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Abstract—Machine learning algorithms and multivariate 
data analysis methods have been widely utilized in the field of 
Alzheimer's disease (AD) research in recent years.  Predicting 
cognitive performance of subjects from neuroimage measures 
and identifying relevant imaging biomarkers are important 
research topics in the study of Alzheimer’s disease.  Multi-task 
based feature learning (MTFL) have been widely studied to 
select a discriminative feature subset from MRI features, and 
improve the performance by incorporating inherent 
correlations among multiple clinical cognitive measures. It is 
known that the brain imaging measures are often correlated 
with each other, and AD is closely related to the inter-
correlation among different brain regions.  However, the multi-
task based feature learning (MTFL) method neglects the 
inherent correlation among brain imaging measures. We 
present a novel regularized multi-task learning approach via a 
joint sparsity-inducing regularization to effectively incorporate 
both a relatedness among multiple cognitive score prediction 
tasks and a useful inherent correlation between brain imaging 
measures by exploiting correlations among features. It allows 
the simultaneous selection of a common set of biomarkers for all 
tasks and the preservation of the inherent structure of imaging 
measures. The reported experiments on the ADNI dataset show 
that the proposed method is effective and promising. 

Keywords—Alzheimer’s disease, Regression model, Multi-task 
learning, Magnetic resonance imaging, Biomarkers discovery 

I. INTRODUCTION 
Alzheimer’s disease (AD) is a degenerative brain disease, 

which mainly affects memory function, ultimately 
culminating in a dementia state characterized by the 
progressive loss of memory and cognitive functions[1-2]. 
The accurate diagnosis of Alzheimer’s disease (AD) plays a 
significant role in patient care, especially at the early stage, 
because awareness of the severity and risk of progression 

allows patients to benefit from early intervention, 
symptomatic treatment for cognitive losses as well as 
associated behavioral problems before irreversible brain 
damages are shaped [3].  

Many machine learning approaches have been developed 
to automate detection, diagnosis and quantification of disease 
[4-6]. The standard diagnosis of AD patients typically begins 
with a series of neuropsychological tests. Many cognitive 
measures have been designed to clinically evaluate the 
cognitive status of the patients and used as important criteria 
for clinical diagnosis of probable AD, such as Alzheimer’s 
Disease Assessment Scale cognitive total score (ADAS) and 
Mini Mental State Exam score (MMSE). The regularized 
multivariate regression model is adopted to associate the 
imaging markers and the cognitive measures [7-10]. 
Nowadays, to improve the generalization performance of the 
predicative regression model, multi-task learning methods 
are developed to predict the cognitive outcomes by 
incorporating inherent correlations among multiple clinical 
cognitive measures [7-10]. Multi-task learning is a learning 
paradigm which seeks to improve the generalization 
performance of a learning task with the help of some other 
related tasks [11]. To overcome the curse of dimensionality 
in the clinical data from the neuroimaging, the most recent 
studies [10,12,13] employed sparsity inducing regularized 
multi-task models with l2,1-norm [14] to identify the features 
that are relevant to all clinical scores. 

For the existing MTFL methods, a major limitation is that 
it either selects a feature as relevant to all tasks or excludes it 
from all models. It has been shown that the brain regions are 
inter-connected for AD patients, resulting in cognitive 
decline in AD patients. This is very useful to characterize the 
task relationship since strong correlated features are likely to 
have similar model parameters. It motivates us to consider the 



correlation structure in MRI measures. A feature-aware 
regularization is proposed by incorporating the inter-feature 
correlation effects into the MTFL. The feature-aware scheme 
not only allows to improve the performance of multi-task 
learning, but also enhances the understanding of the 
relationships among the features. We can thus employ the 
ADMM optimization method [15] to efficiently solve the 
convex optimization problem of  the proposed formulation. 
In summary, the main contributions of this paper are as 
follow: 

• We propose a new regularization for considering the 
feature structure by flexibly modeling the feature 
correlation. 

