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Abstract—MRI brain segmentation plays an important part in
computer-aided diagnosis, which visually reveals the changes in
brain structure for doctors to quickly and accurately discover
and treat diseases related to brain tissue morphology. The fuzzy
c-means (FCM) algorithm performs well when the segmenting
images with no noise and with intensity uniformity. However, the
MRI brain images are always defective in noise and intensity non-
uniformity and thus we propose a novel FCM algorithm named
adaptive FCM with neighborhood membership (FCM anm). We
design a filtering process with neighborhood membership to
reduce the negative influence of noise and a novel objective func-
tion which further considers the spatial membership information
adaptively. Finally, to verify the performance of our method,
several experiments comparing among the Experimental results
demonstrate the proposed method consistently outperforms the
state-of-the-art FCM-based algorithms in synthetic images, sim-
ulated and real brain MR images with effects of the noise and
intensity non-uniformity.

Index Terms—MRI brain segmentation, Fuzzy c-means algo-
rithm, Spatial information, Local membership filtering, Adaptive
penalty item

I. INTRODUCTION

Researching on brain tissue segmentation in neuroimaging
is essential to study any brain related disorders and struc-
tural changes accompanied by changes in gray matter (GM),
white matter (WM) or cerebrospinal fluid (CSF) sizes, such
as schizophrenia, dementia and multiple sclerosis [1] [2].
Magnetic resonance imaging (MRI) is usually the modality of
choice for structural brain analysis, since it provides images
with high soft-tissue contrasts and high spatial resolution. MRI
is most often used for the diagnosis and detection of tumors,
lesions, to observe tissues growth, treatment planning and

other abnormalities in brain soft tissues. Manual segmentation
is extremely time-consuming due to millions of voxels in
the brain MRI image. Besides, the segmentation result is
prone to substantial intra-observer and inter-observer variation.
Therefore, it is essential to propose an effective approach for
computer-aided diagnosis of brain tissues from the MRI image.

Various methods have been proposed by researchers on MRI
brain tissue segmentation including atlas-based segmentation
methods [3] [4] [5], supervised machine learning methods and
fuzzy clustering methods [3] [6] [7] [8]. Several segmenta-
tion methods for brain MR imaging have been reported in
the literature in the recent past [9]. Among these methods,
fuzzy clustering and its variants are powerful methods that
have been used in MRI segmentation in which pixels are
partially segmented into various tissue classes using different
memberships for each tissue type. Moreover, the membership
defined uniquely in a fuzzy clustering method describes the
similarity between a sample and one category, which is appro-
priate for complex images without deterministic classification
standards. Also, inherent features of brain tissues, such as
overlap and closeness of tissues to each other in terms of gray-
level make the classification between each category fuzzy,
which complements the soft segmentation method of fuzzy
clustering. This paper focuses on the FCM-based algorithm.
The traditional FCM (Fuzzy c-means) algorithm only classifies
in gray scale without considering the spatial information of
images, obtaining good segmentation results in none-noise
images. When the image is noisy and the intensity is non-
homogeneous, the accuracy and robustness of the traditional
FCM algorithm decline drastically. Researchers have proposed



various improved FCM algorithms to cope with the defects
in MRI brain tissue segmentation. In order to overcome the
limitation of FCM, Ahmed et al. [10] incorporated spatial
neighborhood information into FCM algorithm with the Eu-
clidean distance of each pixel in the neighborhood to the
current pixel as a regularization. Moreover, Chen and Zhang
proposed FCM S1 and FCM S2 [11], which simplified the
neighborhood regularization of FCM S by a mean-filter or
median-filter to reduce the computational complexity.

