
Advantage of Integration in Big Data: Feature Generation in Multi-Relational
Databases for Imbalanced Learning

Farrukh Ahmed∗, Michele Samorani†, Colin Bellinger∗, Osmar R. Zaı̈ane∗
∗Department of Computing Science, University of Alberta, Canada

†Leavey School of Business, Santa Clara University, USA
Email: ∗{farrukh1, cbelling, zaiane}@ualberta.ca, †{msamorani}@scu.edu

Abstract—Most real world applications comprise databases
having multiple tables. It becomes further complicated in the
realm of Big Data where related information is spread over
different data repositories. However, data mining techniques
are usually applied on a single flat table. This work focuses
on generating a mining table by aggregating information
from multiple local tables and external data sources and
automatically generating potentially discriminant features. It
extends data aggregation techniques by navigating paths where
a single table is traversed multiple times. Such paths are not
considered by existing techniques, which results in the loss of
several attributes. Our framework also prevents leakage of the
class information by avoiding features built after the knowledge
of the class label. Experiments are performed on transactional
data of a U.S. consumer electronics retailer to predict causes
of product returns. In addition, we augmented the dataset
with Suppliers information and Reviews to show the value of
data integration. The results show that our technique improves
classification accuracy and generates discriminant features that
mitigate the impact of class imbalance.

Keywords-Data integration; Feature construction; Classifica-
tion; Class imbalance

I. INTRODUCTION

An ongoing and significant limitation in the realm of
data mining is the fact that the majority of data mining
and machine learning algorithms work with a single table,
whilst the potential knowledge is stored in data spread across
many tables, databases and even in raw formats such as
tweets, blogs and online comments. For example, Netflix
employs a recommendation system that utilizes extensive
data to suggest movies to users according to their tastes [1].
These recommendations can be further improved by incor-
porating publicly available data from sources like IMDB [2].
Nonetheless, very few tools exist to take advantage of data
integration in Big Data analytics.

Before harnessing the richness of the data mining tech-
niques, the relevant attributes of the data must be accu-
mulated in a single table. It is common practice for this
to be done manually, often with the support of domain
experts. This approach is both costly and time consuming.
Moreover, human analysts are likely to have their attribute
generation process implicitly, or explicitly, limited to the

domain standards. As a result, they are likely to omit features
that are unknowingly of great relevance to the problem.

Instead of handcrafted features, we argue that it is of great
benefit to devise means of automatically generating features
from dispersed data. In addition to speed and efficiency,
it offers the potential of generating informative features
that simplify the learning task. From the classification per-
spective, the generation of new features can increase the
separability of the classes. Our results suggest that this has
the potential to mitigate the impact of class imbalance.

To this end, we introduce the Generating Attributes with
Rolled Paths algorithm (GARP) that automatically generates
attributes from all the data sources and structures them
in a single table. In addition, we empirically evaluate the
AUC performance of the algorithm in the context of class
imbalance. We study these questions on the transactional
dataset from a large US electronics retailer [3].

II. RELATED WORK

A. Multi-relational Data Mining

Multi-relational Data Mining (MRDM) techniques help
in finding patterns and applying learning techniques on
databases which store information in multiple tables. The
existing approaches to feature discovery and classification
in MRDM can be divided into two categories. The first
approach is based on Inductive Logic Programming (ILP) to
extend learning techniques so that they can handle relational
data [4]. On the other hand, Propositionalization focuses on
aggregating data from multiple tables into a single table so
that traditional learning techniques can be applied [5].

ILP treats tables as entities comprising of facts. For
example, Customer(Bob, M, 25) and Product(Laptop, HP,
$900) represent facts [4]. The approach works by using the
induction engine to derive rules, based on First Order Logic,
for the prediction of the class. It is generally limited to the
binary existence quantifier; it can only tell if the row being
predicted has a related instance in the other table which
satisfies the predicate. For example, pastReturn(Customer)
tells whether the customer has returned a purchase, how-
ever, it cannot determine the number of purchases returned
by a customer. Additionally, the learning phase is tightly

coupled with the attribute generation phase which makes it
incompatible with most of the existing learning techniques.

Propositionalization approaches divide the relational
learning task into two steps. The first step is to navigate
associated tables in a database and summarize information
into a single table. The second step is to apply traditional
learning techniques on the table generated in the first step.

