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Abstract—Modeling spatio-temporal dynamics in functional
brain networks is critical for underlying the functional mechanis-
m of autism spectrum disorder (ASD). In our study, we propose
an end-to-end framework called temporal graph representation
learning for brain networks, which thoroughly captures spatio-
temporal features in resting-state functional magnetic resonance
imaging (rs-fMRI) data. Specifically, we first transform rs-fMRI
time-series into temporal multi-graph using a sliding window
technique. A temporal multi-graph clustering is then designed to
eliminate the inconsistency of the temporal multi-graph series.
Then, a graph structure aware LSTM (GSA-LSTM) is proposed
to capture the spatio-temporal embedding for temporal graphs.
The proposed GSA-LSTM can not only capture discriminative
features for prediction but also impute the incomplete graphs for
the temporal multi-graph series. Extensive experiments on autism
brain imaging data exchange (ABIDE) dataset shows the effec-
tiveness of our proposed framework. The results demonstrate
that the proposed dynamic brain network embedding learning
outperforms the state of-the-art brain network classification mod-
els. Furthermore, the obtained clustering results are consistent
with the previous neuroimaging-derived evidence of biomarkers
for autism spectrum disorder (ASD).

Index Terms—Dynamic brain network, Autism spectrum dis-
order, Diagnosis, Resting-state fMRI, Spatio-temporal modeling

I. INTRODUCTION

Autism is increasingly recognized as a common brain disor-
der with altered brain networks [1]. Neuroimaging studies have
explored functional connectivity (FC) of ASD through resting-
state functional MRI (fMRI) studies. Functional magnetic
resonance imaging (fMRI) that measures the changes of blood
oxygenation level-dependent (BOLD) signal in a noninvasive
manner has become the most common tool to explore func-
tional connectivity (FC) of Autism Spectrum Disorder (ASD)
through resting-state fMRI(rs-fMRI) studies Compared with
structural MRI, fMRI is able to measure the changes in hemo-
dynamics caused by neuron activity at a series of time points
for the whole brain. Most of works typically construct a brain
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network with FC to characterize the relationships between dif-
ferent brain regions during resting states and distinguish brain
disorder patients from NC(Normal control), under an implicit
assumption that FC of the human brain is stationary throughout
the whole fMRI recording period [2]. It is important to extract
an appropriate graph representation from the brain network for
understanding the functional mechanisms of human brain and
facilitating the brain network classification task. Traditional
graph-based analyses have focused on the graph theoretical
metrics for globally summarizing the functional connectivity
for each node. Recent works have applied graph convolutional
networks (GCN) [3] on the functional network to extract latent
features from the graph [5], [6], [13]. However, the existing
GCN methods applied to rs-fMRI often fail to consider both
spatial and temporal characteristics of the brain network. They
either neglect the functional dependency between different
brain regions in a network or discard the information in the
temporal dynamics of brain activity.

Dynamic functional connectivity analysis provides valu-
able information for understanding functional brain activity
underlying different cognitive processes [7]-[9]. Compared
with static brain network analysis, dynamic analysis is much
more challenging since the network structure evolves over
time. How to effectively model discriminative spatial-temporal
features and preserve the graph structures is still a chal-
lenging problem. Another problem is that there always exist
heterogeneity in the multi-site data [4], which compromises
the coherence of information between different sites. The
inconsistent FC distribution contains large number of noisy
and irrelevant FC, which causes an overfitting issue of the
model learning, whilst the inconsistent signal lengths result
in the incomplete dynamic temporal graphs construction. The
traditional spatio-temporal graphs learning methods fail to
succeed in learning the complicated relationship because they
assume the FC distribution is consistent among the subjects
and the lengths of dynamic temporal graphs are equal.
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To overcome those shortcomings, we formulate functional
connectivity networks with spatio-temporal graphs. There exist
a co-occurrence relationship between spatial and temporal
domains. At first, we incorporate multi-graph clustering into
GCN model to enhance the important connections and re-
move the irrelevant connections with a supervision scheme.
The the coarsened brain network construction combined with
clustering could generate more robust and biologically mean-
ingful functional connectivity networks. To capture the spatial-
temporal features, we propose a new graph structure aware
LSTM(GSA-LSTM) architecture combining both GCN and L-
STM to model the spatial and temporal correlations effectively
in dynamic brain networks. It can deal with complex dynamic
associations by capturing the spatio-temporal features in the
temporal consistent coarsened brain neworks, and extract a rich
spatio-temporal embedding. Moreover, with the co-occurrence
relationship, we propose a unified framework that can (z) adap-
tively generate graph data rather than imputing the original
signal through modeling the graph dynamic correlation and (27)
temporal brain network embedding learning with a multi-task
learning scheme. Our model jointly learns temporal coarsened
graph generation, graph imputation and graph representations
for classification in an end-to-end fashion. Extensive experi-
ments on the ABIDE dataset demonstrates that the dynamic
functional connectivity analysis of our framework is capable
of handling spatio-temporal data for capturing the dynamic
functional connectivity and improve prediction performance.