Although a variety of image segmentation algorithms have
been proposed, spatial information are not often comprehen-
sively considered. In this paper, we incorporated the local
neighborhood membership into the traditional objective func-
tion of fuzzy c-means (named FCM anm). To reduce the
negative effect of noise and lack of intensity homogeneity, a
local spatial similarity measure model is established. With the
measure, a local membership filtering is designed to correct the
pixel membership in each iteration. Finally, we propose a novel
objective function with further consideration of neighborhood
membership information to improve its performance under
noisy conditions. In addition, the regularization parameter in
the objective function can be adaptively set according to the
neighborhood information without being chosen manually. The
proposed method mainly solves two challenging issues: 1)
how to effectively integrate the neighborhood information and
2) how to adaptively select appropriate regularization. The
consideration of membership of local neighborhood guides
our model to achieve better segmentation permanence. Fig. 1
provides a visual comparison of our method and other state-of-
the-arts. With the above considerations, our method achieves
the best segmentation results which are much close to the
ground truth in various challenging scenarios.

The rest of the paper is organized as follows. In Section 2
the conventional FCM algorithm is presented. Our proposed
algorithm is explained in Section 3. Experimental and compar-
ison results are given in Section 4 and the paper is concluded
in Section 5.

II. THE FUZZY C-MEANS ALGORITHM

The FCM algorithm is a clustering algorithm based on
fuzzy division, which maximizes the similarity of objects
grouped into the same category and minimizes the similarity of
objects between different categories. Compared with the hard
classification process such as the K-means algorithm, FCM
gives each object a soft fuzzy classification. The membership
measures the degree of each object belonging to each category
and the objects are finally divided into the category with the
maximum value of membership. The objective function is as:

J =

N∑
i=1

C∑
j=1

µmij ‖xi − cj‖
2 (1)

c∑
j=1

µij = 1,∀i (2)

where xi is the gray value of the ith pixel, i ∈ [1, N ], N
represents the scale of the image, cj represents the prototype

value of the jth cluster, j ∈ [1, C], C is the number of clusters,
µij represents the fuzzy membership of the ith pixel with
respect to cluster j. The parameter m is a weighting exponent
on each fuzzy membership that determines the amount of
fuzziness of the resulting classification. Applying Lagrange
multipliers technique can obtain µij and cj .

µij =
1

(‖xi−cj‖2)
1

m−1∑C
k=1(‖xi−ck‖2)

1
m−1

(3)

cj =

∑N
i=1 µ

m
ijxi∑N

i=1 µ
m
ij

(4)

The process of FCM is:
Step 1 Initialize the membership and other parameters.
Step 2 Calculate cj by (4).
Step 3 Update µij by (3).
Step 4 If ‖µold − µnew‖ < ε , stop. Otherwise, repeat from

step 2 to step 3.
When the images are noise-free and with intensity ho-

mogeneity, the FCM algorithm shows excellent performance.
However, the MRI brain images are always noisy and with
intensity non-uniformity, which will result in the segmentation
accuracy dropping sharply. The algorithm calculates the clas-
sification according to the isolated pixels without considering
the spatial information. In contrast, the category of each pixel
in every tissue is not only determined by gray level, but also
related to its position in the brain. Therefore, our approach in-
volves spatial information in the iterative process and exploits
the membership filtering method to reduce the harmful effect
of these drawbacks. An adaptive neighborhood penalty term
without setting parameters is involved and the classification
of the neighborhood around the pixel is integrated to improve
robustness and make the segmentation process more efficient
and accurate.

III. PROPOSED METHOD

A. Local Membership Filtering Process

To make full use of the spatial information and reduce the
negative effect of noise, we design a calculation approach of
distance to measure the similarity between one center pixel and
its neighborhood and involve a membership filtering process
using the defined similarity. The similarity with distance is
defined as:

S dip = 1− |xi − xp|∑
p∈Ni

|xi − xp|
(5)

where xp represents the pth pixel in the n*n neighborhood
of xi.

We also define a set N (k)
i composed with the membership

of pixels belonging to the current category k and combine it
with the new similarity to update the membership of center



(1) Sagittal #128

(a) Original Image (e) FCM_S1 (f) FCM_S2(b) Ground Truth (c) FCM (d) FCM_S (g) EnFCM (h) FCM_anm

(2) Coronal #88

(a) Original Image (d) FCM_S (e) FCM_S1 (f) FCM_S2(c) FCM(b) Ground Truth (g) EnFCM (h) FCM_anm