The Polka algorithm is one of the initial work related
to the aggregation of complex information from multiple
tables into a single table [6]. The authors introduce aggregate
functions in the propositionalization step to summarize infor-
mation for 1-to-many relationships. This can generate deeper
patterns compared to the ILP approach. It also generates
some specific patterns by adding refinements to the count
aggregation operator, such as the number of purchases made
by customers where the price of a product is above $100.
However, the Polka algorithm does not allow refinements
with other operators like average, sum, min and max.

The ACORA framework [7] for Automatic Construction
of Relational Attributes allows refinements with all types
of aggregation operators. Additionally, it introduces novel
distribution-based aggregations which perform well with
high dimensional categorical attributes. The main idea is
to construct features that utilize the information provided
by object identifiers that are usually dropped to build more
generalized models. Although ACORA introduces novel
distribution-based aggregators, it misses several important
features which can capture the past information. This lim-
itation arises because ACORA avoids generating attributes
which need a table to be joined multiple times (like Purchase
on Customer on Purchase).

The randomized propositionalization approach [8] does
not restrict the generation of attributes with such table
joins. However, allowing these attributes in the proposed
approach would result in leakage of the class information
in the training set [9]. Our approach, GARP, generates
attributes by joining a table multiple times without using any
future information. Our Dataconda framework demo briefly
introduces the concept of rolled paths [10].

B. Class Imbalance

Class imbalance occurs when the training instances from
one class are significantly outnumbered by the training
instances of the other class(es). In this research, we consider
the imbalance from a binary perspective. Class imbalance
occurs in a wide variety of important domains, from ra-
diation and oil spill to image and text classification. It has
been shown to have a negative impact on the performance of
induced classifiers [11]. Given the frequency of imbalanced
learning problems and the possibility of negative impacts,
it has been recognized as one of the ten most challenging
problems in data mining research [12].

The class imbalance problem has its greatest impact when
the target domain is highly complex. This may result from a

variety of factors, such as distribution form and modality of
the classes and the degree to which they overlap in the data-
space [11]. We are particularly interested in class overlap.

Class overlap occurs when the features of the data that
are provided to model the data do not serve to differen-
tiate classes. When there is a significant overlap in the
data distribution, and one class is underrepresented in the
training set, the classifier is forced to attempt a complex
decision regarding the position of the decision boundary
without sufficient information. The few borderline training
instances in the minority class can easily be overshadowed
by the many majority class training instances. As a result,
the decision boundary is placed inside the minority space,
causing minority instances to be misclassified.

Given the prominence of class imbalance, many methods
have been offered as means of mitigating its negative impact.
These include sampling methods, such as oversampling and
random undersampling (RUS), which balance the training
distribution by replicating minority instances or remov-
ing majority instances [13]. In order to avoid discarding
informative instances from the majority class, heuristic-
based undersampling methods have been proposed [14].
Cost-based methods have been shown to be theoretically
related to random undersampling in some cases [15]. They
influence the induction process to reduce the prediction bias
by increasing the relative misclassification cost for the mi-
nority class during training. Finally, synthetic oversampling
generates new training instances for the minority class based
on those available in the training set [16], [17].

Although each of these methods has been shown to reduce
the impact of class imbalance, the existing methods do not
offer an absolute solution. The only guaranteed method to
prevent the negative impact of class imbalance is to utilize
discriminative features so that an accurate decision boundary
can easily be induced. This is not always physically possible,
and moreover, feature engineering can be a costly and time
consuming process. When it is possible, however, acquiring
good features is likely the best way to dealing with class
imbalance, or at least the appropriate starting point.

Our proposed method, GARP, provides an automated pro-
cess to generate features, rather than engineer them, in big
data domains. Our empirical results show that these features
enable the baseline classifiers to outperform SMOTE and
random undersampling.

III. GENERATING ATTRIBUTES WITH ROLLED PATHS

Our objective is to construct a flat mining table by adding
attributes generated by aggregating information from related
tables within the database and external data sources as well.
Figure 1 shows a relational database with multiple tables
and external data sources. Purchase is the target table where
all the information needs to be aggregated before applying
learning techniques. There are multiple levels on which
related information of the Purchase table is distributed.

Figure 1: Retail Database with external sources of Suppliers
and Reviews

In real applications, databases can have tens, if not hun-
dreds, of tables which can exist on even deeper levels. In
addition, multiple external data sources, such as Review and
Supplier in Figure 1, can be available with similar complex
association levels. The graph in Figure 2 shows paths up to
depth ‘3’, to aggregate information from other tables to the
Purchase table within the retail store database.

