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Abstract—Previous work has shown that machine learning 
algorithms lend themselves to clinical decision-making and are 
a valuable tool for physicians. For clinical data, it is often 
necessary to assign multiple labels to a patient record by 
choosing from a large number of potential labels. A key problem 
in learning from multi-labelled data is how to exploit the 
information contained in the correlations between labels. The 
hypergraph-based multi-label learning method learns from data 
by exploiting the spectral property of the hypergraph that 
encodes the correlation structure of labels. However, the 
problem with this method is the difficulty with which 
interpretations can be made. This is mainly due to its inability 
to recognize the importance of key features in the original 
feature space. Moreover, it is hard to comprehensively capture 
the complex structure of the correlations between labels. To 
overcome these difficulties and improve interpretability, we 
propose an l21-norm regularized Graph Laplacian multi-label 
learning to perform feature selection and label embedding 
simultaneously. In-depth experimental studies, using the 
publicly available Medical Information Mart for Intensive Care 
(MIMIC-III) database, validate the effectiveness of our 
approach. 

Keywords—Multi-label learning, High dimensionality, 
Feature selection, Ensemble classification, MIMIC-III 

I. INTRODUCTION 
With recent advances and the success of machine learning 

models, many researchers have adopted these models for 
predictive tasks, which is a major problem in critical health 
research [1-2]. Clinical medical data consist of multivariate 
time series of observations involving laboratory tests, 
physiological values or electrocardiograms [3-4]. 
Availability of large health care databases, such as Medical 
Information Mart for Intensive Care (MIMIC-II and III) [5-
6], has accelerated research in this area as it provides 

sufficient data and the ability to train and evaluate machine 
learning algorithms, detection of physiological decline, and 
phenotypic classification of a patient [7]. Patient phenotyping 
is a classification task to determine if a patient has a health 
problem [8] and is a popular machine learning application in 
recent years [9-11]. 

Diseases can often co-occur and many patients may suffer 
from other diseases related to the main disease. For this 
reason, we formulate patient phenotyping as a multi-label 
classification problem. In traditional label learning, each 
instance is associated to a single label. For multi-label 
learning task, instances may be associated to more than just 
one label. Various multi-label learning methods have been 
proposed to capture the dependency between labels. For 
clinical data, the difficult problem of classifying multi-tagged 
data is its high dimensionality. In addition, multi-label data 
often has irrelevant and redundant features that hinder the 
performance of multi-label learning. 

The Hypergraph-based Multi-label Learning Method 
(HypergraphMLL) is an alternative solution for 
simultaneously modeling multi-label data and reducing the 
dimensionality of the data space by deriving a latent label 
space [14]. HypergraphMLL captures correlation 
information between multiple labels, using a small subspace 
shared by all labels. The purpose of the Laplacian hypergraph 
multi-label learning method is to capture higher label 
correlations. However, there remain two issues to be solved: 

1) It is usually difficult to make good interpretations and 
conclusions from the results produced by HypergraphMLL 
models. The difficulty lies in the fact that many learning 
methods learn a projection, that is a linear combination 
(compression or summary) of all the original features. It is 
essentially a transformation of the input features into a low 
dimensional space. From a clinical point of view, a disease 



diagnostic model should be able to accurately identify 
biologically significant biomarkers. Relevant biomarkers can 
help detect the early stages of the disease. Therefore, it is 
necessary to do manifold learning and feature selection at the 
same time in order to reduce the negative influence of noisy 
features. 

2) It is difficult to learn complex label correlations 
directly from data samples when the number of labels 
increases [15]. It is well known that exploiting label 
correlations is important for multi-label learning. Existing 
approaches typically exploit label correlations globally. 
However, as the number of labels increases, the correlation 
structure of labels becomes difficult to evaluate directly from 
data samples.  

In order to solve the issues raised above, we reformulate 
the learning problem and use l21-norm [16] on a projection 
matrix to achieve sparsity in rows. This leads to relevant 
feature selection and dimensionality reduction 
simultaneously. In this respect a hypergraph is designed to 
account for multi-labelled data correlations. The proposed 
formulation is obtained by solving a generalized eigenvalue 
problem. Moreover, we propose to combine RAndom k-
labELsets (RAKEL) ensemble with l21-norm regularized 
Graph Laplacian multi-label learning, to exploit potential 
higher-order correlations between multiple instances sharing 
the same label only in the label subset with smaller label size. 
Combined with local label subset-based RAKEL ensemble 
[17], the l21-norm regularized HypergraphMLL is able to 
capture the local instance-label dependencies more 
effectively. 

