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ABSTRACT
Rule-based classifier has shown its popularity in building
many decision support systems such as medical diagnosis
and financial fraud detection. One major advantage is that
the models are human understandable and can be edited.
Associative classifiers, as an extension of rule-based classi-
fiers, use association rules to associate attributes with class
labels. A delicate issue of associative classifiers is the need
for subtle thresholds: minimum support and minimum con-
fidence. Without prior knowledge, it could be difficult to
choose the proper thresholds, and the discovered rules within
the support-confidence framework are not statistically sig-
nificant, i.e., inclusion of noisy rules and exclusion of valu-
able rules. Besides, most associative classifiers proposed so
far, are built with only positive association rules. Negative
rules, however, are also able to provide valuable information
to discriminate between classes. To solve the above men-
tioned problems, we propose a novel associative classifier
which is built upon both positive and negative classification
association rules that show statistically significant depen-
dencies. Experimental results on real-world datasets show
that our method achieves competitive or even better perfor-
mance than well-known rule-based and associative classifiers
in terms of both classification accuracy and computational
efficiency.

Categories and Subject Descriptors
D.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data Mining

General Terms
Algorithms
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icance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, Australia.
c© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2806416.2806524.

1. INTRODUCTION
The task of mining association rules over market basket

analysis was introduced in [3] which aims to find associa-
tions between items or itemsets in a transaction database.
The data is typically retail sales in the form of customer
transactions, but can be any data if it is transformed to
transactions like image data or text data. The problem is
formally defined as follows: assume a transaction dataset D
consists of a set of items I = {i1, i2, ..., im}, each transaction
T is a set of items such that T ⊆ I and is associated with a
unique identifier. A transaction T is said to contain X, i.e.,
a set of items in I, if X ⊆ T . Then an association rule is
an implication of the form “X → Y ”, where X ⊆ I, Y ⊆ I,
and X ∩ Y = ∅. The rule X → Y has a support s in the
transaction set D if the percentage of transactions in D that
contain X and Y is s. It is also said that the rule X → Y
holds in the transaction dataset D with confidence c if the
percentage of transactions in D that contain X also contain
Y is c. The problem of discovering all association rules from
a set of transactions D consists of generating association
rules that have a support and confidence greater than given
thresholds. These discovered rules are called strong rules.

Classification is another common task in data mining and
machine learning [15, 19, 26, 27]. A classifier is a system
that is able to assign an unlabeled object to one or more pre-
defined classes. Usually, it is created by building a learning
model on the training data whose class labels are known in
advance, then its ability to discriminate between classes is
evaluated on the test data. Associative classification [25] is a
classification method that integrates association rule mining
and classification together. To build an associative classifier,
classification association rules (CARs) with consequent as
class labels are first mined by association rule mining tech-
niques. Afterwards, some noisy CARs are pruned to improve
the prediction performance, the remaining CARs form the
actual associative classifier and these CARs are able to pre-
dict classes for unlabeled test data.

Existing associative classification methods mine the train-
ing dataset mostly in an Apriori-like way [4] or through a
FP-growth approach [22], both of which are based on the
support and confidence paradigm. However, appropriate
support and confidence thresholds are not easy to determine.
Besides, according to Webb [36, 37], traditional association
rule mining methods have the risk of false discoveries such
that the antecedent part and consequent part of some rules
are not strongly correlated. In the worst cases, we may find
all spurious rules while miss all rules with strong correlation.
On the other hand, most associative classifiers proposed so



far use only positive CARs (rules of the form X → C) in the
classification process. In addition to positive CARs, nega-
tive CARs are also able to provide valuable information to
discriminate between classes. A negative CAR is in one of
the following form: X → ¬C or ¬X → C (where X and
¬X indicate the presence and absence of itemset X, respec-
tively). Let us consider the following example:

Example 1. For a binary classification problem, assume
we discover some positive and negative CARs, such as: X →
c1, Y → c2, XY → ¬c1. Now we have a new unlabeled in-
stance XY , how to classify it? When only positive CARs
X → c1 and Y → c2 are considered, both c1 and c2 are pos-
sible as there is a matching rule for either c1 or c2. But the
classification task is easier since we have another negative
CAR XY → ¬c1 which reinforces the decision in favor of
class c2.

In this paper, we propose a novel associative classifier to
tackle the above mentioned issues. Following traditional
associative classification methods, the proposed associative
classifier consists of three steps: rule generation, rule prun-
ing and rule classification.

The main contributions of this paper are as follows:

1. A novel associative classifier is proposed, it achieves a
competitive or even better performance compared with
some well-known rule-based classifiers in terms of both
classification accuracy and computational efficiency.

2. By extending the Kingfisher algorithm in [20], we are
able to find the complete set of both positive and neg-
ative CARs that show statistically significant depen-
dencies efficiently.

3. We develop a novel rule pruning strategy to prune
noisy positive and negative CARs simultaneously with-
out jeopardizing the classification accuracy.

4. We present and compare different rule classification
methods to investigate how to make a prediction with
multiple matching positive and negative CARs.

The reminder of the paper is organized as follows. The
overview of related work on associative classifier and nega-
tive rule mining is given in Section 2. Section 3 describes the
proposed associative classifier in three steps. Section 4 con-
tains the experimental results and the statistical analysis.
Section 5 concludes the paper and discusses some possible
future work.

2. RELATED WORK
In this section, we review some related work on associative

classification and negative rule mining.

2.1 Associative Classification
The first reference to use association rules as CARs is

credited to [12], while the first associative classifier, CBA,
was introduced by Liu et al. [25]. The main steps in building
an associative classifier are as follows:

• Modeling the data into the transaction dataset D in
which the numerical attributes are transformed to dis-
crete attributes.