Purchase

Customer Product

Purchase Purchase

depth = 1

depth = 2

depth = 3

Figure 2: Paths up to depth 3 within the retail database

The paths available at depth 3 are examples of rolled paths
as they navigate the Purchase table twice. GARP avoids in-
cluding duplicate information on rolled paths by performing
step-wise joins. For path Purchase — Customer — Purchase,
the aggregation operator is first applied for Customer on
Purchase (e.g. Total amount spent by a customer in the
past) which results in a single row for each customer. Then,
Purchase on Aggregation(Customer on Purchase) adds this
attribute to the Purchase table. In this way, GARP generates
attributes carrying past information. Our method aggregates
information from external data sources in a similar manner.

Leakage occurs when attributes are generated in the pres-
ence of the class label [9]. This can lead to an overestimation
of the classification accuracy. It is not appropriate to use the
return information of the purchase; however, including the
past information of returns is legitimate and provides useful
insights. For example, at the time of predicting a return, a
customer’s return history before that point can be used for
prediction. We avoid leakage of the class information by
considering dates to avoid future information.

IV. METHODOLOGY

A. Preliminaries
Our running example uses the database structure of our

retail store example with external data sources in Figure 1.

The features aggregated from the database are to be attached
to the Purchase table to form the flat mining table. It
includes a binary class attribute called return that indicates
if the purchase was returned or not. Each table in the
database is characterized by a name and a set of attributes.
These attributes have a type that is used to identify the
applicable aggregations and refinements. While aggregating
information from the related tables to the mining table, we
deal with 1− to−many and many − to− 1 relationships.

The external tables in our example are Supplier and
Review. Customers often review products on social media
and other forums which provide useful feedback and in-
formation about the acceptance of products. It is beneficial
to use this information to predict product returns. For the
purpose of demonstration, we assume that reviews have
been extracted from a public forum where users have rated
products with stars and left comments about them. Star
ratings are used directly as a numeric attribute and the
comments are analyzed via an opinion mining technique to
produce a categorical value of positive, negative or neutral.
Additionally, Product related information available on the
supplier’s website can be extracted and used along with the
customer transactions data to identify causes of returns that
might not be obvious without this information; for example,
returns due to the use of specific material or manufacturing
location may be discovered.

B. Path Generation

We first generate the possible paths to find out the
potential attributes in the database. Each path starts from
the target table which contains the class attribute and ends
at a table based on a specified depth level. The depth level
reflects the number of tables used to aggregate information.
It also determines the complexity of generated attributes.
The aggregation starts from the table at the end of the path
and brings the information to the target table.

For the retail database presented in Figure 1, we start
with the Purchase table at depth = 1. To find the paths that
exist at depth = 2, we look at the tables associated with the
Purchase table (Location, Customer and Product). For depth
= 3, we add more paths by joining the related tables for each
of the paths generated at depth = 2. In this way, we generate
paths by attaching the tables up to a specified depth level.
However, we restrict subpaths with a structure ‘A—B—A’,
where the relationship between A to B is 1-to-many and the
foreign key identifier joining A—B and B—A is same, as
such paths cannot result in any additional information.

C. Attribute Generation

After completing the path generation process, we aggre-
gate the information available at each path and add new
attributes to the target table. Aggregation starts from the
end of the path and information is rolled back to the target
table. Consider a path T0 — T1 — T2 — ... — Tl−1, where

l is the length of the path. For Ti — Ti+1 with i ranging
from l-2 to 0, an attribute is added to Ti by aggregating
information from Ti+1. The generated attribute is virtual to
these intermediate tables i.e. not materialized in these tables
and appears as an attribute directly in the target table T0.

Algorithm 1 Generating Attributes with Rolled Paths

Input: Target table T0, max depth level L
Output: Mining table

1: P = Paths generated up to depth level L
2: for l = 1 to L do
3: for each path p = (T0, ..., Tl−1) in P do
4: for i = l – 2 down to 0 do
5: attributes[Ti+1] = non-id attributes a1..an

6: virtual attributes[Ti+1] = non-id attributes v1..vn
7: if virtual attributes[Ti+1] is not empty then
8: candidate attributes = virtual attributes[Ti+1]
9: else