• We propose a new feature-aware multi-task learning 
approach via a joint sparsity-inducing regularization 
to effectively integrate the correlation between 
several cognitive score prediction tasks and the 
useful inherent correlation between brain MRI 
imaging measurements. 

• We conduct extensive experiments using data from 
the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) with different multi-task learning settings, 
to demonstrate the effectiveness of our method along 
various dimensions including prediction 
performance on the baseline cognitive outcomes and 
biomarkers identification. 

II. MULTI-TASK FEATURE LEARNING 

A. Problem formulation 
We formulate the prediction of cognitive outcomes 

problem in this paper as follows. Magnetic resonance 
imaging (MRI) provides a chance to directly observe brain 
changes such as cerebral atrophy or ventricular expansion. A 
number of structural neuroimaging studies have shown that 
brain atrophy detected by MRI is correlated with cognitive 
test performance [16-17]. The aim of our work is to predict 
subjects’ cognitive scores (e.g. ADAS, MMSE) using their 
MRI features (e.g. volume, area and thickness) across the 
entire brain. Here the prediction problem is captured by a 
regularized multivariate regression model representing the 
relationships between structural changes in MRI features 
(imaging markers) and the cognitive measures. MRI features 
and cognitive measures (outcomes) are treated as inputs to 
and outputs of the regression model, respectively. Let 𝑿 =
[𝒙%, . . . , 𝒙(]* ∈ ℝ(×-  be MRI features (e.g. the volume of 
hippocampus), where n and p are the number of training 
instances and dimensionality of xi, 𝒀 = [𝒚%, . . . , 𝒚(]* ∈
ℝ(×0, where yi is the target cognitive score for xi and t is the 
number of tasks, 𝑾 = [𝒘%, . . . , 𝒘0] ∈ ℝ-×0, where wh is the 
weight vector for the h-th task. In the regression model 
related to the h-th prediction task, a subject i’s cognitive 
score, under that task, is represented as a linear function of 
the corresponding MRI features. Analytically, this can be 
specified by the following regression equation: 

𝑦4ℎ = 𝒙4*𝒘ℎ + 𝜉4ℎ, 𝑖 = 1,… , 𝑛; 	ℎ = 1,… , 𝑡			(1) 

B. Multi-task learning 
Multi-task learning (MTL) [10] is a learning paradigm 

which seeks to improve the generalization performance of all 

tasks involved. The fundamental hypothesis of the MTL 
methods is to assume that if tasks are related then learning of 
one task can benefit from the learning of other tasks. Learning 
multiple related tasks simultaneously has been theoretically 
and empirically shown to often significantly improve the 
performance. The key of the MTL is how to exploit the 
correlation among the tasks via an appropriate shared 
representation. It is known that there exist inherent 
correlations among different cognitive scores. Analyzing the 
high-dimensional image measures in the ADNI is a 
challenging and poses great difficulties to traditional 
statistical methods.  Since not all the brain regions are 
associated with AD, many of the features are irrelevant and 
redundant. To better exploit the correlation of tasks and 
identify the most important biomarkers from high-
dimensional image measures, multi-task feature learning with 
sparsity-inducing norms are applied on the prediction of 
cognitive score outcomes to produce better performance and 
to learn a shared subset of features.  In the multi-task feature 
learning, the l2,1-norm regularizer imposes the sparsity 
between all features and non-sparsity between tasks, the 
features that are discriminative for all tasks will get large 
weights. The objective function of the l2,1-norm regularized 
MTL (called multi-task feature learning, MTFL) is given by: 

𝑚𝑖𝑛
𝑾

%
@
‖𝒀 − 𝑿𝑾‖C@ + 𝜆%‖𝑾‖@,%                  (2) 

where 	𝜆 is regularization parameter. 

III. FEATURE AWARE MULTI-TASK FEATURE LEARNING (FAS-
MTFL) 

In this section, we introduce the proposed feature-aware 
multi-task learning model to account for both the correlations 
of tasks and the features of the cognitive outcomes. First, we 
introduce feature correlation matrix indicating the inter-
correlation among the features. Then we show how to 
integrate the estimated prior knowledge of inter-correlation 
into the multi-task feature learning process. Finally, we 
present the optimization of the proposed feature-aware multi-
task feature learning algorithm by ADMM. 

