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Abstract—Over the last few years, associative classifiers have
shown massive success in mining patterns using association
rules. These rule-based classifiers offer a level of human in-
terpretability, addressing a common concern stemming from
several deep learning models. Various associative classifiers have
been proposed over the past that have shown state-of-the-art
performance. However, those classifiers suffer the limitation of
requiring parametric values which vary across different datasets.
Furthermore, those frameworks do not consider the statistical
significance of the rules. Recently, some works have addressed
this limitation by proposing an associative classifier that incorpo-
rates the idea of using statistical significance to mine association
classification rules. Though the recent associative classifiers show
good performance, their performance is greatly affected by the
dimension of the data. In this study, we explore the weakness of
the recent associative classification models and experiment with
using ensemble models to overcome such limitations, particularly
on aggregating the ensemble models in a concise but effective
predictor. We use 10 UCI datasets for evaluation of our new
approach. From our study, we find the results based on the
ensemble model with a delayed pruning are very competitive
and can better handle large dimensional data spaces.

Index Terms—Rule based Classification, Ensemble Model,
Interpretable Model.

I. INTRODUCTION

Classification is a supervised machine-learning task where
labels of the instances are predicted for the given set of
inputs [1]. Most machine learning or deep learning models for
classification act as a black box [2] which means the decision
process is difficult to interpret for a certain set of input data.
Interpretability becomes a critical concern in specific domains
where understanding how a particular decision is reached
holds significant importance. Furthermore, these deep learning
models use an extensive amount of learning parameters which
requires huge computation time. Associative classifiers are a
type of rule-based classifiers that overcome to some degree
the limitation of interpretability. Associative classifiers have
been exploited in various areas including health care domain

[3] [5] [6], the financial industry for fraud detection from
credit cards [7] etc. Associative classification derives from
a common and canonical data mining task for discovering
associative patterns in transaction data, known as association
rule mining. Association rule mining is the process of finding
the relationship between the items in the dataset [4]. An
association rule is a statement in the form X → Y , where
X is an antecedent set and Y is a consequent set both
subsets of the set of all items. An associative classification
rule is an association rule on which some constraints are
imposed, namely that the consequent Y is a class label [11].
Since associative classifiers provide interpretable results, in
the past, different studies have explored various models of
associative classification. Associative classifiers such as CBA
[12] make use of the Apriori algorithm to generate a set
of rules for classification. Similarly, CMAR also uses the
FP growth method to mine association rules [13]. Although
the above classifiers resolve the issue of interpretability, they
rely on prior knowledge of the parametric values such as
support and confidence. These parameters would be dataset-
specific and are difficult to set or tune. Recently, to overcome
this limitation, Li and Zaiane [14] proposed an associative
classifier named SigDirect that uses statistical significance
to generate rules instead of relying on support values. The
work of Li and Zaiane [14] leverages the Kingfisher algorithm
[16] to find rules based on statistical dependencies. The
classifier shows competitive results, however, it may produce
noisy rules that could impact classifier performance. Sood and
Zaiane [11] extended the work of SigDirect [14] by proposing
SigD2 where a two-stage pruning strategy was introduced to
prune the redundant rules to effectively reduce noise. SigD2
generates less rules, allowing better interpretability [11] and
in some cases provides better accuracy compared to SigDi-
rect. Although both SigDirect and SigD2 provide competitive
accuracy, these classifiers have performance issues in high-
dimensional spaces. We speculate that the limitation comes
from the implementation of the Kingfisher algorithm using a
one hot vector representation [16]. Since both classifiers use
the Kingfisher algorithm, they also inherit the limitations of
Kingfisher in terms of dimensionality restrictions.

To remedy the performance issue, we attempt to solve the
high dimensionality problem by dividing the large feature
space in a clever ensemble procedure. Very recently, Kabir
and Zaiane [17] attempted to deal with the issue of high-
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dimensional feature processing in the Kingfisher by proposing
CFAR, an ensemble model that considers a subset of feature
vectors during training using a base learner. We are inspired
by the CFAR model and propose CFAR++ which attempts to
find the significance of rules using the entire training dataset
and delays the rule pruning after aggregation to benefit from
the entire rule set. The main contributions of this study are as
follows:

1) We exploit the idea of CFAR [17] by changing the
pruning strategy to improve the performance of previous
associative classifier in terms of accuracy and number of
rules.

2) The approach shows competitive performance in terms
of accuracy, memory consumption and run-time.

The rest of the paper is organized as follows: Section
II discusses the related works, Section III provides detail
of our proposed model, Section IV provides the specific
description of the dataset. Section V discusses the results of
the proposed model in contrast to other state-of-the-art models,
and finally, Section VI provides our concluding remarks and
future research direction.