10: candidate attributes = attributes[Ti+1]
11: if Ti — Ti+1 is many-to-1 or 1-to-1 then
12: for each aj in candidate attributes[Ti+1] do
13: virtual attributes[Ti].add(aj)
14: else if Ti — Ti+1 is 1-to-many then
15: for each aj in attributes[Ti+1] + vir-

tual attributes[Ti+1] do
16: for each Agg compatible with aj do
17: /* Algorithm 2 */
18: Vi = Aggregation(Agg, aj , Ti, Ti+1)
19: virtual attributes[Ti] += Vi

20: Mining table = attributes[T0] + virtual attributes[T0]

The process of generating an attribute differs on the basis
of the relationship between Ti and Ti+1. For a many-to-
1 or 1-to-1 relationship between Ti — Ti+1, an attribute
from the table Ti+1 can be directly attached to the table
Ti. For example, Purchase — Customer has a many-to-1
relationship, so we can directly add attributes from Customer
to Purchase. However, if Ti+1 is not the last table in the path
then only virtual attributes from Ti+1 should be attached to
Ti because attributes that belong to Ti+1 are already attached
to the target table on a shorter path.

For a 1-to-many relationship between Ti — Ti+1, multiple
rows from Ti+1 are associated with each row in Ti. So for
each attribute in Ti+1, we need to apply an aggregation
operator which can summarize the information from multiple
rows related to a single row in Ti. We explain the aggregation
process in greater detail in the following subsection.

1) Aggregations and Refinements: It is essential to apply
aggregation operators for 1-to-many relationships to avoid
information loss in the attribute generation process. In
addition, aggregation operators can be complemented with
refinements to generate specific patterns. The procedure to
apply aggregation and refinements is shown in Algorithm 2.

Algorithm 2 Aggregation Procedure

Input: Aggregation Agg, attribute aj , Tables Ti and Ti+1

Output: Returns the list of virtual attributes, based on aj

1: Vi = []
2: if virtual attributes[Ti+1] is not empty then
3: if aj is in virtual attributes[Ti+1] then
4: candidate ref attributes = attributes[Ti+1]
5: else
6: candidate ref attributes = virtual attributes[Ti+1]
7: else
8: candidate ref attributes = attributes[Ti+1]
9: if both T0 and Ti+1 have a date then

10: date refinement = Ti+1.date < T0.date
11: /* Aggregation without refinement */
12: if virtual attributes[Ti+1] is empty then
13: for each x in Ti do
14: R = records in Ti+1 associated to x
15: vi(x) = Agg(R.aj) from R

[and R.date < T0.date]
16: Vi.add(vi)
17: /* Aggregation with refinement */
18: for each ak in candidate ref attributes do
19: for each Ref compatible with ak do
20: for each c in refinement values do
21: for each x in Ti do
22: R = records in Ti+1 associated to x
23: vi(x) = Agg(R.aj) from R where R.ak Ref c

[and R.date < T0.date]
24: Vi.add(vi)
25: return Vi

The aggregation process can be understood by the follow-
ing query:

SELECT Agg(T2.aj) FROM T1

JOIN T2 on T1.pk = T2.fk GROUP BY T1.pk

In Customer — Purchase relationship, the query can have:
aj = [online, price, quantity, return]
Agg = [Average, Sum, Min, Max]; for numeric attributes

= [Count, Count Distinct]; for categorical attributes
GARP applies all compatible aggregations with each of

the attributes. In addition, it is possible to define custom
aggregation functions that, given a list of values, return
a single value. The following attributes are examples of
aggregations applied on the path Customer — Purchase:

• Max(price): Maximum amount spent on a purchase
• Avg(return): Average number of returned purchases
The attributes shown above are generated by aggregation

operators without any refinements. The refinements can be
used to filter data in order to find specific patterns. The
refinement can be introduced as a where clause in the query:

WHERE ak Ref c

The suitable Ref operators based on the type of ak are:
Ref = [>, ≤, =, 6=]; for numeric

= [=, 6=]; for categorical
The two possible types of refinements based on the value

of ‘c’, in the refinement clause above are:
• toValue refinements; where c is a constant
• comparison refinements; where c is an attribute
The term ‘c’ for toValue refinements can be substituted

with all possible values of the attribute or values determined
by discretization techniques like binning. All values should
be used for categorical attributes and binning should be used
for numerical attributes. The following examples represent
toValue refinements for the aggregation Avg(P2.return) on
the path Purchase (P) — Customer — Purchase (P2):

• online = 1: Return history for online purchases
• price < $500: Return history for purchases below $500
On the other hand, comparison refinements can be used to

compare an attribute with another attribute of the same type
and dimension. An example attribute generated with a com-
parison refinement on the path Purchase (P) — Customer —
Purchase (P2) is Avg(P2.return) where P.online = P2.online.