• Generating the set of CARs from the transaction dataset
D. The CARs are in the form of X → C where X is
a conjunction of attributes and C is a class label. The
CARs are usually generated by pushing the constraint
in the association rule mining process to generate as-
sociation rules that always have as consequent a class
label given minimum support and minimum confidence
thresholds.

• Pruning the discovered CARs by some rule pruning
strategies. The previous rule generation phase usually
generates an overwhelming number of CARs including
many noisy CARs and it is very important to prune
these rules to make the classifier more effective and
efficient. The phase is employed to choose a best subset
of CARs and weed out those rules that may introduce
errors or are overfitting in the classification stage.

• Classifying a new unlabeled object to a predefined class.
At this level a system that can make a prediction for a
new object is built. The challenge here is how to rank
and make use of the set of rules from the previous
phase to give a good prediction.

CBA [25] mines the complete set of CARs through an
apriori-like approach, in addition, it ignores rules by “pes-
simistic error rate” as C4.5 [26]. In the rule pruning phase,
CBA adopts a strategy called“database coverage”. Database
coverage consists of going over all the rules ranked by their
confidence values and evaluating them against the training
instances. Whenever a rule applies correctly on some in-
stances, the rule is marked and the instances are eliminated
until all training instances are covered. Finally, unmarked
rules are simply pruned. New instances are classified by a
matching rule with the highest ranking.

Motivated by the idea of CBA, many improvements have
been proposed to build more accurate associative classifiers.
CMAR [24] maintains a CR-tree to compactly store and
retrieve rules, the CARs are discovered by a FP-growth
approach. In addition to the database coverage method,
CMAR also prunes lower ranked and more specific rules.
The rule R1: P → C with confidence conf1 is a lower ranked
and more specific rule w.r.t rule R2: P ′ → C with confidence
conf2 if P ′ ( P and conf1 ≤ conf2. For a new unlabeled in-
stance, CMAR makes a prediction based on multiple match-
ing rules with a weighted chi-square measure.

In the classification phase, ARC [6] takes all rules that
apply within a confidence range, but instead, calculates the
average confidence for each set of rules grouped by class
labels in the consequent, and selects the class label of the
group with the highest confidence average.

There are some other variants of associative classifiers:
Harmony [35] is an example which directly mines CARs. It
adopts an instance-centric approach to find the highest con-
fidence rule for each training instance and builds the classi-
fication model from the union of these rules. It shows to be
more effective and scalable than other associative classifiers.

2SARC [9] is a two-stage classification model that is able
to automatically learn to select rules for classification. First,
an associative classifier is learned by standard techniques.
Second, multiple predefined features are computed on the
associative classifier, then they act as input to a neural net-
work to achieve a more accurate classification model.

CCCS [10] uses a new measure, “Complement Class Sup-
port” (CCS) to mine positively correlated CARs for the im-



balanced classification problem. It forces the CCS measure
to be monotonic, thus the complete set of CARs are discov-
ered by a row enumeration algorithm. An associative clas-
sifier is then built upon these positively correlated CARs.

SPAR-CCC [33] is another associative classifier designed
for imbalanced data. It also integrates a new measure,“Class
Correlation Ratio” (CCR) into the rule mining phase, the
classifier works comparably on balanced datasets and out-
performs other associative classifiers on imbalanced datasets.

ARC-PAN [7] is the first associative classifier that uses
both positive and negative CARs. It proposes to add Pear-
son’s correlation coefficient on the basis of support and con-
fidence framework to mine positively and negatively corre-
lated CARs. The ability of negative CARs is demonstrated
by their usage in the classification phase.

2.2 Negative Rule Mining
A negative association between two positive itemsets X,

Y are rules of the following forms: ¬X → Y and X → ¬Y ,
where ¬X and ¬Y indicate the absence of itemsets X and
Y in the transaction dataset D, respectively. Mining as-
sociation rules from a transaction dataset that contains in-
formation about both present and absent itemsets is com-
putationally expensive, traditional association rule mining
algorithms cannot be directly applied. This is the reason
why new algorithms are needed to efficiently mine associ-
ation rules with negative itemsets. Here we survey algo-
rithms that efficiently mine some variety of negative associ-
ation rules from data.

Brin et al. [13] mention for the first time the notion of
negative relationships in the literature. They propose to use
chi-square test between two itemsets. The statistical test
verifies the independence between two itemsets. To deter-
mine the nature (positive or negative) of the relationship, a
correlation metric is used.

Aggarwal and Yu [1, 2] introduce a new method for find-
ing interesting itemsets in data. Their method is based on
mining strongly collective itemsets. The collective strength

of an itemset I is defined as C(I) = 1−v(I)
1−E[v(I)]

× E[v(I)]
v(I)

, where

v(I) is the violation rate of an itemset I, i.e., the fraction
of violations over the entire set of transactions and E[v(i)]
is its expected value. An itemset I is in a violation of a
transaction if only a subset of its itemsets appears in that
transaction. The collective strength ranges from 0 to ∞,
where a value of 0 means that the items are perfectly nega-
tively correlated and a value of ∞ means that the items are
perfectly positively correlated.

In [29], the authors present a new idea to mine strong neg-
ative rules. They combine positive frequent itemsets with
domain knowledge in the form of taxonomy to mine nega-
tive associations. The idea is to reduce the search space by
constraining the search to positive patterns that pass the
minimum support threshold. When all the positive itemsets
are discovered, candidate negative itemsets are considered
based on the used taxonomy.

