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Abstract—Diabetic retinopathy (DR) is one of the most con-
cerning, common and serious diseases in the ophthalmology
community. Early detection and treatment of DR can signifi-
cantly reduce the risk of vision loss in patients. Traditional DR
automatic classification algorithms rely on the precise detection of
microaneurysms (MA) and hemorrhage (H) lesions. Such lesion
annotation is an expensive and time-consuming process, hence
it is expected to develop automatic grading methods with only
image-level annotations. The lack of the position of MA and H
hinders the traditional supervised algorithms for the accurate
identification. In our work, we formulate the weakly supervised
DR grading as a multi-instance learning problem, and propose a
domain adaptation multi-instance learning with attention mecha-
nism for DR grading. Specifically, labeled instances are generated
by cross-domain to filter irrelevant instances in the target domain.
To model the relationship between the suspicious instances and
bag label, a multi-instance learning with attention mechanism is
developed to acquire the location information of highly suspected
lesions and predict the grade of DR. We evaluate our proposed
algorithm on the Messidor dataset, and the experimental results
demonstrate that it achieves an average accuracy of 0.764 and an
AUC value of 0.749 respectively, outperforming state-of-the-art
approaches.

Index Terms—Diabetic retinopathy, Severity level grading,
Multi-instance learning, Domain adaptation, Attention

I. INTRODUCTION

Diabetic retinopathy (DR) is one of the diabetes-derived
diseases and is the main cause of blindness in both developed
and developing countries. The International Diabetes Federa-
tion (IDF) has reported that the global prevalence of diabetes
in 2019 is estimated to be 9.3% (463 million people), will rise
to 10.2% (578 million) by 2030 and 10.9% (700 million) by
2045 [1]. Early screening and treatment of DR can reduce the
risk of severe vision loss by more than 98% [2]. Moreover,
grading of severity level is a vital activity in DR screening

to diagnose retinal diseases. It is an intensive procedure that
requires a trained workforce to identify and confirm cases as
having pathology abnormality or not as well as differentiate
the levels of pathology. Therefore, a computer-aided diagnosis
(CAD) system based on retinal fundus images would be an
efficient and effective method for early DR diagnosis and
assisting experts.

The task of DR graded diagnosis can be regarded as a
DR multi-classification problem. Microaneurysms (MA) are
regarded as early signs of DR, and as the degree of DR
advances hemorrhages (H) become evident in Fig. 1. The
identification of HMAs (MA and H) is an important measure
of progression of retinopathy in the early stage and may serve
as a surrogate end point for severe change in some clinical
trials. Therefore, the diagnosis and grading performance of
DR highly depend on automatic detection models trained
with sufficient labeled HMA instances [3]. However, manual
labeling of the images is an expensive and/or time-consuming
process, resulting in the lacking of labeled information of
suspicious lesions. The issue hinders the traditional supervised
algorithms to identify the true positive HMA. That is a weakly
supervised learning problem [4]. The lack of labeled data
motivates approaches that go beyond traditional supervised
learning by incorporating other data and labels that might be
available. Multiple instance learning (MIL) is an extension
of supervised learning that can train classifiers using such a
weakly supervised learning problem. MIL provides a learning
framework that allows weak supervision with only image-
level labels and does not require detailed HMA location
information. Specifically, a whole image that is uniformly split
into many patches as instances, called bag, and a single class
label is specified for all instances in a bag [5].



Fig. 1. (a) Early signs of DR, e.g., microaneurysms and hemorrhages in
fundus images. (b) The increasing severity of DR.

In recent years, deep learning techniques, especially con-
volutional neural networks (CNNs), have made remarkable
achievements in image classification [6]. Identifying suspi-
cious region for medical images is of significant importance
since it provides intuitive illustrations for physicians and
patients of how the diagnosis is made [7]. However, MIL with
deep learning lacks intuitive explanation and does not give
any insight into the pathology. The inability to interpret the
prediction model semantically is a well-known shortcoming of
most existing computer-aided diagnosis methods.

In this paper, we present an unified network, namely
Domain Adaptation Multi-Instance Learning with Attention
mechanism (ADAMIL) for grading the level of disease. We
have access to images with instance-level annotations in a
source domain and images with image-level annotations in
a target domain. Though generating artificial instances cross
domains, an instance discriminator is trained to filter irrelevant
instances of bags in the target domain. On the other hand,
we incorporate an attention mechanism into a deep learning
based MIL network to identify the highly suspicious instances
and improve the overall classification performance. This model
is able to predict the severity level of disease and also to
score the importance of each patch in the input image in the
final classification decision. The experimental results show that
the proposed method achieves the best performance compared
with several latest methods. Moreover, the proposed model has
an ability to indicate the location of highly suspicious lesions
in making the image-level decision.