V. SCALING THE ATTRIBUTE GENERATION PROCESS

The attribute generation phase results in a large number of
attributes based on different aggregations and refinements.
This extensive process becomes very time-consuming for
large datasets. In order to scale the algorithm, we analyzed
the algorithm to reduce its time complexity. We focused on
the aggregation and refinements step of the algorithm as it
is the most expensive stage in the whole process.

In Figure 3, we present the internal details of aggregation
and refinement steps. The Agg & Ref block provides details
of aggregation on the path Ti — Ti+1 with a 1-to-many
relationship. The aggregation step needs to structure data
based on the joined table before applying the aggregation
operator to summarize data. The inclusion of the refinement
adds one more step to filter this data before the aggregation.

Figure 3: Aggregating attribute vi from Ti+1 to Ti on path
(Ti — Ti+1) with Refinement

Consider the path Customer — Purchase to aggregate in-
formation related to the purchasing history of each customer.
The attributes in the Purchase table are:

attributes(4) = [online, price, quantity, return]
The aggregation operators used are:

aggregation operators(4) = [avg, sum, min, max]
Thus, there are 16 possible aggregations. Assume that re-
finement values and operators for each attribute are:

based on all possible values; with operators = [=]:
online(2) = [0, 1], return(2) = [0, 1]

based on 5 equal-width bins; with operators = [<]:
price(4) = [p1, p2, p3, p4], quantity(4) = [q1, q2, q3, q4]

Based on this, there are 12 possible refinements (refs):
refs =

∑n
i=1 Number of valuesi ∗ Number of operatorsi.

The total number of possible attributes are:
attributes = aggregations * (refinements + 1)

= 16 * (12 + 1) = 208
This means that the aggregation process has to go through

the structuring, filtering and aggregation phases 208 times.
However, we can make this process efficient by separating
the structuring and filtering phases from the aggregation
phase as shown in Figure 4. The temporary result generated
by the pre-processing step can be reused to compute several
attributes, that rely on the same structured and filtered data.
For example, all the (16) aggregations are performed in
conjunction with the refinement ‘price < p1’. A temporary
result can be generated for the refinement ‘price < p1’
and all these aggregations can be applied together. The
structuring and filtering steps would be reduced to 13 as:

Total preprocessing steps = 1 * (Total refinements + 1)
Hence, in the Customer — Purchase relationship, the num-
ber of times this structuring has to be performed is reduced
from 208 to 13. This helps in reducing the time complexity
significantly with an increasing data load.

Figure 4: Aggregating vi1, vi2, ... vin from Ti+1 to Ti on
path (Ti — Ti+1) with Refinement

VI. ATTRIBUTE SELECTION

The attribute generation process results in a huge feature
space for the mining table. A feature selection technique
can help to reduce the dimensionality by finding the best
predictors. For example, to find the causes of returns in the
retail database, feature selection helps to limit the attributes
to only real causes of returns.

We use lasso (least absolute shrinkage and selection
operator) [18] to select the features that are highly related to

the class. Lasso works by applying regression and forcing
the coefficients of attributes to be less than a specified value.
In this process, coefficients of some attributes are set to
zero and these attributes can be removed from the feature
space. Hence, Lasso results in sparse models which are
interpretable like subset selection and widely used in the
sciences and social sciences [19].

The benefit of using lasso is that it selects attributes
that are highly correlated with the class but do not have a
high correlation among themselves. In our feature generation
process, several attributes are generated that are very similar
to each other. For example, our technique generates an
attribute ‘average of return for a customer’ with several
refinements like ‘price < $500’, ‘price < $1000’, ‘price <
$1500’, etc. As these attributes are highly correlated with
each other, lasso will try to pick the best from them. In
this way, diverse attributes are selected and different reasons
behind product returns can be determined.

VII. EXPERIMENTAL SETUP

These experiments serve to evaluate GARP in terms of
three factors: a) the relative benefit of rolled paths in the the
aggregation of higher level tables in a relational database, b)
the benefit of aggregating features from external tables, and
c) the robustness of GARP to the problem of class imbalance
in classification of product returns.

A. Data

We conduct our evaluation on the real-world transactional
dataset from Circuit City, which was a large US electronics
retailer [3]. It contains around 115,000 purchases of around
20,000 products made by 20,000 customers. The ratio of
purchase:customer and purchase:product in the data is ap-
proximately 6:1. This does not provide enough representa-
tion of the purchasing behaviour of several customers and
products. Therefore, we sampled the dataset around products
to generate an information-rich subset to evaluate the full
potential of our technique.