Wu et al. [38] derive another algorithm for generating both
positive and negative association rules. The negative asso-
ciations discovered are of the following forms: ¬X → Y ,
X → ¬Y and ¬X → ¬Y . They add another measure called
“mininterest” on top of the support-confidence framework
for a better pruning of the frequent itemsets, which is also
used to assess the dependency between two itemsets.

The SRM algorithm [30, 31], discovers a subset of negative
associations. The authors develop an algorithm to discover
negative associations of the type X → ¬Y . These associa-
tion rules can be used to discover which items are substitutes
for others in market basket analysis.

Antonie and Zäıane [8] propose an algorithm to mine strong
positive and negative association rules based on the Pear-
son’s correlation coefficient. In their algorithm, itemset and
rule generation are combined and the relevant rules are gen-
erated on-the-fly while analyzing the correlations within each
candidate itemset.

In [32], the authors extend an existing algorithm for asso-
ciation rule mining, i.e., GRD (generalized rule discovery),
to include negative items in the discovered rules. The algo-
rithm discovers top-K positive and negative rules.

Cornelis et al. [16] propose a new Apriori-based algorithm
(PNAR) that exploits the upward closure property of neg-
ative association rules. With this upward closure property,
valid positive and negative association rules can be discov-
ered efficiently. Wang et al. [34] give a more intuitive way to
express the validity of both positive and negative association
rules, the mining process is very similar to PNAR.

MINR [23] is a method that uses Fisher’s exact test to
identify itemsets that do not occur together by chance, i.e.,
with a statistically significant probability. An itemset with
a support greater than the positive chance threshold is con-
sidered for positive rule generation, while an itemset with a
support less than the negative chance threshold is considered
for negative rule generation.

Kingfisher [20, 21] is developed to discover both positive
and negative dependency rules. The dependency rule can be
formulated on the basis of association rule and the statistical
dependency of a rule can be calculated by Fisher’s exact test.
In order to reduce the search space, the author introduces a
branch-and-bound search method with three lower bounds
for the measure of pF -value. Another two pruning strategies
(pruning by minimality and pruning by principles of Lapis
philosophorum) are also included to speed up the search.

A more detailed review of negative rule mining can be
referred to [5].

3. PROPOSED ASSOCIATIVE CLASSIFIER
In this section, we introduce details about the proposed as-

sociative classifier in three steps: rule generation, rule prun-
ing and rule classification. Before talking about the detailed
steps, we introduce some notations and definitions used in
this paper.

3.1 Notations and Definitions
Assume D is a transformed transaction dataset with a

set of items I = {i1, i2, ..., im} and a set of class labels
C = {c1, c2, ..., cn}. Each transaction T is associated with
a set of items X and a class label ck, where X ⊆ I and
ck ∈ C. A CAR is in the form of X → ck or X → ¬ck,
and it is considered dependent if P (X, ck) 6= P (X)P (ck)
or P (X,¬ck) 6= P (X)P (¬ck). Since we intend to find sta-
tistically significant positive and negative CARs, we take
Fisher’s exact test [20, 23, 33] as a significance measure.
The dependency of the CAR X → ck or X → ¬ck is con-
sidered statistically significant at level α, if the probability
of observing equal or stronger dependency in the dataset
under a null hypothesis model, is not greater than α. X
and ck (or ¬ck) are independent in the null hypothesis. The



probability p, i.e., p-value is:

pF (X → ck) =

min{σ(X,¬ck)σ(¬X,ck)}∑
i=0

(
σ(X)

σ(X,ck)+i

)(
σ(¬X)

σ(¬X,¬ck)+i

)( |D|
σ(ck)

)
pF (X → ¬ck) =

min{σ(X,¬ck)σ(¬X,ck)}∑
i=0

(
σ(X)

σ(X,¬ck)+i

)(
σ(¬X)

σ(¬X,ck)+i

)( |D|
σ(ck)

) ,

where the consequent class label ck can either be present or
absent. σ(∗) denotes the support count of ∗, ∗ can be the
conjunction of any itemsets, either being present or absent,
for example, it can be X, Xck, ¬Xck, ¬X¬ck, etc. The
significance level α is usually set to be 0.05.

The dependency of the positive CAR X → ck or negative
CARX → ¬ck is statistically significant, if pF (X → ck) ≤ α
or pF (X → ¬ck) ≤ α. In the field of rule mining, an impor-
tant task is to mine non-redundant rules. Rules are consid-
ered redundant when they do not add new information to
the remaining rules. Without the non-redundancy property
taken into consideration, the number of discovered rules is
usually too large for people to read and interpret. In order
to reduce the number of rules and to make the classification
model more readable, only non-redundant CARs are con-
sidered. Following [20], we define non-redundant CARs and
minimal CARs as follows:

Definition 1. Non-redundant CARs
The CAR X → ck or X → ¬ck is considered as non-
redundant, if there does not exist any CARs in the form
of Y → ck or Y → ¬ck such that:

pF (Y → ck) < pF (X → ck)

or

pF (Y → ¬ck) < pF (X → ¬ck),

where Y ( X.

Definition 2. Minimal CARs
The CAR X → ck or X → ¬ck is considered as minimal,
if and only if X → ck or X → ¬ck is non-redundant, and,
there does not exist any CARs in the form of Z → ck or
Z → ¬ck such that:

pF (Z → ck) < pF (X → ck)

or

pF (Z → ¬ck) < pF (X → ¬ck),

where X ( Z.