In summary, the main contributions of this paper are: 
• Combining joint feature selection with sparsity and 

Hypergraph Laplacian multi-label learning into a 
single framework to select the most informative 
features when learning a low-dimensional 
embedding for multi-labeled data; 

• Designing an efficient algorithm for the 
optimization of the proposed non smooth objective 
function associated to the formulation of the 
l21HypergraphMLL model; 

• Combining local label subset-based RAKEL 
ensemble and l21-norm regularized HypergraphMLL 
to capture the local instance-label correlations more 
efficiently. Each component model builds a 
hypergraph and locally trains an l21HypergraphMLL 
classifier based on a small subset of labels, while 
removing the effect of noisy label correlations. No 
previous work simultaneously takes into account 
feature selection and locally complex correlation 
modeling for multi-label learning; 

• Improving traditional Hypergraph Laplacian based 
multi-label learning and outperforming the state-of-
the-art multi-label learning methods on the basis of 
the publicly available MIMIC III ICU data sets. The 
results show that our methods are effective in 
tackling the complex clinical multi-label data with 
curse of dimensionality. 

The rest of this paper is organized as follows. In Section 
2, we present the formulation of Hypergraph Laplacian based 
multi-label learning. We introduce the formulation and 
optimization procedure of proposed l21HypergraphMLL and 

RAKEL-l21HypergraphMLL in Section 3. In Section 4, we 
discuss experiment results and Section 5 concludes the paper. 

II. MULTI-LABEL LEARNING HYPERGRAPH 
The aim of our work is to classify diagnoses of  each 

patient visit (or episode) given multivariate Intensive Care 
Unit (ICU) time series. We formally define the multi-label 
classification problem as follows: let 𝑋 = {𝑥%, … , 𝑥(} 
denotes the space of instances and 𝑌 = {𝑦%, … , 𝑦,} the class 
labels, and 𝑇 = {(𝑥%, 𝑌%), … , (𝑥(, 𝑌()}  the multi-label 
training dataset.  Note that |𝑌| = 𝑙 and |𝑇| = 𝑛. 

In [14], the hypergraph is used to capture the correlation 
information among different labels while higher-order 
correlations are exploited by the HypergraphMLL algorithm. 
The purpose of hypergraph embedding is to find the optimal 
low-dimensional vector representation that maintains the 
original relationship between the data points. The procedure 
of hypergraph Laplacian multi-label learning involves: (1) 
hypergraph construction, (2) Laplacian matrix estimation, 
and (3) low dimensional embedding learning for the 
transformation matrix. 

A.  Hypergraph construction 
Hypergraph is a generalization of the traditional graph in 

which an edge can connect arbitrary non-empty subsets of the 
vertex set. In a hypergraph G = (V, E), V is the vertex set and 
E is the edge set, where each 𝑒 ∈ 𝐸 is a subset of V. Given a 
multi-label dataset, the samples with their labels are 
represented as a single hypergraph G = (V, E). Some concepts 
are introduced as follow: 

𝑑(𝑣) is the degree of a vertex as defined as: 

𝑑(𝑣) = ∑ 𝑤(𝑒):∈;,;∈<                        (1) 

where 𝛿(𝑒) = |𝑒| and w(e) is the weight associated with the 
hyperedge e. 

The vertex-edge incidence matrix 𝐽 ∈ ℝ|@|×|<| is defined 
as 

𝐽(𝑣, 𝑒) = B1					if	𝑣 ∈ 𝑒							0					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                     (2) 

B.  Hypergraph Laplacian estimation 
The Laplacian matrix from a traditional graph is widely 

used for learning from graphs. It is a commonly used 
technique for capturing the relationship among nodes in the 
hypergraph and has been used in spectral clustering. The 
normalized hypergraph Laplacian can be obtained as follow: 

𝐿P = 𝐼 − 𝑆P                                   (3) 

𝑆P = 𝐼 − 𝐿P = 𝐷:
UVW	𝐽𝑊Y𝐷;U%𝐷:

UVW	              (4) 

where De, Dv and WH are the diagonal matrix forms for 
	𝛿(𝑒) ,	𝑑(𝑣) and 𝑤(𝑒) , respectively. 