II. METHOD
A. Overview

An illustration of the proposed temporal multi-graph em-
bedding learning for brain network classification is shown in
Fig. 1. We will introduce each component in detail.

B. Problem statement

Rs-fMRI time-series data can be seen as a multivariate
time series, in which each ROI corresponds to a variable
and has a corresponding time-series signal. More formally,
Let D = {G(lj),Gé]),...,Ggf)}jyzl denotes temporal multi-
graphs of all subjects, where each sample is indicated as
a sequence graphs, 7' is the number of rs-fMRI time-series
segments, and NV is the number of subjects. All networks share
the same brain region set of vertices V' where each vertex
corresponds to a specific brain region. The ng ) defined at
the ¢-th segment for the j-th subject can be represented by an
adjacency matrix AEJ ) € RMXM \where M is the number of
the brain regions, reflecting the connectivity strength between
the paired brain regions. Given the temporal multi-graphs of
each subject GU) = {G},Gy,...,Gr} and its corresponding
label of y; € {—1,1}, our study aims at learning a mapping
function f: GU) — y;.

C. Construction of Temporal Multi-graph in Brain Network

To better characterize the temporal variability of the func-
tional connection associated with a set of given regions, we
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employ a sliding window approach to segment fMRI time-
series data into 7T overlapping windows of constant size L.
Specifically, we set a window with a const size £, and then
roll it on the fMRI time-series data with a constant stride S.
We then obtain a sequence of 7' time-series segments. The
strength of the functional connection of the brain network is
often measured by the strength of the correlation between the
BOLD time-series of each ROL. In this study, we adopt Pear-
son correlation coefficient (PCC) to calculate the correlation
between ROIs. Each vertex v; represents a brain region, and
the corresponding time series is indicated as x;. PCC between
the time series x; at the vertex v; and x; at the vertex v; is
given by

cov(zy, x;)

B Veov(zy, ;) * cov(z;, ;)

(D

rij

where cov(x;, x;) represents the covariance of time series x;
and x;.

We calculate the correlation between each pair of brain
regions for each segment. Then, a series of dynamic graphs
are generated.

D. Temporal multi-graph clustering

In the brain network, the dimension of functional connectiv-
ity could be relatively large and thus not very discriminant. The
noisy connections that are most influenced by experimental
noise need to be removed for further analysis. In this study,
we develop a functional connectivity reduction strategy based
on multi-graph clustering [10] to obtain the subgraphs as
supernodes and remove the noisy connections for diagnosing
of a disorder. Our objective is well-motivated by reducing the
noisy correlation edges through a multi-graph clustering, a
better brain network can be learned.

Multi-graph clustering aims to improve clustering accuracy
by leveraging information from different domains, which has
been shown to be extremely effective for achieving better clus-
tering results than single graph based clustering algorithms.
The unsupervised graph clustering is to approximate the given
graph through a low-rank matrix factorization A ~ F7 A*F,
where F is an M x C indicator matrix, A% is a C x C
symmetric matrix and C' (C = 10 in our work ) indicates
the number of the subgraphs (supernodes). Each item F;, can
be interpreted as the membership of the ¢-th brain region to the
supernode S,,. Given multiple graphs, the underlying clustering
F are shared among graphs. With multi-graph clustering, we
can obtain a set of subgraphs as supernodes Si,Ss,...,S¢
and the weighted adjacency matrix of the supergraph: A4°
FAFT. With the supernodes S, Sa, ..., Sc and the weighted
adjacency matrix A%, a coarsened graph is constructed.