3.2 Proposed Associative Classifier

3.2.1 Positive and Negative CARs generation
In traditional association rule mining algorithms, the mea-

sure of support is usually used to prune non-frequent pat-
terns or rules since it has a downward closure property, but
it is not the case for the p-value, making it impossible to
be used as a monotonic property for some effective pruning.
Recently, Kingfisher [20] was proposed to find the complete
set of positive and negative rules that show statistically sig-
nificant dependencies. However, it was designed for the dis-
covery of general rules, not specifically for CARs. Therefore,
adaption of the Kingfisher algorithm to enable the discov-
ery of only CARs is necessary as it can reduce the number

of discovered rules. To find statistically significant positive
and negative CARs, we extend the Kingfisher algorithm by
pushing the rule constraint in the rule generation phase.

First, two theorems in [20] are given:

Theorem 1. In a transaction database D, assume R is the
set of all items, for any item A ∈ R and X ⊆ R\A, it has

pF (X → A) ≥ σ(A)!σ(¬A)!
|D|! and pF (X → ¬A) ≥ σ(A)!σ(¬A)!

|D|! ;

if σ(A) ≤ |D|
2

, then for any B ∈ R, X ⊆ R\{A,B}, it

has pF (XA → B) ≥ σ(A)!σ(¬A)!
|D|! and pF (XA → ¬B) ≥

σ(A)!σ(¬A)!
|D|! . Therefore, there exists a threshold γ ≤ 0.5,

when σ(A) < γ|D|, the item A cannot appear in any statis-
tically significant rules.

Theorem 2. In a transaction database D, assume R is the
set of all items, for any item A ∈ R, X ⊆ R\A and Q ⊆
R\{X,A}, if σ(X) ≤ σ(A) or σ(X) ≤ σ(¬A) holds, then it

has pF (XQ → A) ≥ σ(¬X)!σ(A)!
|D|!(σ(A)−σ(X))!

or pF (XQ → ¬A) ≥
σ(¬X)!σ(¬A)!

|D|!(σ(¬A)−σ(X))!
, respectively.

Given these two theorems, we derive three corollaries to
generate positive and negative statistically significant CARs.

Corollary 1. There exists a threshold γ ≤ 0.5 such that
the item I ∈ I is impossible to be in any statistically signif-
icant CARs if its support is smaller than γ|D|.

Proof. Corollary 1 is a special case of Theorem 1 when
I ∈ I. First we assume that I can be in the consequent
part of the rule, then according to Theorem 1, we can find
a threshold γ ≤ 0.5 such that when σ(I) < γ|D|, I cannot
appear in any statistically significant rules. Since we only
intend to find CARs where item I can only be in the an-
tecedent part, if the condition σ(I) < γ|D| holds, item I
can cannot appear in any statistically significant CARs.

Some impossible items are pruned before further analy-
sis by Corollary 1. It is assumed that s items (s ≤ m)
are left. The remaining s items are reordered and renamed
in an ascending order by their support count, i.e., Irest =
{i1, i2, ..., is}, where σ(i1) ≤ σ(i2) ≤ ... ≤ σ(is). Then in or-
der to traverse the whole search space, an enumeration tree
is built over Irest. For each node in the tree, the antecedent
part is a combination of items in the power set of Irest. The
consequent part is 2n possible class labels (either positive
or negative). Therefore, for each node in the enumeration
tree, we have to check all 2n possible CARs to see if they
are statistically significant.

Corollary 2. For any X ⊆ Irest, Q ⊆ (Irest\X), if
σ(X) ≤ σ(ck) or σ(X) ≤ σ(¬ck) holds, we can get pF (XQ→
ck) ≥ σ(¬X)!σ(ck)!

|D|!(σ(ck)−σ(X))!
or pF (XQ→ ¬ck) ≥ σ(¬X)!σ(¬ck)!

|D|!(σ(¬ck)−σ(X))!
,

respectively.

Proof. Corollary 2 can be considered as a special case
of Theorem 2 when either ck or ¬ck is the consequent part
of a rule.

According to Corollary 2, the lowest value of pF (XQ →
ck) and pF (XQ→ ¬ck) provide the lower bounds for pF (X →
ck) and pF (X → ¬ck), respectively. Therefore, if the lower
bound exceeds α, the corresponding CAR X → ck or X →
¬ck is not statistically significant and can be directly pruned.
Otherwise, the CAR X → ck or X → ¬ck is considered as
PSS, i.e., “Potentially Statistically Significant”.



Definition 3. The CAR X → ck or X → ¬ck is defined as
PSS, i.e., “Potentially Statistically Significant”, if it meets
either of the following conditions: (1) σ(X) ≤ σ(ck) or

σ(X) ≤ σ(¬ck) holds, and the lower bound σ(¬X)!σ(ck)!
|D|!(σ(ck)−σ(X))!

or σ(¬X)!σ(¬ck)!
|D|!(σ(¬ck)−σ(X))!

is smaller than or equal to α, respec-

tively; (2) σ(X) > σ(ck) or σ(X) > σ(¬ck) holds.

If a CAR is PSS, we need to calculate the exact p-value
to see if it is indeed statistically significant.

Corollary 3. If CAR X → ck or X → ¬ck is PSS,
then any of its parent rule Y → ck or Y → ¬ck is also
PSS, where Y ( X and |Y | = |X| − 1.