Laplacian matrix plays an important role in learning.  In 
this paper, we use Zhou’s normalized Laplacian for 
calculating the hypergraph Laplacian. 

C.  Low-dimensional embedding learning 
Based on the hypergraph and Laplacian matrix, the goal 

of the HypergraphMLL algorithm is to learn a low-



dimensional feature transformation W, which is also called 
the projection matrix. 

The formulation of learning a low-dimensional 
embedding through a linear transformation W is: 

 min
\

							𝑡𝑟𝑎𝑐𝑒(𝑊_𝑋_𝐿𝑋𝑊) 
subject to      𝑊_𝑋_𝐿𝑋𝑊 =	 𝐼 ,                (5) 

The aim of the formulation is to encourage the instances 
sharing many common labels to be close to each other in the 
transformed low dimensional space. 

To improve the efficiency of the formulation, an 
approximate hypergraph low-dimensional embedding 
learning formulation is designed as follow: 

𝑊 = argmin			𝐿(𝑊) = ‖𝑋𝑊 −𝑄𝑈‖gh        (6) 

where 𝑈 = 	svd(𝑅), 𝑄, 𝑅 = qr(𝐻), 𝑆P = 𝐻𝐻_ 

The optimization procedure of the approximate algorithm 
is shown in Algorithm 1. 

Algorithm 1: The optimization of approximate 
HypergraphMLL algorithm 
Input: Training data { 𝑋 ∈ ℝ(×`, 𝑌 ∈ ℝ(×`},    

regularization parameter 𝜆;  
Output: mapping matrix 𝑊 .  
1:  Construct 𝐷:, 𝐷;,	𝑊Y,	𝐽 based on 𝑌; 
2:  Similarity matrix 𝑆P ← 	𝐷:

UVW	𝐽𝑊Y𝐷;U%𝐷:
UVW	 ; 

3:  𝐻 ← 𝐷:
UVW	𝐽𝑊Y

V
W𝐷;

UVW	; 
4:  𝑄, 𝑅	 ← 	qr(𝐻); 
5:  𝑈	 ← 	svd(𝑅); 
6:  𝑊 ← min𝐿h(𝑊, 𝜆) = ‖𝑋𝑊 −𝑄𝑈‖gh + 𝜆‖𝑊‖gh ; 

III. AN ENSEMBLE FRAMEWORK WITH L21-NORM REGULAIZED 
HYPERGRAPH LAPLACIAN MULTI-LABEL LEARNING  

A. l21-norm regularized Graph Laplacian multi-label 
learning, l21HypergraphMLL 
In this section, we introduce the proposed model, 

l21HypergraphMLL, which is extended to joint sparse-based 
feature selection and lower dimensional embedding learning 
for modeling the correlation of multiple labels.  

For patients, not all features of the original input space are 
useful in phenotyping. Some are unrelated to the tasks at hand. 
It is generally not known which is the best descriptor of 
discriminant features. Although the multi-label classification 
has attracted a lot of attention in recent years, very little 
research effort has been devoted to multi-label feature 
selection. Sparsity-based feature selection approaches 
provide a solution to this problem by assessing the strength 
of potential correlations between different features. Among 
these approaches, the l21-norm regularization has shown to be 
effective for sparse feature selection. The objective function 
of the l21HypergraphMLL is specified in the following 
optimization formulation: 

min	𝐿h%(𝑊r, 𝜆) = ‖𝑋𝑊 −𝑄𝑈‖gh + 𝜆‖𝑊r‖h%      (7) 

where 𝜆 > 0 is the regulation parameter. 	

The l21-norm regularization term is imposed on W to 
ensure that W is sparse in rows. Each row of W measures the 
importance of i-th feature in the original space. The l21-norm 
regularization automatically selects the most relevant 
features. The optimization Eq.(7) is presented in Algorithm 
2. 