II. RELATED WORK

Over the last few years, the idea of developing rule-based
classifiers has been given a boost due to their performance
and interpretability. The work done by Bayardo [20] used
association rule mining to discover classification rules using a
brute force technique. Liu et al. [12] investigated a classifier
named CBA that performs classification based on the set of
association rules referred to as class association rules (CARs).
The classifier utilizes the Apriori algorithm to generate CARs
and then prune the redundant ones. Followed by their work,
many different associative classifiers were introduced. CMAR
[13] uses the FP growth method to mine association rules.
The CMAR pruning is performed using different parameters
like confidence value, the coverage in the database, and its
correlation. Later, CPAR: Classification based on Predictive
Association Rules was introduced in the work of Yin and
Han [15]. This work focuses on two limitations: first, a large
number of rule generations, and second, the comparison based
on the confidence value. Their approach makes use of both
associative classifiers and rule-based techniques to exploit the
training set using a greedy approach during rule generation.
Another work by Zaiane and Antonie [21] also attempted
to investigate the limitation of associative classifiers which
generate a large number of rules by introducing a new pruning
strategy.

One of the limitations of the above classifiers is that
they require the use of parametric values like support and
confidence and these values are data-specific and very difficult
to tune. To overcome this limitation, Li and Zaiane [14]
introduced an associative classifier named SigDirect that mines
rules based on statistical significance. In their work, they
stress that a strong support value does not necessarily indicate
strong significance. To find the significance of rules, the
authors extend the work of Hamalainen [16] to mine rules

based on significance and not based on the frequency of the
rule during the rule generation process. Though their model
showed good performance, it was observed that SigDirect
produces a large number of rules that might add noise to
the final classification. Sood and Zaiane [11] introduced two-
stage pruning where they add an additional pruning step in
SigDirect. The work of Sood and Zaiane did extensive pruning
by significantly reducing the number of rules in a few datasets
without compromising the accuracy of the classifier. Very
recently, Kabir and Zaiane proposed Classification by Frequent
Association Rules (CFAR) [17] where they focused on dealing
with the performance issue arising due to high dimensional
features. Their approach has three main phases. The first step
follows the classic ensemble approach with SigD2 used as the
base classifier. The base classifier in this step performs both
rule generation and pruning. In the next steps, the rules are
aggregated based on their relative frequency and compared
against a certain frequency threshold. These steps consider
finding the optimal threshold value automatically. The final
step performs prediction based on the joined rules . Their
results indicate that an ensemble-based approach could be
a potential way to resolve the performance issues of the
Kingfisher algorithm in the SigD2 classifier - ie. limited to
about 30 dimensions. From this we are inspired to extend the
CFAR model and propose CFAR++.

III. PROPOSED METHOD

We explore a different approach to deal with the perfor-
mance issue by articulating that the issue arises with high
dimensional data in the Kingfisher algorithm.

From the literature we found that an ensemble method can
solve the performance issue of associative classifier in the case
of dataset with high dimension [17], [18], [19]. In the case of
using an ensemble of Associative classifiers for rule based
classification, one can collect all the rules learned from the
base learners to form the final model. However, selecting all
the rules can include noisy rules which affects the performance
of the model. To solve this they selected the rules which
are very frequent among the base learners. Getting inspired
from their work, we adopt and exploit the same idea. For
selecting the frequent rules, they introduced the term Relative
Frequency Ratio(RFR). We also use this value. In addition,
we use Fisher’s exact test [30] for selecting rules.

While designing CFAR, the authors speculated that the
base learner may generate many rules which might not add
information in the classification process rather introduce noise
in the process. For this reason they present a simple pruning
approach based on the frequency of the rules among the base
learners. However, in their approach the statistical significance
of the rules over the whole dataset was not considered while
selecting the rules. We further speculate that there can be many
rules which might be frequent among the base learners but not
statistically significant for the entire dataset. Since each of the
base learners selects a subset of the features, it is possible
that one pair of features might be selected often among base
learners and therefore many base learners may produce the



same rule with these features. For this reason we introduce an
additional pruning strategy where we consider the statistical
significance of the rules on the entire dataset with their
frequency which might further enhance the performance of
the ensemble model by removing noisy rules. In our approach
there are four main steps:

1) Training base learners: For the Rule generation phase
we split the entire dataset into 80%-20% where we use 80%
of the data for training and the rest 20% for validation. Then
we again split the training data into 80%-20% and now we use
the 20% data for testing purpose. To train each base learner
we take a random subset of the feature vector of size 30.
This subsample of the features are randomly selected with
replacement and shuffle. After training 100 base learners with
the training data, we gather all the rules generated by the base
learners.