Proof. There are two situations making X → ck being
PSS. The first situation is when σ(X) > σ(ck), since Y (
X, thus σ(Y ) > σ(X) > σ(ck), and it is easy to see the
parent rule Y → ck is also PSS. The second situation is
when X → ck but lowerbound(pF (XQ → ck)) < α, where
Q ⊆ (Irest\X). Now let XQ = Y (X\Y )Q = Y R, because
(X\Y ) ⊆ (Irest\Y ) and Q ⊆ (Irest\X) ⊆ (Irest\Y ), thus
R = (X\Y )Q ⊆ (Irest\Y ) and therefore, there must exists
R ⊆ (Irest\Y ) making lowerbound(pF (Y Q→ ck)) < α, i.e.,
rule Y → ck is PSS. The proof is similar for the negative
CAR X → ¬ck.

With these three corollaries, the whole search problem can
be summarized as follows: We first use Corollary 1 to prune
impossible items, sort and rename the remaining items in an
ascending order by their support. Next, all candidate CARs
with only one antecedent item are listed. We then use Corol-
lary 2 to check if they are PSS, non-PSS candidate CARs
can be pruned directly without further analysis. PSS CARs
are further checked to see if they are indeed statistically sig-
nificant. From PSS 1-itemset CARs, we generate candidate
PSS 2-itemset CARs by Corollary 3. The process repeats
until no PSS CARs are generated at a certain level. It also
needs to be mentioned that in the searching process, the
minimality of the CARs is considered, if the CAR is marked
as minimal, we stop the expansion from this CAR because all
of its children CARs are impossible to get a lower p-value. In
fact, checking minimality for a CAR is a hard task, because
we have to consider its whole subtree. We use a well-proven
result from [20] that if P (ck|X) = 1 or P (¬ck|X) = 1, the
corresponding CAR X → ck or X → ¬ck is minimal. In
other words, the property of minimality can be detected by
calculating the conditional probability of ck or ¬ck given X.
Therefore, for a certain CAR, we do not need to check all its
children CARs in its subtree to see if it is minimal anymore.
The rule generation process is presented in Algorithm 1.

3.2.2 Rule Pruning
In the rule generation phase, redundant (lower ranked and

more specific) CARs have been removed, but the number of
discovered statistically significant CARs could still be very
large. The disadvantages of a large number of CARs are two
folds: first, noisy CARs may be included, they may jeopar-
dize the classification performance; second, a classifier with
a small number of rules is important since it allows domain
experts to tune a classifier by editing rules if necessary.

The most widely used rule pruning strategy is database
coverage [25], however, the database coverage heuristic can
only be applied to positive CARs and negative CARs in
the form of ¬X → ck. Through our rule generation phase,

Data: Transaction Dataset D, set of antecedent items
I, class labels C, significance level α = 0.05.

Result: Statistically significant positive and negative
CAR sets Rpos and Rneg.

Prune impossible antecedent items I with Corollary 1;
Irest: the reoredered and renamed antecedent item set;
Create root node and level-1 nodes;
Set l = 1;
while l ≤ |Irest| do

for each candidate l-set CAR r do
if all parent rules of r are PSS and not minimal
then

if pF (r) ≤ α then
if r is non-redundant then

if r is minimal then
r.minimal = true;

end
if r.class is positive then
Rpos.add(r);

else
Rneg.add(r);

end

end

end

else
prune CAR r and all its decedent rules from
the enumeration tree;

end

end
l = l + 1;

end
Algorithm 1: Statistically significant positive and nega-
tive CARs generation.

the discovered CARs are all in the form of X → ¬ck, to
reduce the number of negative CARs in this type, we propose
a novel rule pruning strategy to prune noisy positive and
negative CARs simultaneously.

We first scan through the set of discovered negative CARs.
For each negative CAR X → ¬ck, if it misclassifies at least
one training instance, in other words, if we find an instance t
in the training dataset such that X ⊆ t.antecedent and ck =
t.class, the negative CAR X → ¬ck is pruned, otherwise, it
is kept for the following classification phase.

For the positive CARsX → ck, we first rank them by their
confidence values, then use the database coverage method to
select a subset of high quality.

Here a problem arises, in some datasets, the number of re-
maining negative CARs may be much larger than the num-
ber of remaining positive CARs. In the extreme case if only
negative CARs X → ¬ck are left, it is still hard to make a
prediction for a new instance, for example, for instance XY ,
the only information obtained is that class label ck is not
correct. Therefore, we still wish the positive CARs domi-
nate the classification decision phase, while taking negative
CARs as a complement to help positive CARs. Considering
this, we adjust the number of negative CARs, make it at
most as large as the number of positive CARs. To be more
specific, let nneg and npos denote the number of pruned pos-
itive and negative CARs, respectively, if nneg > npos, only
the first npos negative CARs and all positive CARs are cho-



Data: Set of positive and negative CARs Rpos, Rneg
from rule generation phase.

Result: Pruned CARs set Rnewpos and Rnewneg.
Ranking Rpos and Rneg according to confidence values;
Rnewpos = ∅, Rnewneg = ∅;
// 1. Negative CARs pruning

for each CAR r in Rneg do
for each training instance t in training dataset D do

if r.antecedent ⊆ t.antecedent and r.class =
t.class then
Rneg.remove(r);
break;

end

end

end
Assign Rneg to Rnewneg;
// 2. Positive CARs pruning

for each CAR r in Rpositive do
for each training instance t in training dataset D do

if r.antecedent ⊆ t.antecedent and r.class =
t.class then
Rnewpos.add(r);
remove instances covered by r in D;

end

end

end
// 3. Negative CARs set adjustment

if |Rnewneg| > |Rnewpos| then
Rnewneg = first |Rnewpos| rules in Rnewneg;

end
Algorithm 2: Positive and negative CARs pruning.

sen as the actual classifier. The whole process is illustrated
in Algorithm 2.