In summary, our contributions are three folds:
• We propose a domain adaptation multi-instance learning

framework for DR grading by exploiting weaker bag
labels and instance labels from an auxiliary domain.

• We incorporate an attention mechanism into the proposed

multi-instance learning framework to generate attention
maps and discover meaningful patches which contain
potential lesions in diabetic retinopathy.

• We conduct sufficient experiments to study our proposed
method on the public Messidor dataset. We have also
conducted extensive ablation studies, which can highlight
the contribution of each key component of our proposed
framework.

The rest of the paper is organized as follows. Section 2
describes our proposed method in details. Section 3 presents
a comparison with state-of-the-art approaches using the Mes-
sidor dataset, investigates the influences of parameters, and
discusses the experimental results. Section 4 presents the
limitations and future directions of our work. At last, this paper
is concluded in Section 5.

II. PROPOSED APPROACH

In this section, we describe the proposed ADAMIL algo-
rithm for DR graded diagnosis in detail. The proposed algo-
rithm takes color fundus images as input and outputs simul-
taneous classification of DR level and localization of highly
suspicious lesion. Fig. 2 illustrates the proposed framework,
which involves three components: domain adaptation, suspi-
cious instance discriminator for filtering, multi-class multi-
instance learning with attention mechanism.

Firstly, preprocessing operations such as slicing and data
augmentation are performed. Then, domain adaptation is con-
ducted by generating new instances across domains. With
both the labeled source instances and the generated instances,
an instance discriminator is trained by pre-training and fine-
tuning to filter the irrelevant instances. Finally, the proposed
multi-class multi-instance learning with an attention mecha-
nism models the relationship between the embedding of the
remained instances and the bag label. The details for each
component are introduced in the following subsections.

A. Domain Adaptation

In practice, the lesions may be collected from multiple
domains with different distributions. In order to mitigate the
domain gap, we achieve a progressive domain adaptation
by fine-tuning the instance discriminator with the artificially
generated samples by CycleGAN [8]. The source domain is
represented by DS = {(xs

1, y
s
1), . . . , (x

s
Ns , ysNs)}, the target

domain is represented by DT =
{
(Xt

1, y
t
1), . . . , (X

t
Nt , ytNt)

}
.

In our work, the Messidor dataset is chosen as our target
domain and the IDRiD dataset is chosen as our source domain.
Owing to the different image sizes, the IDRiD and Messidor
fundus images are resized to 1072 × 712 and 1440 × 960
without causing geometric distortion to reduce the influence
of the image size on transfer learning (TL). Fig. 3 shows
the structure and transfer process of the CycleGAN model.
The model is composed of two generators G and F , two dis-
criminators Qs and Qt, and provides two mapping functions
G : S → T and F : T → S. G and F complete the image
translation from DS → DT and DT → DS , respectively. The
advantage of CycleGAN is that it allows each input image to



Fig. 2. An outline of our deep ADAMIL algorithm for DR multi-classification, where the DensNet-121 network structure contains M = 4 dense blocks,
N = {12, 24, 48, 32} composite layers and k = 32 growth rate.

be converted into a target domain and then be reconstructed to
the original domain. Our goal is to learn a mapping function
between DS domain with {xs

i}N
s

i=1 and DT domain with xt

from {Xt
i}N

t

i=1, where xs
i ∈ xs and xt

j ∈ Xt. We denote the
data distribution as xs ∼ pdata(x

s) and xt ∼ pdata(x
t), as

well as the number of samples as Ns and NT . Qs aims to
discriminate between image xs and translated image {F (xt)},
and vice versa.

Fig. 3. The structure of CycleGAN model. G and F are different generators
with the same network structure whereas Qs and Qt are also different
discriminators with the same network structure. S and T respectively denote
the source domain and the target domain. In our study, R = 6 ResNet blocks.

In the process of CycleGAN, there will be two types of
losses: adversarial loss and cycle consistency loss. The purpose
of adversarial loss is to match the distribution of the generated

images with the data distribution in the target domain. The
adversarial loss in the direction of S → T domain can be
expressed as:

LGAN (G,Qt,x
s,xt) = Ext∼pdata(xt)

[
logQt

(
xt
)]

+Exs∼pdata(xs)[log (1−Qt(G(x
s)))] .