A. Feature correlation matrix and graph 
Existing multi-task learning, such as MTFL, exploit only 

the correlation in tasks, neglecting the potentially grouping 
information among multiple neuroimaging measures. 
Motivated by the above observations, we propose a feature 
aware multi-task learning algorithm. Firstly, we construct a 
feature correlation matrix based on each pairwise feature link 
on the training data. We propose to construct a correlation 
matrix to capture the similarity among features. The 
symmetric	 correlation matrix 𝑪 ∈ ℝ-×-  encodes the inter-
correlation among the features.	The correlations correspond 
to the off-diagonal entries of the correlation matrix of the data. 
The estimation of correlation value cml of the m-th feature and 
l-th feature is calculated as: 

𝑐GH =
IJK(𝑿M,𝑿N)
P𝑿MP𝑿N

=
Q[(𝑿MRS𝑿M)(𝑿NRS𝑿N)]

P𝑿MP𝑿N
                 (3) 

Fig. 2 shows the correlation distrubition in all features. It 
shows how different regions of the brain are inter-connected. 



We find that the strength of pairwise feature correlation 
strength is unstable. To build a more stable correlation matrix, 
a threshold technique is applied to connect only highly 
correlated features. Two features are considered as highly 
correlated if their correlation coefficient exceeds a given 
threshold τ. We chose a τ of 0.6 and set reserved correlation 
coefficients to 1. The calculated correlation matrix is shown 
in Fig. 3. The useful connectivity among different brain 
regions can be identified from the estimated feature 
correlation matrix [18-19]. 

 

 
Fig. 2. Distribution of pairwise feature correlation. (The horizontal axis 

denotes the correlation value, and the vertical axis denotes the amount of 
the feature pairs corresponding to the correlation value.) 

 
Fig. 3. The estimated feature correlation matrix 

B. Feature-aware sparsity-inducing regularization 
Given the estimated correlation matrix, we aim to utilize 

the correlation information among the features to help 
improve the performance of MTFL. To achieve this, a 
feature-aware sparsity-inducing regularization (FAS) is 
developed. The regularization of FAS encourages the 
correlated features to take similar values by shrinking the 
difference between them toward zero. If we regard features 
as points and connect feature pairs whose correlation 
coefficients are greater than τ with undirected edges, then we 
can get an undirected graph. The edge connecting a feature 
pair, such as feature 𝑚 and 𝑙, is represented by 𝑒(𝑚, 𝑙) ∈ 𝐸. 
Then the feature-aware sparsity-inducing norm is defined as:  

‖𝑺𝑾‖% = ∑ Y𝑠G,HY[𝒘G − 𝑠𝑖𝑔𝑛(𝑠G,H)𝒘H[
%](G,H)∈Q      (4) 

where 𝒘4 is the i-th row of matrix W corresponding to i-th 
feature coefficients in all tasks. 𝑺 is a normlaized version of 
correlation matrix 𝑪 . 𝑪  is normalized by the number of 
correlation edges, 𝑘 = |𝐸|, and the matrix 𝑺 is defined as:  

𝑠G,H =

⎩
⎪
⎨

⎪
⎧−

IM,N
d
																			(𝑚, 𝑙) ∈ 𝐸,𝑚 ≠ 𝑙

∑ YIM,NY
f
Mgh
MiN

d
												(𝑚, 𝑙) ∈ 𝐸,𝑚 = 𝑙

0																𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (5) 

C. Formulation of Feature aware Multi-task feature 
learning 

To preserve the strength of the correlations among the 
features during modeling the multi-task learning, the penalty 
expressed in Eq. (4) is inserted to the formulation in Eq. (2). 
The objective function of feature aware Multi-task feature 
learning is given in the following optimization problem: 

𝑚𝑖𝑛
𝑾

%
@
‖𝒀 − 𝑿𝑾‖C@ + 𝜆%‖𝑾‖@,% + 𝜆@‖𝑺𝑾‖%      (6) 

We consider prior feature correlation modeling and multi-
task learning simultaneously in an unified framework. The 
objective contains two regularization processes: (1) all tasks 
are regularized by an l2,1-norm; (2) a feature-aware sparsity-
inducing norm is enforced on the features. Incorporating the 
prior knowledge of the correlation can constrain the 
hypothesis space by a joint sparsity-inducing regularization. 