3.2.3 Classification
The set of statistically significant positive and negative

CARs left from the previous rule pruning phase represents
the actual associative classifier. Given a new unlabeled ob-
ject, the classification process searches for the set of CARs
that are relevant to this object, and makes the prediction ac-
cording to the label information of all these relevant rules.
Here we discuss how to make predictions for new objects
based on the set of rules in the classifier. There are two
types of CARs in our classifier: positive CARs in the form of
X → ck and negative CARs in the form of X → ¬ck. These
two types of CARs are both considered in our classification
phase. A simple way to classify a new object is to select the
matching rule with the highest confidence value and assign
its label to the new object. This is the strategy adopted in
CBA [25]. But in this way, the negative rule X → ¬ck does
not make any sense if it has the highest confidence since it
does not allow the labeling. In this way, only positive CARs
influence the classification decision. Therefore, we propose
to divide all matching rules into groups according to their
class labels. The groups are ordered either by average con-
fidence values or sum of confidence values. Then the group
with the highest average or sum of confidence values will
be assigned to the new object. These three possible clas-
sification methods are denoted as BEST, AVE and SUM,
representing classifying by the best matching rule, by the
average and by the sum of confidence values, respectively.

Data: A new instance o to be classified. Set of positive
CARs Rnewpos and negative CARs Rnewneg
from rule pruning phase.

Result: Class label of the new instance o.
Tpos = ∅ ; // set of positive rules matching o
Tneg = ∅ ; // set of negative rules matching o
for each CAR r in Rnewpos do

if r.antecedent ⊆ o.antecedent then
Tpos.add(r);

end

end
for each CAR r in Rnewneg do

if r.antecedent ⊆ o.antecedent then
r.confidence = −r.confidence;
Tneg.add(r);

end

end
Divide T into n subsets by class labels: T1, T2, ..., Tn;
// 1. Classification method BEST

for each subset T1, T2, ..., Tn do
find the CAR with the highest confidence value

end
Assign its class label to o;
// 2. Classification method AVE

for each subset T1, T2, ..., Tn do
average confidence value of matching CARs in each
class

end
Assign the class with the highest average of confidence
value to o;
// 3. Classification method SUM

for each subset T1, T2, ..., Tn do
sum up the confidence values of matching CARs in
each class

end
Assign the class with the highest sum of confidence
value to o;

Algorithm 3: Three methods to classify a new instance.

The detailed descriptions of these classification methods are
presented in Algorithm 3.

It is obvious that the confidence values of positive CARs
X → ck are added to the class ci in the classification phase.
However, the negative CARs X → ¬ck is treated differently,
we choose to subtract its confidence value from the total
confidence of the corresponding class ck.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the proposed associative clas-

sifier on 20 datasets from the UCI Machine Learning Repos-
itory [11]. In these datasets, the numerical attributes have
been discretized by the author of [14], the discretization
strategy is different from [24, 25], thus the classification
performance may be slightly different from the results re-
ported before. All the experimental results are reported as
an average over 10-fold cross validation. To have a fair com-
parison with some other methods, we also list the classi-
fication performance of two rule-based classifier: C4.5 [26]
and FOIL [27]; two associative classifier on positive CARs:
CBA [25] and CMAR [24]; an associative classifier on both
positive and negative CARs: ARC-PAN [7]; a hybrid of rule-
based and associative classifier: CPAR [39]; Näıve Bayes [28]



Table 1: Classification accuracy on 20 UCI datasets by different classifiers.

Dataset C4.5 FOIL CBA CMAR CPAR PAN NB SVM BEST
rules+ rules+-

SUM AVE SUM AVE

adult 78.8 84.6 84.2 81.3 77.3 83.1 82.3 75.8 80.8 83.2 76.1 83.2 76.1
anneal 76.7 98.8 94.5 90.7 95.1 86.9 86.3 85.0 94.2 88.0 94.3 91.9 94.5
breast 91.5 89.3 94.1 89.9 93.0 89.4 95.9 95.7 90.0 91.3 90.0 91.3 90.0

cylBands 69.1 74.1 76.1 76.5 70.0 42.2 72.2 76.6 66.1 72.0 65.4 72.2 70.4
flare 82.1 83.8 84.2 84.3 63.9 83.4 71.0 73.8 83.9 83.2 84.0 83.2 84.1
glass 65.9 66.5 68.4 71.1 64.9 48.5 48.6 68.6 70.6 72.0 65.9 72.4 69.2
heart 61.5 55.2 57.8 56.2 53.8 58.8 53.4 55.4 51.5 56.8 51.8 57.4 56.4

hepatitis 84.1 77.8 42.2 79.6 75.5 39.8 84.5 79.3 85.8 83.2 83.2 83.9 82.6
horseColic 70.9 83.4 78.8 82.3 81.2 81.5 77.9 72.5 70.7 76.7 73.6 75.8 71.5
ionosphere 84.6 86.6 32.5 91.5 88.9 83.7 82.6 87.7 80.1 85.0 74.6 82.3 78.6

iris 91.3 94.0 93.3 94.0 94.7 94.6 94.6 94.6 94.7 94.7 95.3 94.7 95.3
led7 73.9 60.5 73.1 73.2 71.3 59.5 73.1 73.6 70.9 73.3 56.6 73.3 56.7