Fig. 1. A representative experimental result with partial amplification on simulated MRI brain image in coronal planes with 9% noise and 20% intensity
non-uniformity: (a) Original image (b) Ground truth (c) FCM (d) FCM S (e) FCM S1 (f) FCM S2. (g) EnFCM (h) FCM anm (Our Method).

pixel i. Naturally, to ensure that the membership meets the
constraint in (2), the process is defined as:

µij =

(
1
2

∑
p(j)∈N(j)

i
S d

(j)
ip µpj

)
+ µij∑C

k=1

(
1
2

∑
p(k)∈N(k)

i
S d

(k)
ip µpk

)
+ µik

(6)

The process is illustrated in Fig. 2. In Fig. 2 (a), the center
pixel is noise with an extreme difference in neighborhood and
the pixels will be divide into two classes c1 and c2. After
updating by (6), the center pixel membership increases from
0.13 to 0.66 for c1 and decreases from 0.87 to 0.34 in c2 as
shown in Fig. 2 (c) and (d). Naturally, in Fig. 2 (e) the noise
pixels are in the neighborhood and have significant difference
with the neighbor pixels. When updating the membership of
center pixel i, the membership of center pixel increases from
0.79 to 0.83 in c1 and decrease from 0.21 to 0.17 as shown
in Fig. 2 (g) and (h). It can be seen that no matter where the
noise pixels appear, incorporation of the spatial neighborhood
information can correct the classification result of the center
pixel and reduce the negative influence of noise.

B. Objective Function in FCM anm

Research has proven that spatial information is beneficial to
FCM-based algorithms in noisy and intensity non-uniformity
images. However some algorithms like FCM S require pa-
rameters that are manually provided. Although [10] pointed
out that lower SNR (signal-to-noise ratio) requires a higher
value of the parameter α and a lower value of the parameter
α in contrast, an improper α may lead to the loss of image
information. Therefore, we design a new objective function
without setting manual parameters as:

J =

N∑
i=1

C∑
j=1

µmij ‖xi − cj‖
2
+

N∑
i=1

C∑
j=1

µmijL ‖xp − cj‖
2 (7)

L =
1

2Np

∑
p∈Ni

S−dip

C∑
h=1,h6=j

µmph (8)
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Fig. 2. The membership filtering process: (a) the center pixel is noise. (e)
noise pixels are in the neighborhood. c1 and c2 are two categories. (b) and
(f) are the S d values of (a) and (e) according to (5). (c) and (g) are the
membership before correction and (d) and (h) show the membership after
correction according to (6).

Also, the constraints of the objective function is (2).
Using the Lagrange multipliers, we construct the objective

function as:

J ′ =
∑N
i=1

∑C
j=1 µ

m
ij ‖xi − cj‖

2
+
∑N
i=1

∑C
j=1 µ

m
ijL ‖xp − cj‖

2

+λ1

(∑C
j=1 µ1j − 1

)
+ · · ·+ λi

(∑c
j=1 µij − 1

)
+ · · ·

+λn

(∑c
j=1 µnj − 1

)
(9)

To minimize the objective function, we take the derivative
of J ′ with respect to µij and cij respectively. Setting the



derivative equals to zero as follows:

∂J ′

∂µij
= mµm−1ij

(
‖xi − cj‖2 + L ‖xp − cj‖2

)
+ λi = 0

(10)

∂J ′

∂cj
=

N∑
i=1

−2µmij (xi − cj) +
N∑
i=1

−2µmijL (xp − cj) = 0

(11)
Substituting µij to constrain in (2), we get:

1 =

C∑
j=1

µij =

C∑
j=1

(
−λi

m

) 1
m−1(

‖xi − cj‖2 + L ‖xp − cj‖2
) 1

m−1

(12)

Then, we obtain the µij and cij from (10) to (12) as:

µij =

(
‖xi − cj‖2 + L ‖xp − cj‖2

)− 1
m−1

∑C
k=1

(
‖xi − ck‖2 + L ‖xp − ck‖2

)− 1
m−1

(13)

cj =

∑N
i=1

(
µmijxi +

1
Np

∑
p∈Ni

µmpjxp

)
∑N
i=1

(
µmij +

1
Np

∑
p∈Ni

µmpj

) (14)

The contributions of the objective function are summarized
in three aspects:
• The objective function considers the relationship between

each pixel and its neighborhood. If the neighboring
pixels are close to the current cluster center and their
memberships of other categories are relatively small, thus
the membership of the center pixel in the current category
increases.