Algorithm 2:  The optimization of l21HypergraphMLL 
Input: Training data { 𝑋 ∈ ℝ(×`, 𝑌 ∈ ℝ(×`},     

regularization parameter 𝜆;  
Output: mapping matrix 𝑊 .  
1: Construct 𝐷:, 𝐷;,	𝑊Y,	𝐽 based on 𝑌r; 
2: Similarity matrix 𝑆P ← 	𝐷:

UVW	𝐽𝑊Y𝐷;U%𝐷:
UVW	 ; 

3: 𝐻 ← 𝐷:
UVW	𝐽𝑊Y

V
W𝐷;

UVW	; 
4: 𝑄, 𝑅	 ← 	qr(𝐻); 
5: 𝑈	 ← 	svd(𝑅); 
6: 𝑊 ← min	𝐿h%(𝑊, 𝜆) = ‖𝑋𝑊 −𝑄𝑈‖gh + 𝜆‖𝑊‖h%; 

B. Ensemble learning classification combined with 
l21HypergraphMLL  
Laplacian multi-label learning captures the correlation 

among different labels globally. However, label correlations 
are naturally local [15]. RAndom k-labELsets (RAKEL) 
algorithm, an effective ensemble method for solving multi-
label classification, is proposed in [17]. RAKEL randomly 
breaks the initial set of labels into a number of small-sized 
label subsets from the original set of labels. These subsets are 
referred to as k-labelsets. In each label subset, the proposed 
l21HypergraphMLL is used to train a corresponding multi-
label learning model. Only the correlation of labels with 
hyperedge for each label in the label subset can be captured. 
Finally, the final prediction of RAKEL is made by voting of 
the l21HypergraphMLL models in the ensemble. The 
pseudocode of the ensemble learning classification combined 
with l21HypergraphMLL is illustrated in Algorithm 3.  

Algorithm 3 RAKEL combined with l21HypergraphMLL 
(RAKEL- l21HypergraphMLL) 

Input: Training data {X∈ ℝ(×t, Y ∈ ℝ(×,} ,    
size of label subset k, number of label subsets m,  
MHSL regularization parameter 𝜆,  BR base 
classifier parameter 𝐶, new instance feature �⃗� ;  

Output: classification result of new instance 𝑌w⃗  .  
1:  {𝑠𝑢𝑏%, … , 𝑠𝑢𝑏z} ← random_k_label (l,k,m); 
2:  for i =1 to m do 
3:        Construct a hypergraph 
4:        Calculate a Laplacian matrix according to Eq. (3) 
5:        𝑊r←compute mapping matrix with 𝑋r,𝑌r,𝜆  

according to Algorithm 2; 
6:        𝑋r ← 𝑋r𝑊r transform training data with 𝑊r; 
7:        𝑋{www⃗  ← �⃗�	𝑊r transform new instance with 𝑊r; 
8:        𝐻r ← Train a base classifier 𝐻r based on  
																											𝑋r, 𝑌r, 𝐶; 
9:        𝑃r%×` ← 𝐻r(𝑋{www⃗ ) label vector based on 𝑠𝑢𝑏r; 

10:  𝑌	www⃗  ← multi-label voting(	{𝑃} , {𝑠𝑢𝑏} ); 
 

In RAKEL, the diversity of classifiers is achieved by 
randomly selecting label subsets. The classification of a new 
instance is achieved by thresholding the average of the binary 
decisions of each model for each label. The pseudocode of 



the ensemble learning classification combined with 
l21HypergraphMLL is illustrated in Algorithm 3. 

IV. EXPERIMENTS 

A. Data 
We evaluate our model on the publicly available MIMIC- 

III ICU database. MIMIC- III includes all patients admitted 
to an ICU at the Beth Israel Deaconess Medical Center from 
2001 to 2012. Table 1 shows some useful statistics of MIMIC 
dataset. In total, we obtain 17×7×6 = 714 features per time 
series.  

Table 1. Statistics for six benchmark datasets used in our experiments. 

Instances Statistics 
Training Val Test Feat. Labels Card. Dens. 