D. Optimization 
In this section, we present a novel solver for problem (6) 

based on the ADMM. It is easy to show that the objective 
function is convex. However, the proposed optimization 
problem is difficult to solve. This is due to the non-smooth of 
the two sparse norms including l2,1-norm and feature-aware 
norm. In order to effectively deal with the non-smoothness 
nature of the two constraints, we propose an optimization 
method built on the Alternating Direction Method of 
Multipliers (ADMM). An effective ADMM-based algorithm 
is proposed for that purpose. 

𝑚𝑖𝑛
𝑾,𝑸,𝑹

1
2
‖𝒀 − 𝑿𝑾‖C@ + 𝜆%‖𝑸‖@,% + 𝜆@‖𝑹‖%	

𝑠. 𝑡.		𝑾 − 𝑸 = 0 ,  𝑺𝑾− 𝑹 = 0                      (7) 
where Q, S are slack variables.  

The augmented Lagrangian of Eq. (7) is:  

𝐿st𝑾,𝑸,𝑹,𝑼(%), 𝑼(@)v =
1
2
‖𝒀 − 𝑿𝑾‖C@ + 𝜆%‖𝑸‖@,%	

            +𝜆@‖𝑹‖% + w𝑼(%),𝑾 − 𝑸x +
𝜌
2
‖𝑾−𝑸‖@	

            +w𝑼(@), 𝑺𝑾− 𝑹x + s
@
‖𝑺𝑾−𝑹‖@(8)	

where 𝑼(%) and 𝑼(@) are augmented Lagrangian multipliers. 

Update W: According to the augmented Lagrangian in 
Eq. (8), the update of W can be carried out by: 

𝑾0z% = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑾

1
2
‖𝒀 − 𝑿𝑾‖C@ + w𝑼(%)0 ,𝑾 − 𝑸0x	

+s
@
‖𝑾−𝑸0‖@ + w𝑼(@)0 , 𝑺𝑾− 𝑹0x + s

@
‖𝑺𝑾−𝑹0‖@ (9)	

𝑾0z%  can be updated efficiently using Cholesky 
factorization. The optimal solution is given by 𝑾0z% =
𝑭R%𝑩0, where  

𝑭 = 𝑿*𝑿 + 𝜌𝑰 + 𝜌𝑺𝑺                                   (10) 
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𝑩0 = 𝑿*𝒀 − 𝑼(%)0 + 𝜌𝑸0 − 𝑼(@)0 𝑆 + 𝜌𝑺𝑹0   (11) 

Update Q: According to the augmented	Lagrangian in 
Eq. (8), the update of Q can be solved as follow 

𝑸0z% = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑸

%
@
[𝑸 − 𝜦(%)[

@ + �h
s
|𝑸|@,%       (12) 

where 𝜦(%) = 𝑾0z% +
𝑼(h)
�

s
. 

The solution to Eq. (12) is computed using the following 
formula:  

𝑸0z% =
G���[𝜦(h)[�R

�h
� ,��

[𝜦(h)[�
𝜦(%)                            (13) 

Update R: According to the augmented	Lagrangian in 
Eq. (8), the update of R can be carried	out	by: 

𝑹0z% = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑹

%
@
[𝑹 − 𝜦(@)[

@ + ��
s
‖𝑹‖%      (14) 

where 𝜦(@) = 𝑺𝑾0z% +
𝑼(�)
�

s
. 