• Furthermore, from (13) and (14), when xp is noise, a
smaller S dip has a minor impact on µij and cj , which
reduces the harmful influence of noise and facilitates a
more accurate and smooth segmentation result.

• Assigning a proper value to the regularization parameter
is essential and also challenging. It is unreasonable to
utilize the same value of the regularization parameter for
all the pixel neighborhoods while performing the segmen-
tation or clustering. Our objective function can adaptively
obtain the value of the regularization parameter without
setting parameters empirically, which can avoid the loss
of image information and the manual setting.

The proposed algorithm is implemented as the Algorithm
1.

IV. EXPERIMENTAL RESULTS

The evaluation of the proposed method is carried out on
artificially synthesized images, simulated and real brain MRI
images to assess its performance from both qualitative and
quantitative perspectives. The simulated MRI brain datasets
are provided by Brainweb [13] [14] [15] [16], which are
reduction period (TR) 18 ms, reverberation period (TE) 10 ms,
piece thickness 1 mm and T1-weighted. On the other hand,

Algorithm 1 FCM anm
Input: C = 3, m = 2, assign ε to a small positive constant.
Output: The segmentation result.

1: Initialize center = [c1, c2, c3]
2: for i = 0 to N do
3: for p = 1 to Np do
4: calculate S dip using (5)
5: end for
6: end for
7: while ‖centerold − centernew‖ < ε do
8: for i = 0 to N do
9: for j = 1 to C do

10: calculate current membership using (13)
11: for p = 1 to Np do
12: if argmax(µpj) == j then
13: update the set N (j)

i

14: end if
15: end for
16: modify the membership using (6)
17: end for
18: end for
19: update cluster centers using (14)
20: end while

the real brain MRI images were downloaded from IBSR [17].
Moreover, the proposed method is compared with previously
released FCM-based algorithm which are FCM S, FCM S1,
FCM S2 [11] and EnFCM [18]. Dice similarity coefficient
[19], Segmentation accuracy (SA) [20], Partition Coefficient
(Pc) [21] and Partition Entropy (Pe) [21] are used to evaluate
segmentation results. These metrics are calculated as follow:

Dice =
2 ∗ |A ∩G|
|A|+ |G|

(15)

where A is the set of pixels segmented by the automatic
algorithm and G is the ground truth. Dice is ranged in [0,1]
and the closer to 1, the better the segmentation result.

SA =
|A ∩G|
|G|

(16)

SA is ranged in [0,1] and the best value is 1.

Pc =

∑N
i=1

∑C
i=1 µ

m
ij

N
(17)

Pc is ranged in (0,1) and it suggests a better segmentation
result if the value is closer to 1.

Pe = −
∑N
i=1

∑C
i=1 (µij logµij)

N
(18)

Pe is ranged in (0,1) and it suggests a better the segmen-
tation result if the value is closer to 0.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Segmentation results on a synthesized image: (a) Original image
(b) Image degraded with 20% salt & pepper noise (c) FCM (d) FCM S (e)
FCM S1 (f) FCM S2 (g) EnFCM (h) FCM anm (Our Method).
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Fig. 4. The accuracy of FCM, FCM S, FCM S1, FCM S2, EnFCM and
FCM anm (Our Method) in different noise levels.

A. Synthesized Data

In this section, we investigate the performance of our
proposed method on synthesized images. Fig. 3 shows the
segmentation results of the compared algorithms. Fig. 3 (a)
shows the original synthesized image which has two different
classes and the salt & pepper noise is utilized to degrade
the image by 20% as presented in Fig. 3 (b). Fig. 3 (c)-(h)
show the segmentation results of our FCM anm (h) with the
contenders FCM, FCM S, FCM S1 and FCM S2.

Obviously, the visible results prove that our method obtains
better segmentation performance in noisy images. In addition,
the result of our method is more stable when the noise-level
increases. To better verify the robustness of the proposed
method, we compare these algorithms with different noise
levels in Fig. 4.