We divide the dataset into three groups based on the
percentage of returns and randomly select products from
these groups ensuring that the percentage of returns is
similar to the percentage of returns in the complete dataset
(around 10%). In this way, we try to select products with
varying chances of return. There are three groups having
products with: high return percentage (>40%), medium re-
turn percentage (10-30%) and low percentage(<10%). Next,
we retrieve all the purchases and customers corresponding
to these products. Our selection results in 18,182 purchases
with 1,868 returns and we take 75% as the training set.

B. Classifiers and Sampling methods for Class Imbalance

We have selected six classification methods from the
Weka machine learning software to apply to the retail dataset
[20]. In particular, we apply ripper (JRip), C4.5 (J48),

Bayesian network (BN), random forest (RF), support vector
machines (SVM) and multilayer perceptron (MLP). These
have been selected to capture a wide breadth of learning
biases in order to maximize the generality of our results.

In order to evaluate our hypothesis that GARP selects and
attaches features to the target table that are helpful for data
suffering from the problem of class imbalance, we consider
two standard sampling methods, random undersampling and
SMOTE. The performance benefits of these methods are
compared to those of GARP.

VIII. EXPERIMENTS

A. Scalability

To evaluate the scalability of our GARP technique, we
executed the attribute generation procedure by varying the
sample size of the Retail database. We generated four
samples of the dataset with about 25%, 50%, 75%, and 100%
of the available data. All the experiments were conducted on
a laptop with Intel Core i7-6700HQ processor (6M Cache,
2.6GHz) and 12GB RAM.

We run our technique up to depth levels 3 and 4. Figure 5
reports the time taken to generate new attributes for the flat
mining table. The results presented in Figure 5 show that
increasing the size of the database increases the execution
time of GARP in a linear fashion at both depth levels of 3
and 4. The depth level 4 takes more time than depth 3, as
it involves an additional table in the joins.

0

1

2

3

4

5

6

7

8

25%
(30K)

50%
(60K)

75%
(90K)

100%
 (115K)

Ti
m

e
 (

m
in

u
te

s)

%age of data
(Number of Purchsaes)

depth = 3

depth = 4

Figure 5: Execution times for GARP at depth 3 and 4 by
varying the size of the dataset

B. Classification Performance

1) Retail Database Results: The results in this section
serve to demonstrate the relative benefit of aggregating
data into the target table from tables that are not directly
connected to the target table, and enabling rolled paths. To
do this, we report the AUC results produced on just the
target table (level 1), the aggregation of the target table with
tables directly connected (level 2), and the aggregation, with
rolled paths, of data from tables indirectly connected to the
target table at level 3 and level 4.

The first four rows of Table I depict the AUC results for
each classifier on the retail dataset without the inclusion of
the external data sources. The baseline results are shown in
the first row. These are the product of the target table without
aggregation. The second row shows the AUC results when
aggregation is performed without rolled paths. Finally, the
third and fourth rows depict the results produced with GARP
with rolled paths at levels three and four, respectively. The
last two rows report results which include the external data
sources, discussed in the subsequent section.

Table I: AUC results produced on the original table and the
augmented tables. The results in the rows marked by GARP∗

utilized the external tables of Supplier and Reviews as well.

Method (Depth) J48 RF BN JRIP SVM MLP

No Aggregations (1) 0.51 0.58 0.61 0.50 0.50 0.64
No Rolled Paths (2) 0.51 0.57 0.61 0.50 0.50 0.54

GARP (3) 0.68 0.75 0.77 0.61 0.76 0.77
GARP (4) 0.68 0.78 0.76 0.60 0.70 0.74

GARP (3)∗ 0.70 0.80 0.83 0.61 0.87 0.82
GARP (4)∗ 0.70 0.82 0.80 0.61 0.88 0.82

In each case, the classifiers that are induced on the data
aggregated by GARP from the retail database outperform the
alternate approaches. Moreover, the increase in performance
beyond both the baseline and the aggregation at level 2
without rolled paths is uniformly greater than 0.1 AUC. This
represents good improvement. RF produced the best overall
AUC result of 0.78 using the data aggregated by GARP (4).
BN and MLP produced similarly good improvements in the
AUC (0.77, 0.77) with data aggregated by GARP (3).