The solution to Eq. (14) is computed using the following 
formula:  

𝑹0z% = 𝑠𝑖𝑔𝑛(𝜦(@))𝑚𝑎𝑥 �Y𝜦(@)Y −
��
@s
, 0�        (15) 

Update 𝑼(%)  and 𝑼(@) : According to the standard 
ADMM, we can get the following updated formula: 

𝑼(%)0z% = 𝑼(%)0 + 𝜌(𝑾0z% − 𝑸0z%)                    (16) 
𝑼(@)0z% = 𝑼(@)0 + 𝜌(𝑺𝑾0z% − 𝑹0z%)                  (17) 

The complete algorithm is described in Algorithm 1. 

Algorithm 1 ADMM optimization of FAS-MTFL 

Require: 𝑿, 𝒀, 𝜆%, 𝜆@, 𝜌, 𝑺 

Initialization: 𝑾, 𝑸, 𝑹, 𝑼(%), 𝑼(@) 

Compute the Cholesky factorization of 𝑭. 

Repeat 

Update 𝑾0z% according to Eq. (9-11). 

Update 𝑸0z% according to Eq. (13). 

Update 𝑹0z% according to Eq. (15). 

Update 𝑼(%)0z% according to Eq. (16). 

Update 𝑼(@)0z% according to Eq. (17). 
Until Convergence. 

IV. EXPERIMENTS 

A. Data  and experimental setting 
Totally, 48 cortical regions and 44 subcortical regions are 

generated. For each cortical region, the cortical thickness 
average (TA), standard deviation of thickness (TS), surface 

area (SA) and cortical volume (CV) were calculated as 
features. For each subcortical region, subcortical volume was 
calculated as features. The SA of left and right hemisphere 
and total intracranial volume (ICV) were also included. This 
yielded a total of p = 319 MRI features extracted from 
cortical/subcortical brain regions (region-of-interest, ROI) in 
each hemisphere. (including 275 cortical and 44 subcortical 
features from 115 brain ROI totally). In this work, the number 
samples n = 788 subjects. 

We randomly split the data into training and testing sets 
using a ratio 9:1. In each of 10 trials, a 5-fold nested cross 
validation procedure is employed to tune the regularization 
parameters. Data was z-scored before applying regression 
methods. The range of each parameter varied from 0.1 to 
1000. The reported results were the best results of each 
method with the optimal parameter. The threshold τ is 
empirically chosen as 0.5. 

For the quantitative performance evaluation, we 
employed the metrics of Correlation Coefficient (CC(𝑦, 𝑦�) =
IJK(�,��)
P(�)P(��)

) and Root Mean Squared Error ( rMSE(𝑦, 𝑦�) =
‖�R��‖��

(
) between the predicted clinical scores and the target 

clinical scores for each regression task. Moreover, to evaluate 
the overall performance on all the tasks, the normalized mean 

squared error (nMSEt𝑌, 𝑌�v =
∑

[������[�
�

�t��v
�
�gh

∑ (��
�gh

  ) and weighted R-

value (wRt𝑌, 𝑌�v = ∑ ��(��,���)(�
�
�gh

∑ (��
�gh

) are used.  

B. Comparision 
In this section, we conduct empirical evaluation for the 

proposed methods by comparing with Lasso, Ridge and 
MTFL. Five cognitive scores are examined including ADAS, 
MMSE, RAVLT-TOTAL, RAVLT-T30 and RAVLT-
RECOG, which are commonly used in modeling the 
relationship between MRI and cognitive performance. The 
average and standard deviation of performance measures are 
calculated by 10 fold cross validation. It is worth noting that 
we use the same training and testing data across the 
experiments for all the methods for fair comparison. The 
experimental results are reported in Table Ⅱ and Ⅲ where the 
best results are boldfaced. A first glance at the results shows 
that FAS-MTFL generally outperforms all other compared 
methods on both metrics of nMSE and CC. Compared with 
the single task learning (Lasso and Ridge), both the multi-
task feature learning methods improve the prediction 
performance by utilizing different intrinsic relationships 
among multiple related tasks. Moreover, FAS-MTFL obtains 
a better performance compared with MTFL, which verifies 
the benefits of utilizing the knowledge from feature 
correlation to assist the traditional multi-task learning.  