B. Simulated MRI brain images

In this section, the proposed method and the contender
algorithms are evaluated on simulated MRI brain images pro-
vided by Brainwed widely used datasets. Brainweb provides
a series of simulated MRI brain images with a variety of slice
thickness, noise levels and levels of intensity non-uniformity.
We download the T1-weighted phantom data with a slice
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Fig. 6. The iteration times statistical results of FCM, FCM S, FCM S1,
FCM S2, EnFCM and FCM anm (Our Method).

thickness of 1mm to verify the effectiveness and robustness
of our algorithm. All the images contain an amount of CSF,
GM and WM.

Fig. 5 illustrates how our algorithm can converge to the opti-
mal segmentation result and the filtering process is extremely
beneficial to improve the convergence speed. Moreover, our
method completes the fuzzy clustering process with a fewer
iterations compared with the other algorithms as the statistical
results shown in Fig. 6.

Table I shows the Dice values of these competing algorithms
for several brain slices in the coronal, sagittal, and transverse
planes with different noise levels and 20% intensity non-
uniformity levels. The results show that our method achieves
a better segmentation accuracy in all the coronal, sagittal, and
transverse planes. Moreover, when the noise level increases,
the proposed method still maintains a good Dice value proving
the robustness of our algorithm on the images with the noise
effect.

Table II shows the SA values of these competing algorithms
for brain slice Coronal #50 with different noise levels and
intensity non-uniformity levels. When the image contains a



TABLE I
DICE OF THESE ALGORITHMS ON BRAIN SLICES CORONAL #50, TRANSVERSE #90 AND SAGITTAL #85 WITH DIFFERENT NOISE LEVELS.

Tissue FCM FCM S FCM S1 FCM S2 EnFCM FCM anm

Coronal #50

7% noise

CSF 0.8998 0.9145 0.9153 0.9156 0.9084 0.9137

GM 0.8909 0.9120 0.9134 0.9157 0.9115 0.9178

WM 0.9015 0.9208 0.9229 0.9243 0.9224 0.9280

Mean 0.8974 0.9158 0.9172 0.9185 0.9141 0.9198

9% noise

CSF 0.8504 0.8940 0.8933 0.8935 0.8948 0.8929

GM 0.8421 0.8890 0.8936 0.8937 0.8943 0.9054

WM 0.8587 0.9003 0.9065 0.9063 0.9065 0.9179

Mean 0.8504 0.8944 0.8978 0.8978 0.8978 0.9054

Transverse #90

7% noise

CSF 0.9317 0.9429 0.9407 0.9415 0.9409 0.9367

GM 0.8769 0.9141 0.9168 0.9182 0.9080 0.9207

WM 0.9305 0.9558 0.9584 0.9589 0.9507 0.9617

Mean 0.9130 0.9376 0.9386 0.9395 0.9332 0.9397

9% noise

CSF 0.9089 0.9319 0.9294 0.9319 0.9305 0.9280

GM 0.8230 0.8876 0.8915 0.8931 0.8860 0.8968

WM 0.8912 0.9393 0.9428 0.9427 0.9373 0.9444

Mean 0.8744 0.9196 0.9212 0.9226 0.9179 0.9316

Sagittal #85

7% noise

CSF 0.9168 0.9307 0.9301 0.9256 0.9264 0.9208

GM 0.8916 0.9172 0.9185 0.9215 0.9138 0.9230

WM 0.9127 0.9369 0.9383 0.9415 0.9341 0.9465

Mean 0.9070 0.9282 0.9290 0.9295 0.9248 0.9301

9% noise

CSF 0.8890 0.9213 0.9191 0.9227 0.9163 0.9223

GM 0.8497 0.8989 0.9047 0.9073 0.8998 0.9167

WM 0.8842 0.9221 0.9285 0.9296 0.9237 0.9397

Mean 0.8743 0.9141 0.9174 0.9199 0.9133 0.9263

TABLE II
SA OF THESE ALGORITHMS ON BRAIN SLICE CORONAL #50 WITH DIFFERENT NOISE LEVELS AND INTENSITY NON-UNIFORMITY LEVELS.