2) Retail Database + External Tables Results: Using
rolled paths and aggregating data into the target table from
less directly connected tables unveils a wealth of information
to the learner. In the previous section, we demonstrated
that this can lead to a large improvement in the AUC
performance of the induced classifier. As we have previously
stated, there is arguably even more potential in outside data
sources. This potential is demonstrated in the bottom two
rows of Table I.

The entries GARP (3)∗ and GARP (4)∗ in this table show
the AUC performance achieved at the respective levels of
the retail database when the outside sources, Review and
Supplier, are also included. In each case, with the exception
of JRIP, the AUC results improve when the outside data
sources are included. JRIP, however, maintains a similar
improvement over the baseline with GARP and GARP∗.

The best overall performance reported in the complete
table is, indeed, produced when the outside data sources are
included in the aggregation. This is a natural but important
result. If there is more good knowledge that could be
included, then doing so is of benefit to the classifier.

The classifier that benefits the most here is SVM. Inter-
estingly, although it perviously only improved slightly, the

availability of the external data elevates its performance be-
yond the other classifiers. This shows that the added features
may have different impacts on the classifiers. Moreover,
the fact that, in general, all of the classifiers improve after
aggregation with GARP provides strong evidence that GARP
is adding good discriminative features to the target table.

3) Class Imbalance: A potential benefit of our proposed
algorithm is that the process of aggregation discovers new
features that increase the separability in the classification
problem. When more discriminative features are added to
the target table, it becomes easier for the classifier to
induce a decision boundary that accurately separates the
classes. In this section, we report the AUC results of the
six classifiers using the aggregated data produced by GARP
when deployed in conjunction with RUS and SMOTE to deal
with the class imbalance. Given that the retail dataset is im-
balanced, our objective is to observe the impact of GARP on
the classifiers relative to the methods that were specifically
designed to mitigate the impact of class imbalance.

Table II summarizes our results with respect to the prob-
lem of class imbalance. The top row specifies the perfor-
mance of the target table without any aggregation; once
again, this is the baseline. The second and third rows depict
the AUC results produced on the target table aggregated by
GARP at levels three and four. These aggregations include
the external data sources. The columns specify the classifier
along with the method used to resolve the class imbalance
in the retail dataset. The sub-column marked by ‘-’ indicates
that no correction was applied before the induction of the
classifier, RUS indicates that random undersampling was
applied and SMT indicates that SMOTE was applied.

The results show that applying RUS prior to classifier
induction on the unaggregated table leads to a subtle increase
in the AUC for three of the six classifiers and applying
SMOTE leads to a small improvement on four of the
six classifiers. In no case, however, does the improvement
caused by be the sampling methods ameliorate the results to
the same degree as simply applying GARP at levels three or
four. In addition, the table includes the results of applying
GARP followed by the sampling methods prior to the
induction of the classifiers. The results show that application
of GARP alone achieves the highest AUC performance.
When sampling is applied in conjunction with GARP the
results are unchanged or get worse; for example, the latter
is the case for BN and SVM.

Whilst too narrow to generalize from, and we recognize
that these results do not include a comprehensive list of
the methods available to manage the class imbalance, we
see them as providing some initial evidence that GARP can
manage the class imbalance problem. Indeed, we see that on
this data, GARP leads to improvements that are not matched
by the imbalanced classification methods tested above. Our
future work will aim to generalize and solidify this finding
via an empirical study on a wider variety of datasets.

Table II: Demonstration of the robustness of GARP to class imbalance.

Method (Depth)
J48 RF BN JRIP SVM MLP

- RUS SMT - RUS SMT - RUS SMT - RUS SMT - RUS SMT - RUS SMT

No Aggregations 0.51 0.57 0.57 0.58 0.57 0.58 0.61 0.59 0.62 0.50 0.57 0.58 0.50 0.51 0.52 0.64 0.64 0.64
GARP (3)∗ 0.70 0.69 0.69 0.80 0.76 0.75 0.83 0.81 0.56 0.61 0.59 0.60 0.87 0.70 0.78 0.82 0.75 0.82
GARP (4)∗ 0.70 0.69 0.67 0.82 0.78 0.78 0.80 0.80 0.56 0.61 0.61 0.60 0.88 0.70 0.79 0.82 0.75 0.82

IX. CONCLUSION AND FUTURE WORK

We proposed a method, GARP, that automatically gener-
ates attributes for a mining table from the entire database as
well as external data sources. GARP generates attributes,
containing useful information from the past, missed by
existing techniques.