(1)

The adversarial loss in the direction of T → S domain can be
expressed as:

LGAN (F,Qs,x
t,xs) = Exs∼pdata(xs) [logQs (x

s)]

+Ext∼pdata(xt)

[
log
(
1−Qs(F (x

t))
)]
.

(2)

When the amount of data is large, the cross-domain data will
produce a variety of random permutations and may all achieve
the same distribution constraint. Therefore, it is not enough to
use the adversarial loss alone, and it cannot ensure that the
generated image is unique. For this reason, a cycle consistent
loss function is expressed as:

Lcyc(G,F ) = Exs∼pdata(xs) [||F (G (xs))− xs||1]
+ Ext∼pdata(xt)

[
||G
(
F
(
xt
))
− xt||1

]
.

(3)

The full objective of CycleGAN is:

L (G,F,Qs, Qt) = LGAN

(
G,Qt,x

s,xt
)

+ LGAN

(
F,Qs,x

t,xs
)

+ λLcyc (G,F ) ,

(4)

where λ = 10 controls the relative importance of cycle
consistent loss and adversarial loss. We aim to solve:

G∗, F ∗ = argmin
G,F

max
Qs,Qt

L(G,F,Qs, Qt). (5)



B. Instance Discriminator Training

Before classifying the entire retinal image, in order to reach
better classification performance, we first attempt to filter out
the irrelevant instances in the bag, in other words, detect its
DR lesions. However, since the Messidor dataset only contains
grades but no annotation information of HMA lesion location,
we borrow the IDRiD dataset to construct an initial HMA
lesion detection model.

DenseNet-121 was used in our proposed discriminator ar-
chitecture, in which each layer was directly connected to every
other layer in a feed-forward fashion. As shown in Fig 2, it
consists of four dense blocks, three transition layers and a total
of 121 layers (117-conv, 3-transition, and 1-classification). As
described in the original DenseNet paper [9], each conv layer
corresponds to a composite sequence of operations consisting
of batch normalization (BN)-Relu-Conv. The Classification
subnetwork includes 7 × 7 global average pooling, 1D fully-
connected layer, and softmax. The `th layer receives the
feature-maps of all preceding layers, x0, ..., x`−1, as input:

x` = H`([x0, x1, ..., x`−1]), (6)

where H`(·) denotes the non-linear transformation function
of the composite layers, and [x0, x1, ..., x`−1] denotes the
concatenation of feature-maps generated in the 0, ..., ` − 1
layers. If each function H` generates k feature-maps, the `th

layer has k0 + k × (` − 1) input feature-maps, where k0
is the number of channels in the initial input layer of each
dense block. Specifically, we develop 4 dense blocks in our
experiment, each dense block has {12,24,48,32} composite
layers in turn, and a growth rate of 32 to predict the presence
or absence of lesions.

With DenseNet, we build a two-steps instance discriminator
training. First, we pre-train it with the labeled instances in the
source domain. Second, we fine-tune it with the generated
patches by CycleGAN.

C. Multi-class Multi-instance Learning with Attention Mech-
anism

We propose a multi-class multi-instance learning model with
an attention mechanism, which can learn the local to global
feature representation of each fundus image to implement
a DR graded diagnosis. The process of multi-class multi-
instance learning can be described as follows: Given a training
dataset {(Xt

1, y
t
1), (X

t
2, y

t
2), ...., (X

t
Nt
, ytNt

)}, where Xt
i is

regarded as a bag, yit means bag-level label, and Nt is
the number of training samples. A bag consists of multiple
instances, namely Xi = {x(1)

i ,x
(2)
i , ....,x

(ni)
i }, where ni is

the number of instances of Xi, and each instance has no label.
With the embedding h

(j)
i of each remained instance in Xi

learned by the instance discriminator, the attention weight of
each instance is calculated as follow:

a
(j)
i =

exp

{
wT

(
tanh

(
V
(
h

(j)
i

)T)
�sigm

(
U
(
h

(j)
i

)T))}
ni∑
k=1

exp

{
wT

(
tanh

(
V
(
h

(k)
i

)T)
�sigm

(
U
(
h

(k)
i

)T))} ,

(7)

where w ∈ RLX1, U ∈ RLXM and V ∈ RLXM are
parameters, � is an element-wise multiplication and sigm(·)
is the sigmoid non-linearity. The tanh(·) non-linearity may
not be effective in learning complex relationships. Therefore,
it is proposed to use the gating mechanism [10] together with
the tanh(·) non-linearity to eliminate the troublesome linearity
in tanh(·). With the attention weight, the bag-level mapping
relationship composed of weighted instances is expressed by:

zi =
[
a
(1)
i hi

(1) a
(2)
i hi

(2) a
(3)
i hi

(3) · · · a(ni)
i h

(ni)
i

]
. (8)