27180 6371 6281 714 25 4.34 0.174 

Table 2. The information of data and phenotype in MIMIC dataset  

phenotype 
Prevalence 

No. % 
Train Val Test 

Essential hypertension 0.453 0.410 0.423 17573 44.1 
Coronary atherosclerosis 
and related  0.347 0.317 0.331 13540 34.0 

Cardiac dysrhythmias 0.346 0.316 0.323 13458 33.8 
Disorders of lipid 
metabolism 0.314 0.286 0.289 12162 30.5 

Fluid and electrolyte 
disorders  0.288 0.276 0.265 11254 28.3 

Congestive heart failure; 
non hypertensive  0.289 0.264 0.268 11220 28.2 

Acute and unspecified 
renal failure              0.232 0.207 0.212 8964 22.5 

Complications of 
surgical/medical care  0.223 0.201 0.213 8695 21.8 

Diabetes mellitus without 
complication  0.209 0.186 0.192 8074 20.3 

Respiratory failure; 
insufficiency; arrest  0.194 0.184 0.177 7566 19.0 

Septicemia (except in 
labor) 0.154 0.146 0.139 5975 15.0 

Pneumonia 0.151 0.135 0.135 5815 14.6 
Chronic kidney disease 0.145 0.132 0.132 5607 14.1 
Hypertension with 
complications 0.143 0.131 0.130 5547 13.9 

Chronic obstructive 
pulmonary disease  0.142 0.128 0.126 5455 13.7 

Acute myocardial 
infarction 0.110 0.103 0.108 4337 10.9 

Diabetes mellitus with 
complications  0.103 0.095 0.094 3988 10.0 

Other liver diseases 0.095 0.091 0.089 3723 9.3 
Pleurisy; pneumothorax; 
pulmonary collapse 0.092 0.090 0.091 3658 9.2 

Shock 0.085 0.075 0.082 3291 8.3 
Acute cerebrovascular 
disease 0.080 0.075 0.066 3079 7.7 

Gastrointestinal 
hemorrhage  0.077 0.075 0.079 3067 7.7 

Conduction disorders 0.078 0.070 0.071 3011 7.6 
Other lower respiratory 
disease 0.055 0.049 0.057 2168 5.4 

Other upper respiratory 
disease 0.044 0.037 0.043 1702 4.3 

Table 1 shows some useful statistics of MIMIC datasets, 
such as the number of instances in the training and test sets, 

the number of features (Feat.), the number of labels, label 
cardinality (Card.) and label density (Dens.). The 25 care 
conditions (labels) are described in Table 2. The feature 
description is shown in Table 3. In total, we obtain 17×7×6 = 
714 features per time series. 

B. Setting 
We evaluate the performance of the competing 

approaches on the basis of five commonly used multi-label 
assessing criteria: Hamming loss, F1-micro, F1-macro, F1-
weighted and Jaccard score (see Table 4). 

We use a validation dataset to tune the hyperparameters. 
The regularization parameter of λ (0.0000001, 0.000001, …, 
0.0001), the labels subset size parameter (3,5,7,10) and the 
ensemble size (13,26,38,51) are optimized. The reported 
results were the best results of each method with the optimal 
parameters shown in Table 5.  

Table 3. The feature set used in our experiment. 

Feature set 
Capillary refill rate 
Diastolic blood pressure 
Fraction inspired oxygen 
Glascow coma scale eye opening 
Glascow coma scale motor response 
Glascow coma scale total 
Glascow coma scale verbal response 
Glucose 
Heart Rate 
Height 
Mean blood pressure 
Oxygen saturation 
Respiratory rate 
Systolic blood pressure 
Temperature 
Weight 
pH 

Table 5. The tuned value of hyperparameters 

Hyperparameters Optimal value 
λ 0.000001 
k 3 
m 38 

C.  Experiment I 
In Experiment I, we assess the impact of the l21-norm 

based feature selection and the performance of RAKEL 
ensemble. A comparison is carried out between our proposed 
methods (ensemble version RAKEL- l21HypergraphMLL and 
single version l21HypergraphMLL), the intermediate method 
RAKEL-HypergraphMLL, and the basic methods, such as 
HypergraphMLL and basic binary relevance (BR) method. 
The binary relevance (BR) [18] splits the multi-label learning 
problem into several binary classification problems using the 
one-against-all strategy. From the results in Table 5, we may 
make the following observations: 

1) Except for the Hamming loss measure, RAKEL- 
l21HypergraphMLL achieved high predictive 



performance compared to both baseline methods: BR 
and single HypergraphMLL methods. 