Our experiments on the data from a large U.S. consumer
electronic retailer Circuit City suggest that our method
can improve classification accuracy and mitigate the effect
of class imbalance by generating discriminant features. In
addition, the benefits of data integration are obvious in
experiments with the inclusion of Supplier and Review data.

Our methodology has room for improvement. GARP gen-
erates a large number of attributes by exploring all possible
paths in the database. This extensive process also generates
some attributes that are not very useful. A future study
can focus on pruning some less beneficial paths based on
some heuristics to reduce the overall computation overhead
of generating attributes. Another study can be focused on
parallelizing the attribute generation process. Our scalability
analysis shows that the time complexity of our approach is
linear. The computation time can be further reduced with an
efficient approach to distribute the work on several machines.

REFERENCES

[1] X. Amatriain, “Mining large streams of user data for per-
sonalized recommendations,” ACM SIGKDD Explorations
Newsletter, vol. 14, no. 2, pp. 37–48, 2012.

[2] J. Lees-Miller, F. Anderson, B. Hoehn, and R. Greiner,
“Does wikipedia information help netflix predictions?” in
Seventh International Conference on Machine Learning and
Applications (ICMLA). IEEE, 2008, pp. 337–343.

[3] J. Ni, S. A. Neslin, and B. Sun, “Database submission-the
isms durable goods data sets,” Marketing Science, vol. 31,
no. 6, pp. 1008–1013, 2012.

[4] N. Lavrac and S. Dzeroski, “Inductive logic programming,”
WLP, pp. 146–160, 1994.

[5] S. Kramer, N. Lavrač, and P. Flach, Propositionalization
approaches to relational data mining. Springer, 2001.

[6] A. J. Knobbe, M. De Haas, and A. Siebes, “Propositional-
isation and aggregates,” in Principles of Data Mining and
Knowledge Discovery. Springer, 2001, pp. 277–288.

[7] C. Perlich and F. Provost, “Distribution-based aggregation
for relational learning with identifier attributes,” Machine
Learning, vol. 62, no. 1-2, pp. 65–105, 2006.

[8] M. Samorani, M. Laguna, R. K. DeLisle, and D. C. Weaver,
“A randomized exhaustive propositionalization approach for
molecule classification,” INFORMS Journal on Computing,
vol. 23, no. 3, pp. 331–345, 2011.

[9] S. Rosset, C. Perlich, G. Świrszcz, P. Melville, and Y. Liu,
“Medical data mining: insights from winning two competi-
tions,” Data Mining and Knowledge Discovery, vol. 20, no. 3,
pp. 439–468, 2010.

[10] M. Samorani, “Automatically generate a flat mining table with
dataconda,” in 2015 IEEE International Conference on Data
Mining Workshop (ICDMW), Nov 2015, pp. 1644–1647.

[11] H. He and E. A. Garcia, “Learning from imbalanced data,”
IEEE Transactions on knowledge and data engineering,
vol. 21, no. 9, pp. 1263–1284, 2009.

[12] Q. Yang and X. Wu, “10 challenging problems in data mining
research,” International Journal of Information Technology &
Decision Making, vol. 5, no. 4, pp. 597–604, 2006.

[13] B. C. Wallace, K. Small, C. E. Brodley, and T. A. Trikalinos,
“Class imbalance, redux,” in 11th International Conference
on Data Mining. IEEE, 2011, pp. 754–763.

[14] M. Kubat and S. Matwin, “Addressing the curse of imbal-
anced training sets: One-sided selection,” in 14th Interna-
tional Conference on Machine Learning, 1997.

[15] K. McCarthy, B. Zabar, and G. Weiss, “Does cost-sensitive
learning beat sampling for classifying rare classes?” in 1st
international workshop on Utility-based data mining, 2005,
pp. 69–77.

[16] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: synthetic minority over-sampling tech-
nique,” Journal of artificial intelligence research, vol. 16, pp.
321–357, 2002.

[17] C. Bellinger, “Beyond the boundaries of smote: A framework
for manifold-based synthetic oversampling,” Ph.D. disserta-
tion, University of Ottawa, 2016.

[18] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society. Series B
(Methodological), pp. 267–288, 1996.

[19] P. Zhao and B. Yu, “On model selection consistency of lasso,”
Journal of Machine Learning Research, vol. 7, no. Nov, pp.
2541–2563, 2006.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an update,”
ACM SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–
18, 2009.