The label of each bag is converted to one-hot encoding
vector. Let Nmax = maxi=1...Nt

ni be the largest number of
all the training bags. The weighted 2D instance-level is ex-
panded to a tensor bag-level representation zi ∈ RNmax×L×P

by stacking multiple instances embedding, where P is the
dimensionality of instance embedding. Finally, the bag-level
prediction of the L × 1 dimension is obtained with a tensor
bag-level representation zi by a FC layer combined with a
softmax activation function. Fig. 4 shows the process of multi-
classification in MIL.

III. EXPERIMENTS

In this section, we introduce the experimental results of DR
grading. We describe the datasets and performance metrics
used, further verify the core components of the proposed
ADAMIL algorithm, analyze the influence of hyperparameters,
compare with other state-of-the-art methods, and verify its
interpretability. All models are implemented with Python using
the Pytorch framework. A computer with 8 NVIDIA GTX
1080TI and 128GB internal memory is applied to train and
test.

A. Datasets and Performance Metrics

Experiments involve two publicly available dataset: IDRiD
[11]1 and Messidor [12]2. Ten-fold cross-validation is adopted
to evaluate the proposed method, and accuracy, precision,
recall, micro-F1, receiver operating characteristic (ROC) and
area under the curve (AUC) of ROC are used as performance
metrics. The contents of the two datasets are described as
follows.

a) IDRiD Dataset: We employ the ISBI 2018 IDRiD
subchallenge 1 dataset. This dataset consists of 516 color im-
ages in JPG format, captured by a KowaVX-10α digital fundus
camera with 50◦ FOV, and has a resolution of 4288 × 2848.
Among them, there are 81 color fundus images containing
pixel-level lesion labeling information. Table I shows the
number of images that exist for each type of lesion. The IDRiD
dataset is annotated by the mapping relationship between the
original image and the matched labeled image. Corresponding
to the evaluation criteria of Messdior grade, only two major
lesions of MA and H are enough.

1https://idrid.grand-challenge.org/Grading/
2http://www.adcis.net/en/third-party/messidor/



Fig. 4. Deep MIL network structure with attention mechanism

b) Messidor Dataset: This dataset contains 1200 color
fundus images in TIF format acquired by three ophthalmology
departments between 2005 and 2006. The grading result,
ranging from 0 to 3 of each image, is provided. Table I shows
the characteristics and number of lesions at different stages,
where 0, 1, 2, and 3 grades indicate no DR, mild, moderate
and severe DR respectively.

TABLE I
TYPES OF DR LESIONS IN IDRID DATABASE AND CRITERIA OF DR

GRADING IN MESSIDOR DATABASE

IDRiD Messidor

Lesion Nb Images Grade Description Nb Images

MAa 81 0 MA = 0 and H = 0 546
Hb 80 1 0 < MA ≤ 5 and H = 0 153
EXc 81 2 5 < MA < 15 and 0 < H < 5 247
SEd 40 3 MA ≥ 15 and H ≥ 5 254
aMicroaneurysms, bHemorrhages, cHard Exudates, dSoft Exudates

B. The Comparison with the Baseline Methods

The ADAMIL algorithm mainly involves three compo-
nents: domain adaptation, suspicious instance discriminator
for filtering, and a multi-class multi-instance learning with
attention mechanism. We investigate the three components
of our ADAMIL at first. We evaluate the generalization
performance of all methods using ten-fold cross-validation for
all the comparable methods to ensure a fair comparison.

No MIL: an image-level classification model is constructed
based on ResNet50;

MIL: a deep MIL model regards all patches as instances
without filtering the irrelevant instances;

MIL+PT: a deep MIL model combined with the instance
discriminator pre-trained only on the source domain without
fine-tuning;

MIL+PL: the instance discriminator in ’MIL+PT’ model
is used to classify the instances in the target domain and a
pseudo-label of each instance is obtained. With the pseudo-
labels of target instances, the ’MIL+PT’ model is further fine-
tuned.