Tissue FCM FCM S FCM S1 FCM S2 EnFCM FCM anm

7% noise

20% INU

CSF 0.9297 0.9075 0.9306 0.9179 0.9100 0.8982

GM 0.8615 0.8887 0.8871 0.8953 0.8876 0.9079

WM 0.9298 0.9546 0.9536 0.9509 0.9541 0.9498

Mean 0.8962 0.9157 0.9173 0.9190 0.9153 0.9220

40% INU

CSF 0.9238 0.8273 0.9159 0.9159 0.8952 0.8863

GM 0.8039 0.8189 0.8273 0.8351 0.8316 0.8463

WM 0.9039 0.9270 0.9279 0.9289 0.9318 0.9371

Mean 0.8575 0.8780 0.8768 0.8809 0.8774 0.8855

9% noise

20% INU

CSF 0.9129 0.9001 0.9183 0.9149 0.9056 0.8834

GM 0.8157 0.8630 0.8668 0.8682 0.8687 0.9079

WM 0.8707 0.9329 0.9331 0.9328 0.9366 0.9498

Mean 0.8495 0.8940 0.8984 0.8985 0.8990 0.9084

40% INU

CSF 0.9197 0.9026 0.9223 0.9153 0.9011 0.8756

GM 0.7694 0.8160 0.8075 0.8161 0.8159 0.8463

WM 0.8549 0.9082 0.9042 0.9054 0.9087 0.9285

Mean 0.8216 0.8621 0.8592 0.8629 0.8620 0.8745
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TABLE III
COMPARISON WITH THE STATE-OF-THE-ART METHODS IN DIFFERENT

NOISE LEVELS AND INTENSITY NON-UNIFORMITY LEVELS.

7%noise 20%INU
C-FAFCM 0.9101

FCM anm 0.9318

7%noise 40%INU
C-FAFCM 0.9091

FCM anm 0.9200

9%noise 40%INU
FCMS-MLI 0.9044

FCM anm 0.9051

higher level of noise and intensity non-uniformity, the per-
formance of our method is much better than the others in
terms of SA due to the advantage of the context aware spatial
information. Therefore, our method ensures more pixels are
effectively categorized into the correct class in different levels
of noise and intensity non-uniformity. The same conclusion
can be found in Fig. 7, which shows the performance of
FCMS MIL [22] and our FCM anm when varying the noise
levels.

We also compare our method with C-FAFCM [23] in
transverse planes slice 130 as Table III in [23] and with FCMS-
MLI in transverse planes slices 35-135 as Table IX in [22].
The comparison results shown in Table III suggest that our
method has better performance.

For a better visual comparison, Fig. 8 intuitively shows the
segmentation results of these algorithms in coronal, sagittal
and transverse planes respectively with 9% noise levels and
20% intensity non-uniformity levels.

C. Real MRI Brain Images

The competing algorithms are investigated on a set of
twenty real MRI brain images provided by IBSR and the
performance of these algorithms are evaluated through Pc and
Pe shown in Table IV. From Table IV, the Pc of our method
is much closer to 1 and Pe is closer to 0, which suggests
that our algorithm has better performance when dealing with
real MRI brain images. Experimental results demonstrate

that our method exhibits improvement in the segmentation
performance.

V. CONCLUSION

In this paper, we proposed an accurate and robust unsu-
pervised segmentation approach of brain MRI tissues with a
fuzzy c-means based algorithm. The proposed method takes
advantage of a new way in exploiting spatial information
adaptively correcting the category of the center pixel by the
intensity and membership of the neighborhood pixels around
it to modify the fuzzy c-means objective function and to
some extent preserves more image details avoiding the loss
of critical information resulted in improper parameter setting.
Moreover, we design the membership filtering process to
correct the membership of each pixel according to the dif-
ference around its neighborhood in each iteration, which also
ameliorates the segmentation result influenced maliciously by
noise and intensity non-uniformity. The experimental analysis
substantiates that the proposed method is appropriate for the
segmentation of MRI brain images with noise and intensity
non-uniformity.
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