letRecog 50.4 50.0 32.5 28.3 58.2 26.9 64.1 65.2 54.2 61.8 40.6 64.9 54.5
mushroom 92.8 99.5 46.7 100.0 98.5 98.9 95.8 99.8 100.0 100.0 100.0 100.0 100.0
pageBlocks 92.0 92.4 90.9 90.1 92.5 89.9 90.8 91.2 90.7 91.1 90.6 91.2 90.8
penDigits 70.5 84.1 92.3 87.4 80.5 79.5 85.7 86.7 87.4 90.3 75.7 91.3 85.7

pima 71.7 71.9 74.6 74.4 74.0 74.2 75.3 74.0 75.1 67.7 72.9 68.0 72.8
soybean 60.3 88.0 89.2 88.1 83.1 81.8 92.9 88.7 90.3 89.6 90.6 90.5 90.9

wine 75.8 88.2 49.6 92.7 88.2 89.3 96.0 94.9 84.3 88.2 80.9 91.6 89.9
zoo 91.0 93.1 40.7 93.0 94.1 86.1 93.0 92.2 93.1 93.1 93.1 94.1 94.1

Average 76.7 81.1 69.8 81.3 79.9 73.9 80.8 81.6 80.7 82.1 77.8 82.7 80.2

and SVM [17]. The parameters of all these classifiers follow
the default settings as the original papers.

4.1 Classification Performance

4.1.1 Accuracy
First, we show the classification accuracy by different meth-

ods on 20 UCI datasets. The experimental results are shown
in Table 1. Columns 2-9 list the classification accuracies of
these compared methods. In Column 10, classification ac-
curacy is determined by the best matching rule. Columns
11-12 show the performance with only positive CARs on
two classification methods, SUM and AVE, while Columns
13-14 list the classification results when negative CARs are
also considered.

As can be observed, rules+- with SUM gets the best over-
all classification performance (82.7%) and wins 4 out of 20
datasets, followed by rules+ with SUM (82.1%). Both of
their average classification accuracy outperform the others.

4.1.2 Different rule classification strategies
Then we compare three different classification strategies,

SUM, BEST as well as AVE. The classification method SUM
is better than the other two classification methods BEST
and AVE by winning around 2%-4% average classification
accuracy, no matter with only positive CARs or with both
positive and negative CARs. When the other two classi-
fication methods BEST and AVE are used, the associative
classifier still performs comparably to other well-known rule-
based and associative classifiers on average of 20 datasets.

4.1.3 Effect of negative CARs
To validate the effect of negative CARs in the associative

classifier, we compare rules+- with SUM and AVE to their
corresponding alternatives: rules+ with SUM and AVE.

The average classification accuracy is higher when negative
CARs are included. We also compare the count of wins and
losses of rules+- when it is measured against rules+ on SUM
and AVE classification methods, when the negative CARs
are integrated, both of them win their positive alternatives
by 12 times and only loses 2 and 3 times, respectively. It
demonstrates the power of negative CARs. They indeed
help us get more reliable and more accurate classification
results on most datasets.

4.1.4 Effect of rule pruning
In the rule pruning phase, due to the absence of negative

rule pruning strategies in the literature, we propose a novel
rule pruning method to prune positive and negative CARs
simultaneously. We compare the classification performance
of three different scenarios: prune both positive and negative
CARs, prune only positive CARs and without rule pruning.
The comparison is performed on SUM classification meth-
ods. In Table 2, Columns 2-4 show the classification re-
sults of these three scenarios on SUM classification method.
The average accuracy of Column 2 (prune both positive
and negative CARs) is the highest and it wins 18 out of
20 datasets. Therefore, the proposed rule pruning method
not only reduces the number of CARs in the classifier, but
also improves the classification performance compared to the
associative classifier pruning only positive CARs and the as-
sociative classifier without rule pruning phase.

4.2 Statistical Analysis
From Table 1, we can conclude that the associative classi-

fier built with positive and negative CARs is an as good or
even better associative classifier compared with other well-
known classifiers and the associative classifier with only pos-
itive CARs; the SUM classification method is better than
BEST and AVE. In Table 2, we show the proposed rule



Table 2: Comparison of rule pruning strategies.

Dataset
rules+- with SUM

prune +- prune + w/o prune

adult 83.2 82.3 81.9
anneal 91.9 65.7 86.7
breast 91.3 87.0 81.0

cylBands 72.2 63.7 63.7
flare 83.2 78.0 76.6
glass 72.4 60.7 69.6
heart 57.4 60.1 59.7

hepatitis 83.9 82.6 81.3
horseColic 75.8 73.1 72.0
ionosphere 82.3 75.7 75.5

iris 94.7 94.0 94.7
led7 73.3 74.2 73.9

letRecog 64.9 55.1 52.6
mushroom 100.0 97.9 97.7
pageBlocks 91.2 90.4 89.8
penDigits 91.3 83.8 86.8

pima 68.0 65.6 65.1
soybean 90.5 78.2 61.6

wine 91.6 91.6 91.6
zoo 94.1 77.2 94.1

Average 82.7 76.9 77.8

pruning strategy is effective. These conclusions are obtained
mainly by measuring average classification accuracies and
winning times. Although they give us some intuition about
the lead of a certain classifier, a certain rule pruning or a
classification strategy, the conclusion is not forceful since the
dominance is unsurpassed over all 20 datasets.