Different from traditional clustering which groups the simi-
lar nodes together, the aim of multi-graph clustering is to hide
the noisy connectivity by grouping them into a supernode, thus
highlighting the indicative edges connecting the supernodes.
In other words, the weight of functional connection connecting
the node crossing different supernodes is enhanced whereas the
nodes within supernodes and their connections are removed.
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(a) The construction of temporal multi-graph

(b) The generation of coarsened temporal

(c) The prediction and imputation of
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Fig. 1: The overall architecture of our proposed spatio-temporal dynamics modeling framework. (a): The construction of the
temporal multi-graph contains two steps. The fMRI time-series data of each subject is first partitioned into a series of time-series
segments. A graph (brain network) is constructed on each segment. Finally, we obtain the corresponding temporal multi-graph

for each subject. (b): With the constructed temporal graph seri
noisy edges in temporal multi-graphs and achieve a temporal ¢

es, we propose a temporal multi-graph clustering to eliminate
oarsened graph series which are consistent for all the subjects

by sharing the clustering parameter. (c): A GSA-LSTM is proposed to sufficiently model the spatio-temporal patterns of the

temporal supergraph series.

Furthermore, based on the assumption that the adjacent graphs
over the time series should have similar graph structure, we
design a temporal smoothness to constrain the similar graph
structure of adjacent graphs. We assume that the difference
of the clustering between two successive graphs is relatively
small. With this assumption, a temporal smoothness regular-
ization for graph structures can be embedded to learn the
cluster indicator matrix F, which is formulated as | F;41 —F¢|.
Most learning approaches treat clustering and classification
separately or sequentially. We incorporate the grouping multi-
graph clustering into the GCN model to improve both cluster-
ing and classification performance in an end-to-end scheme.

E. Node embedding learning with signal representation learn-
ing

We first design a signal representation learning (SRL) block
for learning the temporal features from the BOLD signal of
each node as the corresponding node initial embedding via a
stack of convolutional layers. Using each time-series segment
of each node (brain region) as the input, the SRL block
employs a series of convolutional components to learn local-
to-global spatial properties from time-series data. The signal
embedding obtained is indicates as he. Finally, we aggregate
the signal representation of all the nodes h* within a supernode
to generate a supernode embedding h* as the initial embedding
of the coarsened graphs.

F. Dual temporal graph LSTM

Exploring spatial and temporal features of the brain net-
work modeling is vital for the disease diagnosis. However,
while GCN is a very effective deep learning framework for
exploring spatial domain information,it is not capable of
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capturing temporal characteristics. Due to the fully connected
operator within LSTM, there is a limitation with regard to
ignoring spatial correlation for the brain regions. To address
this problem, we propose a block to incorporate the graph
convolution into the LSTM to capture the spatio-temporal
features for effectively modeling dynamic brain networks. The
input of this block is the temporal coarsened multi-graph with
node embedding. The GSA-LSTM has four gates: the input
gate, the forget gate, the output gate and the imputing gate.
The input gate, the forget gate and the output gate are the same
as traditional LSTM. However, the operation of each gate is
instead a stack of graph convolutional layers to capture the
spatial features of the graph structures. The input of the GSA-
LSTM cell has two parts: H; 1 and G, Gy = (hatH}, AS),
where H} is a set of initial node features {h:}< | and A$
is the adjacency matrix of ¢-th graph structure. Both H® and
A?® are obtained by the signal representation learning (SRL)
block and the temporal multi-graph clustering. Inspired by
DenseNet showing excellent performance in image recognition
tasks, the hidden state obtained in (¢-1)-th step is concatenated
by all preceding layers to improve the information flow. The
enhanced hidden state is indicated as Hy_1 = [Ho, ..., Ht_2]
Unlike traditional LSTM based on vectors, the input ét,
hidden state H;, and cell memory C; of GSA-LSTM are all
graph-structures.
The updating process can be formulated as:

I = 0(Wyi % foen(Gt) + Whi % fyen(Hi—1) + b (2)
Fy=o0(Wgyy * fgcn(ét) + Wiy * fgcn(f[t—l) +br ()
Oy = U(Wgo * fgcn(ét) + Who * fgcn(f[t—l) + b, “4)
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Pt = U(ng * fgcn(ét) + WPo * fgcn(ﬁtfl) + b (5)

Ut = RELU( gc ¥ fgcn( ) + th * fgcn(Ht 1) + bc (6)
=Tanh(I; * Uy + Fy % C,_p) 7
= Oy * Tanh(Cy), Zy = P, x Tanh(C}) (8)

where I;, F;, O; and P; are the input gate, the forget
gate, the output gate and the imputing gate, P; is the set
of predicted node embedding vector in the imputed graph,
fgen(+) represents a graph convolution operation. The graph
convolution for [-th layer can be formulated as

YD = ReLu(A; HY WOy

©))
where WO is a trainable weight matrix of [-th layer, lfltq O is
the node embedding computed after [ steps of the GCN and the
node embeddings. Noting that HY ©) s the initial embedding
of G; which is equal to H; obtained by SRL.

In this work, we propose a multi-task learning framework
for imputation with incomplete longitudinal data. Since the
imputation and prediction on the temporal graphs depend on
each other and are performed alternatively. It is believed that
the temporal prediction is able to improve the imputation
performance, and the appropriately imputed values help en-
hance the predictive performance. In the training stage, at a
certain time point, the imputation module firstly predicts the
node feature values of a current time point using the encoded
latent representations from the previous time point in a our
GSA-LSTM. If the graph is available in the current time, the
loss is calculated with both the node level embedding and
the graph embedding from the imputed graph and the real
graph. Otherwise, the predicted graph is consider to replace
the missing one as the current graph to fed into the GSA-
LSTM model. It is worth noting that the loss function was
only evaluated using available graphs. Moreover, the F' of the
imputed graph is not obtained by our imputation model, thus
the structures of the imputed graphs are set as the nearest
observed graph. Hence the imputed graph is represented as
Z; = (P, A;_,) The max length of the temporal graph
series is considered as a complete graph series, then the
incomplete temporal graph series are required to be imputed.
To cope with the imputation and prediction at the same time,
a imputation gate is proposed and a multi-objective function
for the proposed imputation-encoding prediction network is
devised and optimized in an end-to-end manner.

To guide the imputation, we design a similarity measure
to estimate the imputation loss from two levels: graph level
and node level.With a simple readout layer, a global graph-
level embedding is obtained. Both z; € R” and g; € RP
indicate the graph embedding of the imputed graph G, and
real graph G,. Given the graph-level embeddings z; and g;, we
use Neural Tensor Networks (NTN) [20] to model the relation
between two graph-level embeddings:

S;mph = — (th[ lg: + Vi [ g: ] +b) (10)
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where W15 ¢ RPXDXK ig 4 Jearnable weight tensor, V;,, €
RE*2D ig a learnable weight vector, K is a hyperparameter
controlling the number of interaction (similarity) scores. The
similarity loss from the graph level may result in the loss
of the node feature distribution. To solve it, the imputation
loss is estimated from the node level. Specifically, the imputed
node vector of the imputed graph P; and the real graph G,
at the t-th time step, respectively. Both pi and ¢! indicate
the corresponding node embedding of the two graphs, the
similarity measure loss is estimated as follows,

M

o) gh)

i=1

t
Snode -

(1)

G. Objective function

In this paper, we argue that these three tasks are relevant
and present a joint clustering, imputation and prediction frame-
work. With these objectives in mind, we integrate the cross
entropy classification loss, the temporal multi-graph clustering
loss and the imputation loss into our model with the following
objective function:

N
L= ch + /\1Lmlc + )\2 Z

j=1 t=0

imp

(St

g'r‘aph Sfufde) (12’)

where Tfm , indicates the amount of the missing graphs for
the j-th subjects. Note that if the temporal graph series is
completed, 73, = 0.