MIL+PT+FT: the instance discriminator in ’MIL+PT’
model is fine-tuned with the generated instances by Cycle-
GAN. With the fine-tuned model, the instances are filtered
and fed into the MIL model without attention mechanism.

From Table II, we can see that the proposed method
consistently achieves better classification performance than the
competing methods in terms of Accuracy, Precision, micro-
F1 and AUC, which demonstrates the effectiveness of our
ADAMIL method. Moreover, Fig. 5 shows the ROC curve
of the comparable methods. It is apparent that our proposed
method achieves higher AUC value than the other contender
methods. These results reveal several interesting points: (1)
With the limited size of the training set, it cannot sufficiently
train a bag-level classification model. (2) MIL without any
instance filtering achieves a worse result, which indicates that
the large amounts of irrelevant instances negatively affect
the multi-instance learning. (3) The performance of MIL+PT



TABLE II
THE COMPARISON OF THE THREE COMPONENTS IN THE ADAMIL

ALGORITHM (THE BEST RESULTS ARE HIGHLIGHTED)

Component Accuracy Precision Recall micro-F1 AUC

No MIL 0.253 0.112 0.241 0.193 0.502
MIL 0.489 0.498 0.525 0.511 0.659

MIL+PT 0.606 0.729 0.630 0.670 0.737
MIL+PL 0.507 0.594 0.548 0.561 0.672

MIL+PT+FT 0.547 0.574 0.630 0.597 0.698
ADAMIL 0.764 0.765 0.616 0.676 0.749

Fig. 5. ROC curve of the comparative methods.

is lower than the ADAMIL method, which indicates that
the distribution from multiple data domains is different, thus
employing the classifier simply borrowing labeled data from
the source domain results in poor instance classification per-
formance. Another important conclusion is that MIL+PL may
generate wrong labels due to the inconsistent distribution
from multi-domain data. (4) ADAMIL further improves the
performance over MIL+PT+FT by incorporating the attention
mechanism. It demonstrates that the attention mechanism not
only provides the interpretability support, but also improves
the MIL performance.

C. Ablation Study

a) Image Reconstruction Quality Comparison: We first
visualize the reconstruction process of CycleGAN, as shown
in Fig. 6, where the features between Real S and Cyclic S
and between Real T and Cyclic T are very similar. This
phenomenon verifies that CycleGAN has achieved the do-
main adaptation between IDRiD and Messidor datasets. Re-
cently, many adversarial-based methods for cross-domain
adaptation with unpaired data are developed, e.g. UNIT[13],
DualGAN[14], MUNIT[15], DRIT[16], UGATIT[17], Disco-
GAN[18]. Therefore, we further visually evaluate the transfer
performance of CycleGAN and other methods from DS →
DT and DT → DS , as shown in Fig. 6. The evaluation
criteria is based on the color, shape, and texture of the lesions

and the background without lesions. We can observe that the
reconstructed patches generated by CycleGAN model are best.

b) Influence of the Size of Image Patches: In the previous
experiments, the patch size in the ADAMIL method is fixed
as 128 × 128. We now study the influence of patch size on
the performance of ADAMIL. In Fig. 7, we compare the
ADAMIL-128 with ADAMIL-256 on the Messidor dataset.
From this figure, it can be seen that ADAMIL with a patch
size of 128 × 128 obtains a better performance. It implies
that the small lesions within the larger patches are difficult to
obtain a discriminate representation. In addition, large patches
bring a huge computation at cost.

c) Influence of MIL Attention Mechanism: The key
component in our ADAMIL is the multi-class multi-instance
learning with attention, which aggregates instance probability
distribution vectors or instance feature vectors into a bag
representation. To demonstrate the advantage of the attention
mechanism, we compare the attention mechanism with other
pooling operators, such as max pooling, mean pooling, and
log-sum-exp (LSE) pooling [19]. As shown in Table III,
compared with other methods, the attention mechanism we
adopt is more preferable.