2) Find optimal T value: Instead of keeping all the rules
gathered from the whole ensemble, the idea is to keep only the
most popular rules among base learners and discard the rest.
In this step we select rules based on frequency first. For each
rule, the relative frequency ratio is calculated to select only
those rules which are more frequent. The Relative Frequency
Ratio of a rule is compared against the threshold value T to
identify if the rule is frequent or not. We calculate the RFR
of any rule R by Equation 1.

Relative frequency ratio(R) =
Frequency(R)

max frequency
(1)

where Frequency(R) is the number of base learners that
derived R and max frequency is the largest frequency of
any rule. If the RFR of a rule is greater than T, then the
rule is selected otherwise it is discarded for the next step.
To empirically find the optimal value of T, we need to
do experiments attributing different values for T. From our
experiment we find there is no specific value for this threshold
which provides optimum result for all the dataset. We plot
the performance of the model for different values of T in
Figure 2. From Figure 2, we see for different datasets different
values of T provide best results. Thus in this step we test the
model with different values of T starting from 0.0 to 1.0 and
select the value which provides the best result on test data. We
provide the algorithm of finding optimal T value in Algorithm
1 which we adopted from [17] and made necessary changes.
We also provide in Table II a sample of selected rules using
threshold value T for one of the dataset that we used. From
Table II we can see, the number of selected rules are only
13 for the final prediction whereas from our experiment we
find the total generated rules by the base learners was 1848.
This makes a huge advantage for both classification process
in terms of memory and run time and for the interpretation of
result. Indeed, to understand decision process of the classifier,
we only need to analyze 13 rules. From Table II we can see it
is very convenient with a small number of rules to interpret the
learned model and understand the decision of the classification
process.

Algorithm 1 Rules selection based on RFR
Input: Rules: all rules generated by base learners; T:
Threshold value to select Rules.
Output: Selected rules: rules with RFR ≥ T

1: Selected rules ← []
2: for r in Rules do:
3: if RFR(r) ≥ T:
4: Selected rules.append(r)
5: end if
6: end for
7: return Selected rules

TABLE I
UCI DATASET INFORMATION

Dataset Transactions Features Class
hline Anneal 898 67 5

Adult 48842 95 2
Ionosphere 351 155 2

Heart 303 47 5
Horse 368 83 2

Hepatitis 155 54 2
Glass 214 41 6

PageBlocks 5473 41 5
Pima 768 36 2
Wine 178 65 3

TABLE II
RANKED SELECTED RULES IN STEP 2 FROM THE HORSE DATASET WITH

THEIR FREQUENCY AND RFR. EACH RULE IS IN THE FORM OF
”ANTECEDENT → CLASS LABEL;(SUPPORT, CONFIDENCE,

-LN(P-VALUE))” WHERE ANTECEDENT IS A CONJUNCTION OF TOKENIZED
FEATURES. FOR READABILITY, TOKENS COULD BE MAPPED BACK TO

FEATURES (ATTRIBUTE-VALUE PAIRS)

Selected Rules Frequency RFR
1 0 → 0;(0.5277,0.873,-54.379) 40 1
2 63 → 1;(0.0340,0.889,-6.068) 39 0.975
3 49 → 0;(0.0894,0.840,-4.528) 33 0.825
4 1 → 1;(0.3064,0.791,-57.129) 31 0.775
5 64 → 0;(0.1447,0.944,-13.211) 26 0.65
6 55 → 0;(0.1191,0.903,-8.601) 25 0.625
7 60 → 0;(0.1915,0.738,-4.093) 25 0.625
8 15 → 0;(0.4000,0.718,-8.093) 25 0.625
9 48 → 0;(0.1957,0.821,-8.635) 24 0.6

10 54 → 0;(0.1064,0.833,-5.093) 24 0.6
11 78 → 0;(0.1447,0.919,-11.476) 24 0.6
12 62 → 1;(0.0681,0.800,-9.304) 24 0.6
13 12 → 1;(0.0936,0.595,-5.567) 24 0.6

3) Pruning: After selecting rules in the previous step,
we consider testing each of the selected rules for statistical
significance on the entire dataset. If any of the selected rules
is not statistically significant, we consider those rules as noisy
rules and prune them. For this we adopted the work of Li and
Zaiane [14] where they measured the statistical significance



Fig. 1. Proposed model of CFAR++

TABLE III
COMPARISON BASED ON THE ACCURACY

Dataset SigD2 CFAR using SigDirect CFAR++ using SigDirect CFAR using SigD2 CFAR++ using SigD2
Anneal 0.9238 0.8165 0.9562∗ 0.8261 0.9516∗