The multi-graph clustering loss L,,;. is defined as:

‘]:t+1 ]:t| + Lneg + Lo’rth + Lbab (13)

mlc

where Ly = va:o chzo ReLU(—F; ;) is designed to

avoid the negative value of JF, the orthogonal constrain-

t Lortn ij:O/\i;ﬁj ((FTF)M)2 to hinder the over-

lap between different clusters, the balance loss: Ly

Var(diag(FTF)) is proposed to balance the group sizes for
a better interpretability.

III. EXPERIMENT
A. Datasets and Evaluation Protocols

1) Dataset: We evaluated our proposed model on the
ABIDE database (Autism Brain Imaging Data Exchange
database) [11]. ABIDE database collected 1112 subjects, in-
cluding 539 individuals with ASD and 573 typical controls
(ages 7-64 years, median 14.7 years across groups) from
different 17 acquisition sites. We used data from the ABIDE
preprocessed connectome project (PCP) data preprocessed by
the Configurable Pipeline for the Analysis of Connectomes
(CPAC). The detailed procession of PCP and CPAC can be
found in [12]. After the preprocessing, we obtain 871 quality
MRI images with phenotypic information, comprising 402
individuals with ASD and 464 normal controls acquired at
17 different sites.
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2) Evaluation matrics: In our experiments, we chose four
measure metrics: classification accuracy (ACC), the area under
the receiver operating characteristic (ROC) curve (AUC),
sensitivity (SEN), and specificity (SPE), to evaluate the per-
formance of our proposed method. We employed a 10-fold
cross-validation strategy to evaluate the performances.

B. Comparison with the State-of-the-art Methods

To validate the effectiveness of our proposed method on
the binary classification on the fMRI time-series data, we
compared our proposed method with several current state-of-
the-art methods on ABIDE.

GroupINN [13] is an end-to-end interpretable neural
network-based method jointly grouping the nodes and extract-
ing graph features.

ASD DiagNet [14] is a joint learning method combining an
autoencoder with a single layer perceptron (SLP) to improve
quality of extracted features and optimized parameters for the
classification model. In this method, we employ the same
autoencoder structure as described in [14].

Eigen_Pooling GCN [15] is a joint learning method com-
bining an end-to-end trainable graph pooling with server
GCNs to produce hierarchical representations of graphs.

ST-GCN [5] is a joint learning method combining CNN
with GCN to model the spatio-temporal dependency in fMRI
data.

TCN-GCN [6] is a joint learning method combining CNNs
with GCNs to model the spatio-temporal dependency in fMRI
data. Different from Gadgil er al. [5], they replace CNNs
with TCNs and combine with a GCN framework which learns
node embedding and edge embedding alternately to produce
representations of graphs.

The results of the comparisons in the binary classification
tasks are reported in Table I. We can see that our methods
can consistently and significantly outperform the previous
brain network classification methods on the ABIDE dataset.
Compared to existing methods, our proposed method jointly
consider the potential relations of different regions of the brain
in both spatial dimension and temporal dimension, which can
provide more discriminative ability for the ASD diagnosis.
These experimental results validate the superiority of our
method. Specifically, existing methods that only incorporate
spatial graph convolution (including GroupINN and Eigenpool
GCN) often pay more attention to the spatial features from
the data. They usually transform the fMRI time-series data
into a brain network and perform a GCN network to extract
spatial domain features, thereby potentially losing temporal
information in the BOLD time series. We conclude that the
analysis of dynamic brain networks is better than the analysis
on the static brain network. For ASD-DiagNet, they flatten the
correlation matrix and feed it into a fully connected network
for representation learning and classification. It focuses on
mining the global features from a brain network, unable to
capture the graph and temporal structures within the brain
network, essential in neuroscience research. Compared with
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TABLE I: Performance comparison of various methods on
ABIDE dataset. A student’s t-test (with the significance level
at 0.05) on the metric values is performed by our method and
each competing method.