2) Compared to the l21HypergraphMLL simple model, 
the RAKEL-l21HypergraphMLL offers a better 
performance for all measurements, except for the 
Hamming loss. This result illustrates the contribution 
of the ensemble component to improving the 
performance of the single multi-label learning by 
modelling the local structure of label correlations. 

3) It is surprising that l21HypergraphMLL does not 
improve the performance of HypergraphMLL. 
However, when they are both associated with RAKEL 
(i.e. RAKEL-l21HypergraphMLL) improvement is 
obtained in terms of F1-micro score and Jaccard. This 
demonstrates that exploiting label correlations using a 
subset of random tags improves prediction 
performance in terms of F1-micro score and Jaccard. 

Besides focusing on the classification performance, we 
are interested in assessing the advantages of feature selection 
procedure with l21-norm. Table 6 shows the number of 
features selected by l21HypergraphMLL and RAKEL-l21 
HypergraphMLL models. Both models are able to remove 
some irrelevant and redundant features, while RAKEL-
l21HypergraphMLL selects fewer features than single 
l21HypergraphMLL. This can be attributed to the fact that 
RAKEL-l21HypergraphMLL can identify specific features 
that are important for learning label correlation only on a 
smaller label subset. It appears that the combined RAKEL-
l21HypergraphMLL models, with local learning of label 
correlations, contribute to improve the performance of feature 
selection and classification. The fewer selected features 
improve the efficiency when predicting new instances. 

Table 6. The number of feature selected by both l21HypergraphMLL and 
RAKEL-l21HypergraphMLL (k=3, m=13, λ=1e-6). 

RAKEL-l21HypergraphMLL l21HypergraphMLL 

label 
subset 

no. of feature 
selected 

no. of feature 
selected 

1 504 

663 

2 557 
3 544 
4 500 
5 494 
6 532 
7 498 
8 496 
9 502 

10 514 
11 496 
12 527 
13 512 

D. Experiment II 
We investigate five modern models for the task of multi-

label classification on the MIMIC datasets. The comparative 
results are shown in Table 7. The results confirm the 
advantages of our approach for multi-label data learning. 
More specifically, the experimental results show that the 
proposed RAKEL-l21HypergraphMLL outperforms the state-
of-the-art methods in most cases.  These results reveal several 
interesting points: 

1) Both label powerset (LP) [19] and l21HypergraphMLL 
have the capacity of capturing high-order correlations 

among labels. This can help exploiting the 
relationships of multiple labels more effectively and 
intrinsically. Figures in Table 7 show that adding 
RAKEL can improve l21HypergraphMLL. Moreover 
RAKEL-l21HypergraphMLL outperforms RAKEL-
LP in most cases. The results justify our claim that 
modeling label correlation with hypergraph leads to 
improved performance.  

2) The classifier chain (CC) method has been shown to 
improve the classification accuracy of the BR method 
on a number of regular datasets [20]. However, it does 
not outperform BR without considering the label 
correlation. The CC effectiveness dramatically drops 
when the complexity of the dataset increases. The 
MIMIC dataset is complex with respect to the number 
of labels, cardinality and label dependency. This is the 
reason of the poor performance obtained by CC. 

3) The results in [9] show that the traditional multi-label 
learning including CC, LP, and ML-kNN are less 
performant than BR on the MIMIC dataset. The 
results we obtain for CC, ML-kNN [21] and RAKEL-
LP in Table 6 are in accordance with the observations 
in [9]. Although we find similar results, we don’t agree 
with the reasons provided in [9]. For the MIMIC 
dataset with high dimensional features and complex 
label dependency, it is critical to perform feature 
selection and label modeling locally during the multi-
label learning.   

E. Experiment III 
To investigate the effect of feature selection in our l21-

norm regularized l21HypergraphMLL and RAKEL-
l21HypergraphMLL, we vary the value of λ to control the 
effect of l21-norm. Figure 1 and Figure 2 show the number 
of selected features and the classification performance 
according to the value of λ. 