TABLE III
THE INFLUENCE OF DIFFERENT POOLING ON ADAMIL ALGORITHM

Pooling Method Accuracy Precision Recall micro-F1 AUC

Attention(ours) 0.764 0.765 0.616 0.676 0.749
max 0.200 0.190 0.231 0.208 0.467
mean 0.540 0.651 0.554 0.586 0.656
LSE 0.259 0.276 0.141 0.174 0.506

D. The Comparison with the State-of-the-art Approaches for
DR Diagnosis

We also compare our method with several recent state-of-
the-art methods reported on the Messidor dataset in Table IV.
In [20], a method combining fractal dimension with random
forest classifier was developed. Additionally, red lesion de-
tection generates a lesion probability map, which combines
location, size to express features, and finally uses random
forest (RF) to realize DR grading; two ophthalmologists A and
B also grade the Messidor dataset respectively [21]. Moreover,
texture analysis methods like statistical moments and GLCM
are used to extract features, and feed them into classifiers
e.g. Support Vector Machine (SVM), RF, AdaBoost, Gradient
Boost, Gaussian Naive Bayes (GaussianNB) for DR grading in
[22]. From the results, we can find that our algorithm achieved
a very competitive performance when compared with the state-
of-the-art methods for DR grading on the Messidor dataset.
Moreover, it is worth noting that our algorithm outperforms
two ophthalmologists by 4.7% and 12.2% with respect to the
accuracy.

E. Interpretability Validation

The deep learning-based models typically lack interpretabil-
ity, which is a missing evidence to support doctors. Therefore,



Fig. 6. Reconstruction visualization of CycleGAN model and comparison with different GAN based methods. Original images are defined as Real S,
Real T . Generated images of DS → DT and DT → DS are defined as Generated T and Generated S, i.e., a11, a21 respectively. Reconstructed
images of DS → DT and DT → DS are defined as Cyclic S and Cyclic T , i.e., a12, a22 respectively. b, c, d, e, f, g are images generated sequentially
by different GAN based methods i.e., UNIT, DualGAN, MUNIT, DRIT, UGATIT, DiscoGAN.

Fig. 7. Influence of the size of image patches on the performance of ADAMIL.

TABLE IV
THE COMPARISON BETWEEN OUR METHOD WITH THE

STATE-OF-THE-ART METHODS FOR DR GRADING

Methods Accuracy Validation Images

Fractal-based [20] 0.483 5-fold 1200
Expert A [21] 0.730 Manual 1200
Expert B [21] 0.681 Manual 1200

RF [21] 0.741 leave-one-out 1200
SVM [22] 0.47 5-fold 1200
RF [22] 0.459 5-fold 1200

AdaBoost [22] 0.36 5-fold 1200
Gradient Boost [22] 0.412 5-fold 1200

GaussianNB [22] 0.35 5-fold 1200
ADAMIL(ours) 0.764 10-fold 1200

we solve the black box problem of deep learning through
HMA lesion discrimination and the attention mechanism, i.e.,
outputting the severity of DR while giving the location in-
formation of highly suspected lesions to support the decision-
making. Fig. 8 shows the workflow of the ADAMIL algorithm.
A heatmap is obtained by multiplying the pixel values with
their attention weights of the corresponding patches. The
lesion regions can be identified through the heatmap.

(a) Grade = 1

(b) Grade = 3

Fig. 8. Some examples of instances filtering and heatmap obtained by MIL
with attention



CONCLUSION

Traditional automatic classification algorithms are mostly
based on the identification of HMA lesions. However, due
to lack of lesion annotation data, it is difficult to employ
supervised learning methods for HMA detection. To overcome
it, we propose a DR grading framework based on a domain
adaptation multi-instance learning with attention(ADAMIL),
which only requires image-level annotation to achieve both
classification of DR and the location of highly suspected
lesions. We formulated the problem of DR grading as a
multi-class multi-instance learning problem. Under the support
of IDRiD dataset with the lesion annotation, we develop
an instance discriminator for filtering negative lesions with
domain adaptation. Afterwards, an attention mechanism is
incorporated into the MIL framework to obtain the important
weights of the patches, thus providing medical diagnosis in-
terpretability. The experimental results on the public Messidor
dataset indicate that our method achieves a better performance
compared to the state-of-the-art approaches. Moreover, the
proposed HMA with CycleGAN and attention mechanism can
provide interpretable results, which is very important for the
potential application of automatic computer-aided diagnosis
in the practical clinical workflow. Our experimental results
indicate that the proposed ADAMIL is far superior to the
current DR grading method, and its performance can compete
with human experts. We use embedded technology to achieve
local-to-global representation, which can greatly reduce anno-
tation work while maintaining predictive performance at an
acceptable level. Furthermore, our method can be extended
to other medical fields where data is weakly supervised. In
future work, we will evaluate our model on the Kaggle’s
Diabetic Retinopathy Detection Challenge (EyePACS) and
other medical fields, such as histopathology images of cancers.
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