Method ACC(%) AUC (%) SEN(%) SPE(%)
ASD DiagNet [14] 66.6* 66.2* 57.3* 75.2
GroupINN [13] 63.4* 64.7* 62.4* 64.4*
BrainNetCNN [16] 65.1* 68.8* 63.6* 66.4*
Eigenpooling GCN [15] 58.6* 65.5* 59.6* 57.4*
BrainGNN [19] 67.1* 68.3 62.1* 67.9*
Population GCN [18] 63.5* 67.5* 62.1* 61.7*
ST-GCN [5] 64.5* 63.9* 61.8* 67.9*
TCN-GCN (8] 67.2* 67.8* 63.6* 69.1*
ours 68.4 70.5 64.4 69.8

the other spatio-temporal modeling methods (including TCN-
GCN and ST-GCN), our proposed method achieved better per-
formance. The main reason can fall into two aspects: 1) they
ignore the inconsistency of brain networks between subjects,
which makes learning a good representation a challenge; 2)
they only consider the signal-level temporal dynamics ignoring
the graph-level temporal dynamics.

C. Ablation Study

1) The effectiveness of each component: To demonstrate the
effectiveness of our framework design, a careful ablation study
was conducted. Specifically, the comparison was conducted
between our method and the intermediate method or basic
method with a single component or a combination of multiple
components. The experimental results are reported in Table II.
Our systematic study suggests the following trends:

1. GSA-LSTM-CS (our model) yielded the best perfor-
mance with respect to all the metrics, demonstrating the
advantage of our proposed components.

2. We compared GSA-LSTM(w/o imputation) with a sim-
ple combination of GCN and LSTM (named GCN-LSTM),
where a series of temporal graph embeddings are obtained
by GCN and then fed into the LSTM without preserving the
graph structure. GCN-LSTM shows the worst performance
among the algorithms for all metrics, even worse than GC-
N. The result indicates that the GCN-LSTM model does
not appropriately capture the dynamic pattern in fMRI data,
which loses discriminative and robust temporal information.
The observation validates our motivation that incorporating
graph convolution into LSTM with considering the dynamic
graph structure variation is able to model the spatio-temporal
dependency.

3. The result demonstrates that adding SRL for the node em-
bedding learning allowed improving the capacity classification
performance for the dynamic graph modeling. It also demon-
strates that the BOLD signal and temporal graph structure are
complementary. Adopting a dual temporal learning scheme
for the brain network can take sufficiently advantage of the
temporal information to improve classification performance.

4. By comparing GSA-LSTM-C and GSA-LSTM, it can
be clearly observed that the temporal multi-graph clustering
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TABLE II: Ablation study on ABIDE dataset.

Method GCN LSTM  Clustering SRL  GSA-LSTM  Imputation ACC(%) AUC(%) SEN(%) SPE(%)
GCN VA 58.6 65.5 59.6 57.4
GCN-LSTM 4 v 58.4 58.8 59.1 57.1
GSA-LSTM w/o imputation v 64.3 63.1 62.5 65.5
GSA-LSTM v Vv 65.1 63.7 63.3 66.9
GSA-LSTM-C w/o imputation VA Vv 65.9 66.7 62.6 69.8
GSA-LSTM-C VA v v 67.2 68.8 64.1 68.0
GSA-LSTM-CS (ours) VA Vv v Vv 68.4 70.5 64.4 69.8

improves the discrimination capability of modeling the spatio-
temporal characteristic. Therefore, it is essential to design an
unified framework for jointly eliminating the inconsistency in
dynamic FCs.

5. GSA-LSTM, GSA-LSTM-C and GSA-LSTM-CS are all
better than the ones w/o imputation, verifying jointly training
of prediction and imputation is able to exploit the two com-
plementary tasks for improve the classification performance.

IV. CONCLUSION

Recently, functional connectivity networks constructed from
the functional magnetic resonance image (fMRI) hold great
promise for understanding the functional mechanisms of the
human brain distinguishing the patients with neurological
disorders from Normal controls. Learning dynamic graph
embeddings is aimed at modeling spatio-temporal dynamics
in brain networks for improved classification performance.
In order to achieve a better dynamic graph embedding from
brain networks, we develop a temporal graph representation
learning framework, which sufficiently exploit the spatio-
temporal features in rs-fMRI data through temporal multi-
graph clustering that removing noisy edges, BOLD signal
feature learning and temporal graph learning and imputing for
learning temporal characteristics in fMRI data. We conduct
extensive experiments on the ABIDE dataset to verify the
effectiveness of our model, which demonstrates its superior
performance compared with state-of-the-art baselines.
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