 
Fig 1. The number of feature selected by l21HypergraphMLL according to λ 
values. The x-axis denotes the values of λ: [1e-7, 5e-7, 1e-6, 5e-6, 1e-5, 5e-

5, 0.0001, 0.0003]. 

       
Fig 2. Metrics on l21HypergraphMLL according to λ values. The x-axis 

denotes the values of λ: [1e-7, 5e-7, 1e-6, 5e-6, 1e-5, 5e-5, 0.0001, 0.0003]. 



Table 4. The description of the metrics used in our experiment. 

Measure Formulation Description 

Hamming loss 
1
𝑛	}

1
𝑙

(

r~%

	}�ℎr� ≠ 𝑦r��
,

�~%

 The fraction of misclassified 
labels 

F1-micro 
2∑ ∑ 𝑦r�ℎr�(

r~%
,
�~%

∑ ∑ 𝑦r�(
r~%

,
�~% + ∑ ∑ ℎr�(

r~%
,
�~%

 F-measure averaging on the 
prediction matrix 

F1-macro 
1
𝑙 }

2∑ 𝑦r�ℎr�(
r~%

∑ 𝑦r�(
r~% + ∑ ℎr�(

r~%

,

�~%

 F-measure averaging on each 
label 

F1-weighted 
1
𝑙 }𝑤𝑒𝑖𝑔ℎ𝑡�

2 ∑ 𝑦r�ℎr�(
r~%

∑ 𝑦r�(
r~% + ∑ ℎr�(

r~%

,

�~%

 F-measure averaging on each 
label by their weighted average 

Jaccard score 
�𝑦��;t ∩ 𝑦���;�
�𝑦��;t ∪ 𝑦���;�

 
the size of the intersection divided 

by the size of the union of two 
label sets 

Table 6. The performance of the four HypergraphMLL methods (The rank is also shown) 

Methods Hamming 
loss F1-macro F1-micro Weighted F1 Jaccard score 

BR 0.2319(3)  0.3512(3)  0.4193(3)  0.4171(3)  0.2512(3)  
HypergraphMLL 0.1631(2)  0.2839(4)  0.4015(4)  0.3638(4)  0.2501(4)  

RAKEL-HypergraphMLL 0.2751(5) 0.3722(1) 0.4483(2) 0.4330(1) 0.2821(2) 
l21HypergraphMLL 0.1560(1) 0.2528(5)  0.3358(5)  0.3126(5) 0.2203(5)  

RAKEL-l21HypergraphMLL 0.2404(4) 0.3659(2) 0.4551(1)  0.4284(2) 0.2871(1)  

Table 7. The performance of the our RAKEL-l21HypergraphMLL compared with four state-of-the-art MLL methods (The rank is also shown) 

Methods Hamming 
loss F1-macro F1-micro Weighted F1 Jacc 

BR 0.2319(5)  0.3512(2)  0.4193(2)  0.4171(2)  0.2512(4)  
CC 0.2082(4)  0.3270(3)  0.4188(3)  0.4020(3)  0.2518(3)  
LP 0.1763(1) 0.1571(6)   0.2668(6) 0.2114(6) 0.1772(6) 

RAKEL-LP 0.1854(3)  0.2965(4)  0.4118(4)  0.3771(4)  0.2574(2)  
ML-kNN 0.1763(1)  0.2390(5)  0.3359(5)  0.3083(5)  0.2109(5) 

RAKEL - l21HypergraphMLL 0.2404(6)  0.3659(1)  0.4551(1)  0.4284(1)  0.2871(1)  
 

V. CONCLUSION  
We combine l21-norm regularized hypergraph Laplacian 

multi-label learning and RAKEL ensemble algorithms to 
perform multi-label classification on medical records of ill 
patients. The unified framework can handle high 
dimensionality and the local complex correlation structure of 
labels, simultaneously. Experimental results indicate that the 
classification performance of RAKEL-l21HypergraphMLL 
compares favorably with that of other state-of-the-art 
approaches over multiple evaluation measures. These 
promising results support our contention that modeling label 
correlations with hypergraph leads to improved performance. 
In a future work we will extend our approach to the dynamic 
modelling of patient’s health state from its longitudinal 
electronic medical record. Extensions include nonlinear 
models with kernel mapping or deep learning. 
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