Adult 0.8363 0.8282 0.8293 0.8118 0.8354
Ionosphere 0.9038 0.9275 0.9233 0.9404 0.9184

Heart 0.5572 0.5294 0.5119 0.5368 0.5157
Horse 0.7568 0.8187 0.7802 0.8325 0.7818

Hepatitis 0.7718 0.7767 0.8182∗ 0.7819 0.8056∗

Glass 0.5562 0.5777 0.5903∗ 0.5834 0.5979
PageBlocks 0.9045 0.3164 0.9155∗ 0.4058 0.9155∗

Pima 0.7154 0.7818 0.8015∗ 0.7936 0.8064
Wine 0.8637 0.8928 0.8226 0.9114 0.8329

Average 0.7789 0.7265 0.7949 0.7424 0.7961
* In paired t-test, improvement of CFAR++ over CFAR is statistically significant

Fig. 2. Performance of the model for different values of Threshold T on 10
different datasets

of each of the class association rules on the dataset. We use
an instance centring approach for this purpose. We count how
many instances from the training dataset select each of our
rules. With this count value we calculate the PF value of each

of the rules. If PF is greater than equal to a certain threshold
values i.e PF ≥ α we prune that rule. In our case we use
α = .05, the conventional P-value used in most statistical
research. With this value of α we prune rules from the set
which were selected in the previous step.

4) Class label prediction: The last step is the class label
prediction. From the previous step we get the final selected
rules (representing the learned model) that we use for our
classification process to predict the class label of a given
instance. For each of the instances of the validation data, we
select the applicable rules and apply those rules to predict the
class label for each of the instances. With the predicted class
label, we calculate the performance of the model. The whole
architecture is shown in Figure 1.

IV. DATASET

We use 10 different UCI datasets [26] to evaluate our
proposed model CFAR++. These are the same datasets used
in previous studies. Before using a dataset we discretize the
numerical values as stated in [27]. We convert the features
to a binary feature vector. We used the same vector form of
discretized values for all our experiments with all contenders.



TABLE IV
COMPARISON BASED ON THE AVERAGE NUMBER OF RULES SELECTED FOR

PREDICTION

Dataset SigD2 CFAR
using
SigDi-
rect

CFAR++
using
SigDi-
rect

CFAR
using
SigD2

CFAR++
using
SigD2

Anneal 42.0 18.5 35.9 14.9 33.3
Adult 64.0 56.5 57.4 54.7 54.2
Ionosphere 67.0 92.9 33.6 121.1 33.8
Heart 60.0 101.7 28.6 84.25 27.6
Horse 83.0 30.7 31.6 71.8 25.2
Hepatitis 26.0 5.8 21.1 5.2 15.8
Glass 46.0 126.8 39.0 113.8 35.0
PageBlocks 24.0 20.55 25.0 27.9 22.6
Pima 17.0 13.8 11.4 15.05 11.0
Wine 23.0 60.05 18.0 66.2 14.0
Average 45.20 52.73 30.16 57.49 27.25

TABLE V
COMPARISON ON MEMORY CONSUMPTION (MEGABYTE)

Dataset SigD2 CFAR
using
SigDi-
rect

CFAR++
using
SigDi-
rect

CFAR
using
SigD2

CFAR++
using
SigD2

Anneal 140.0 150.25 154.1 153.6 150.3
Adult 572.0 568.85 545.9 561.95 568.65
Ionosphere 523.0 142.7 145.95 145.75 141.75
Heart 176.0 212.15 221.2 286.95 212.1
Horse 440.0 146.15 152.9 148.05 148.5
Hepatitis 201.0 167.3 175.15 182.7 171.25
Glass 105.0 149 157.1 148.3 147.6
PageBlocks 125.0 182.95 208.8 198.3 175.5
Pima 103.0 154.85 157.8 163.2 159.35
Wine 107.0 135.3 137.7 137.5 138.6
Average 249.20 200.95 205.66 212.63 201.36

As we mentioned earlier, to test our model CFAR++, we use
20% of the dataset to validate our model. We further divide
the rest 80% of the data into train and test data in the ratio
of 80% and 20% respectively. For all other models, we use
80% of the data to train the model and rest 20% is used as
test data. We show the information of the dataset in Table I.

