE. (C) presents the prediction
probability of the black-box, and (D) presents the histogram of important features
ranked by BARBE. Figures E-F present the case for a positive sentence.



14 M. Motallebi et al.

other significant words present in the sentence as BARBE and LIME figure out
in their explanation.

A. Explanation generated by LIME

B. Explanation generated by Anchor

Fig. 6. Comparing the explanation generated by Lime and Anchor for the sentence: “A
movie where tensions build and conflicts arise”. (A) presents the explanation of LIME.
The probabilities on the left of Figure A are the prediction probabilities of the under-
lying black-box model. On the right of Figure A, the features and their corresponding
importance scores generated by LIME are shown in order of their importance. (B)
presents the explanation of Anchor which only depends on the single word “conflicts”

.

7 Conclusion and perspectives

We have presented a model-independent explanation framework based on asso-
ciative classifiers, BARBE, that provides explanations for any black-box clas-
sifier in three forms: a set of ranked salient features that are relevant in the
prediction of an instance; significant associations between features; and a set
of interpretable classification rules that could explain the attribution of a class
label to an instance. Unlike other methods, BARBE does not require from the
black-box anything more than the predicted label for a given input. For a given
input and its imputed label to explain, BARBE creates a perturbed sample
around the input, requests labels from the black-box, and learns from the sam-
ple classification rules using an effective associative classifier. Taking advantage
of the interpretability of the model generated by the surrogate learner, BARBE
can then provide useful explanations. Compared to other prevalent methods
that provide salient features, we have shown that BARBE has a better Preci-
sion, presents a better balance between Precision and Recall via the F0.5 score,
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and ranks better the features as indicated by a respectable RBO score. In addi-
tion, BARBE provides classification rules with associations between the features.
Demonstrating the performance of BARBE on text makes the association rule
more feasible to explain. By providing a conjunction of rules e.g. conjunction of
features, the semantic fidelity is preserved by BARBE.

Associative classifiers are highly accurate but can generate noisy rules, which
can be misleading when used in explanations. Pruning techniques can help ad-
dress this issue, but finding more effective techniques could be beneficial. High
dimensionality is also an issue, and an ensemble of associative classifiers can be
used to partition the feature space. However, a better pruning of the search space
would be an improvement. Associative classifiers are suitable for text categoriza-
tion[3], and using BARBE for text classification explanations is straightforward,
allowing the discovery of n-gram causes like with Anchor.
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