TABLE. Ⅱ. Performance comparison of various methods in terms of CC 
and wR on five cognitive prediction tasks. (avg(std)) 

Method ADAS MMSE TOTAL T30 RECOG wR 
Lasso 0.640 

(0.056) 
0.536 

(0.059) 
0.447 

(0.059) 
0.488 

(0.116) 
0.366 

(0.109) 
0.495 

(0.077) 
Ridge 0.529 

(0.061) 
0.331 

(0.059) 
0.347 

(0.133) 
0.330 

(0.140) 
0.240 

(0.125) 
0.355 

(0.080) 
MTFL 0.636 

(0.087) 
0.542 

(0.074) 
0.507 

(0.114) 
0.496 

(0.114) 
0.425 

(0.127) 
0.521 

(0.088) 
FAS-
MTFL 

0.664 
(0.068) 

0.549 
(0.063) 

0.504 
(0.100) 

0.514 
(0.118) 

0.416 
(0.125) 

0.529 
(0.081) 



TABLE. Ⅲ. Performance comparison of various methods in terms of rMSE 
and nMSE on five cognitive prediction tasks. (avg(std)) 

Method ADAS MMSE TOTAL T30 RECOG nMSE 
Lasso 6.919 

(0.365) 
2.190 

(0.090) 
10.465 
(0.670) 

3.489 
(0.229) 

3.741 
(0.316) 

4.773 
(0.442) 

Ridge 8.416 
(0.530) 

2.949 
(0.247) 

12.531 
(1.060) 

4.497 
(0.313) 

4.761 
(0.560) 

7.342 
(1.073) 

MTFL 6.987 
(0.573) 

2.343 
(0.123) 

9.851 
(0.817) 

3.484 
(0.298) 

3.615 
(0.177) 

4.561 
(0.296) 

FAS-
MTFL 

6.675 
(0.472) 

2.173 
(0.098) 

9.801 
(0.654) 

3.426 
(0.243) 

3.612 
(0.253) 

4.372 
(0.328) 

The patterns of correlated features will provide useful 
imaging-based biomarkers. We investigate the effect of 
feature correlation in the multi-task feature learning.  
Through the experiments in the biomarker discovery, the 
amount of selected features with nonzero weight in FAS-
MTFL is more than MTFL on the five tasks since the feature 
aware scheme takes the correlation in features into account. 
Some features with zero weight become nonzero due to its 
strong correlation with other important features. For example, 
the feature of TA-R.Inferiorparietal and TA-
L.MiddleTemporal is correlated (the correlation value is 
0.66). In the experiment of multi-task learning with five tasks, 
the weight coefficient of TA-R.Inferiorparietal is zero but the 
one of L.MiddleTemporal is not zero obtained from MTFL. 
We find the corresponding weight coefficients of both 
features are not zeros in FAS-MTFL, which is the influence 
of the Feature-aware sparsity-inducing norm regularization in 
FAS-MTFL. In addition, Inferiorparietal is associated with 
progression from healthy aging to Alzheimer's disease [21], 
and it is also identified by our FAS-MTFL method as the one 
of the top 10 features. The results demonstrate that feature-
aware sparsity-inducing regularization can amend the major 
drawback of MTFL. 

V. CONLUSION  
In this paper, we tackle multi-task feature learning for 
predicting cognitive outcomes in Alzheimer’s disease by 
exploiting the correlation structure of brain imaging 
measurements. To achieve this, we propose feature aware 
multi-task feature learning, which employs a joint sparsity-
inducing regularization with generalized fused lasso for 
features and l2,1-norm for the tasks. Experiments on 
benchmark datasets show the effectiveness of the proposed 
feature aware multi-task feature learning. The correlation 
matrix plays an important role in feature-aware MTFL. For 
future work, we plan to investigate other types of correlation 
calculation (such as inverse covariance matrix). Moreover, 
we are interested in optimizing the feature correlation during 
the multi-task learning rather than doing prior calculation.  
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