V. RESULT ANALYSIS

We experimented with our ensemble approach and com-
pared it against SigD2, and CFAR. We report the result of
CFAR and CFAR++ with an average of over 20 runs for each
dataset. For CFAR and CFAR++, experiments with both the
SigDirect and SigD2 as a base learner as SigDirect uses a
one step pruning strategy and SigD2 use a two step pruning
strategy. We are interested to observe how our proposed
model performs using both of them as base learners. While

TABLE VI
COMPARISON OF RUN TIME IN (SECONDS)

Dataset SigD2 CFAR
using
SigDi-
rect

CFAR++
using
SigDi-
rect

CFAR
using
SigD2

CFAR++
using
SigD2

Anneal 4.41 12.04 16.01 22.23 18.87
Adult 88.96 284.25 175.62 639.91 262.57
Ionosphere 1204.71 8.87 10.19 9.90 11.39
Heart 4.83 164.52 102.40 53.36 94.68
Horse 16.65 10.26 11.66 11.93 12.53
Hepatitis 5.04 12.53 17.12 13.86 13.56
Glass 0.50 11.53 22.37 15.98 23.61
PageBlocks 10.20 73.48 74.17 142.05 75.79
Pima 0.322 15.48 18.01 19.18 17.95
Wine 0.254 4.55 4.71 5.04 4.53

using SigD2, we use a 30% confidence threshold since in
the proposal of SigD2 [28], the authors conducted sensitivity
analysis on the threshold and show that a threshold value from
30% to 50% yields the best results. As CFAR has effectively
dealt with the performance issue, therefore, one of the main
goals of CFAR++ was to make it efficient by reducing the
number of rules and improving accuracy or not compromising
it significantly.

1) Accuracy: Table III shows the different approaches
compared against the accuracy measure, We observe, in most
cases, the ensemble-based approach surpasses the accuracy test
on most of the datasets when compared against the original
SigD2. Specifically, comparing CFAR++ and CFAR, we find,
CFAR++ performed relatively well on a majority of datasets.
For Ionosphere, Horse, and Wine, CFAR performs well,
however, CFAR++ still provides competitive performance.
On average, given all 10 datasets, CFAR++ performs better
equally with SigDirect or SigD2 as base learner.

2) Comparison based on number of rules: With the as-
sociative classifier, the number of rules plays a significant
role. The more rules constitute the learned model, the less
interpretable it is. The goal is to have the least number of
rules without compromising the accuracy. Table IV compare
the different approaches based on the number of rules used
by the classifier for prediction. When CFAR++ is compared
against SigD2, in some cases the number of rules is very
close. However, for datasets like Ionosphere, Wine, Heart,
Horse, and Hepatitis, CFAR++ generates way less rules. When
comparing CFAR and CFAR++ from the Table IV, it is to be
noted that for some datasets, the number of rules generated
by CFAR++ is lower. For example, with the Glass dataset, the
number of average rules generated by the CFAR classifier was
126.8/113.8, however, with CFAR++ the number of average
rules is 39.0/35.0 which is significantly smaller. Furthermore,
by comparing the accuracy of CFAR and CFAR++ models on
the Glass dataset in Table III, the CFAR++ has gained major
accuracy which indicates that CFAR++ generates more non-



redundant rules and yields better accuracy.
3) Memory analysis: The memory consumption was mea-

sured using psutil python library. Table V highlights the
comparison between the different models SigD2, and two
ensemble-based approaches, CFAR and CFAR++, using base
learners. When CFAR++ is compared against CFAR, we
observe that in most cases the memory consumption of both
methods is very close. However, when CFAR++ is compared
against the original SigD2, CFAR++ consumes comparatively
less memory for datasets like Adult, Ionosphere, Horse, and
Hepatitis. This is because despite the overhead generated by
the ensemble, each base learners deals only with a subspace
of the feature set while SigD2 struggles with large dimen-
sions. These results indicate that ensemble-based is a possible
direction to improve performance based on memory.

4) Run Time: It is observed from Table VI that SigD2
seems faster. This is expected because both CFAR and
CFAR++ are ensembles that call SIGD2 or SigDirect 100
times. Still, CFAR++ and CFAR have shorter runtime on Horse
and Ionosphere. It is to note that the runtime greatly depends
on other processes running while experimenting with a certain
classifier. In addition to that the runtime that we record in
our experiment is on a different device from the work of
the previous authors [11] [17]. Thus our reported runtime is
slightly different from the one stated in previous works.

VI. CONCLUSION

In this study we persist in improving the idea of an ensemble
of associative classifiers to address performance limitations
of the Kingfisher algorithm built-in the already excellent
SigDirect and SigD2 due to high dimensionality. From our
experiment we find that our ensemble approach CFAR++,
where we change the pruning strategy of CFAR, also provides
a competitive performance. Both of the approaches improve
the performance of previous classifier in terms of memory
consumption and run time.
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