To better validate the conclusions we get, we use Dem-
sar’s [18] method, conducting a set of non-parametric sta-
tistical tests to compare different classifiers over multiple
datasets. In the first step, Friedman test is applied to mea-
sure if there is a significant difference between different clas-
sification models on Table 1. We first rank different classi-
fiers on each dataset separately, rji denotes the rank of the
j-th of k classifiers on i-th of N datasets. Then the average
rank of j-th classifier is computed as:

Rj =
1

N

∑
i

rji

In the null hypothesis, the average ranks of different classi-
fiers are equivalent, and the Friedman statistic is:

χ2
F =

12N

k(k + 1)
(
∑
j

R2
j −

k(k + 1)2

4
)

with k − 1 degrees of freedom, when N > 10 and k > 5.
If the Friedman statistic exceeds a critical value, the null
hypothesis is rejected and we conduct post-hoc tests to make
pairwise comparisons between different classifiers, otherwise,
there is no statistically significant differences among the k
classifiers over these N datasets.

The Friedman statistics of 13 classifiers from Table 1 ex-
ceeds the critical value, so we continue to use Wilcoxon
signed-ranks test to compare the differences between dif-
ferent classifiers pairwisely. In Wilcoxon signed-ranks test,
suppose di denotes the classification accuracy difference on

the i-th of N datasets. We then rank the difference di ac-
cording to their absolute values, if ties occur, average ranks
are assigned. Next, the sum of ranks R+, R− are calculated
on datasets in which the second classifier outperforms the
first classifier and the first classifier outperforms the second
classifier, respectively:

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di)

Let T be the smaller value of these two sums, when N ≥ 20,
Wilcoxon W statistic tends to form a normal distribution,
then we can use z-value to evaluate the null hypothesis that
there is no statistical difference between these two classifiers.
The z-score is:

z =
T − 1

4
N(N + 1)√

1
24
N(N + 1)(2N + 1)

If z < −1.96 then the corresponding p-value is smaller than
0.05, therefore, the null hypothesis is rejected.

A series of Wilcoxon signed-ranks test from Table 1 and
Table 2 are listed in Table 3. It shows the count of wins,
losses, ties and corresponding p-value for pairwise post-hoc
comparisons. Rows 2-9 show the comparisons of our asso-
ciative classifier rules+- (SUM) with the other 8 well estab-
lished classifiers. Our associative classifier always wins more
than half of the 20 datasets, but the only strong conclusion
we draw is that our method is significantly better than C4.5
and ARC-PAN. ARC-PAN is an associative classifier most
similar to our method which also uses the negative CARs,
however, it fails to consider the statistical dependency of
the discovered CARs. The statistically significant difference
between our method and ARC-PAN is very appealing. It
shows the power of introducing statistical dependency in
the associative classification problem. Rows 10-11 show
SUM method is significantly better than BEST and AVE.
Through Rows 12-13, we can find that when the negative
CARs are included, the associative classifier is significantly
better than that with only positive CARs. Rows 14-16 in-
dicate the effect of the proposed rule pruning strategy, the
difference between pruning only positive CARs and with-
out pruning is not statistically significant although pruning
only positive rules wins 14 times. But when we also prune
negative CARs, the classification performance is greatly im-
proved, the p-value is very small. Therefore, by applying
the proposed rule pruning strategy, we get a much better
classifier with higher accuracy and fewer rules.

4.3 Running Time Comparison
To test the efficiency of the proposed associative classi-

fier, we compare the running time of rules+- (SUM) with
three associative classifiers, CBA, CMAR and ARC-PAN.
We only report the results on 6 datasets due to space limit.
The results are shown in Table 4. As can be seen from the
table, the proposed classifier is faster than the three con-
tender associative classifiers in many cases.

5. CONCLUSION AND FUTURE WORK
In this paper, we introduce a novel associative classifier

which is built on statistically significant positive and neg-



Table 3: Statistical analysis of Table 1 and Table 2; (*) indicates a statistically significant difference.
row ID comparisons wins losses ties p-value

2 rules+-(SUM) vs. C4.5 * 13 7 0 0.011
3 rules+-(SUM) vs. FOIL 12 8 0 0.33
4 rules+-(SUM) vs. CBA 11 9 0 0.24
5 rules+-(SUM) vs. CMAR 12 7 1 0.42
6 rules+-(SUM) vs. CPAR 12 6 2 0.058
7 rules+-(SUM) vs. PAN * 15 5 0 0.014
8 rules+-(SUM) vs. NB 12 7 1 0.32
9 rules+-(SUM) vs. SVM 12 7 1 0.31

10 rules+-(SUM vs. BEST) * 14 4 2 0.028
11 rules+-(SUM vs. AVE) * 13 5 2 0.021

12 SUM(rules+- vs. rules+) * 12 2 6 0.033
13 AVE(rules+- vs. rules+) * 13 4 3 0.011

14 SUM(prune+- vs. prune+) * 17 2 1 0.001
15 SUM(prune+- vs. w/o) * 15 2 3 0.001
16 SUM(prune+ vs. w/o) 14 4 2 0.528

Table 4: Comparison of running time.
Dataset CBA CMAR ARC-PAN rule+-(SUM)

adult 583.7s 221.6s 561.2s 177.0s
cylBands 19.7s 5.9s 74.1s 3.8s

ionosphere 57s 95.6s 243.9s 36.2s
letRecog 5.9s 5.2s 129.2s 10.7s
penDigits 88.6s 257.2s 301.5s 49.8s

wine 25.4s 23.2s 98.0s 11.2s

ative CARs. The proposed associative classifier consists of
three steps: rule generation, rule pruning and rule classifica-
tion. In the first phase, we extend the Kingfisher algorithm
by pushing the rule constraint in the rule generation phase
to enable the discovery of statistically significant positive
and negative CARs. After the rule generation step, there
are still many noisy CARs which may jeopardize the classi-
fication phase or overfit the model, therefore we propose a
novel rule pruning strategy to prune both positive and neg-
ative CARs simultaneously. At the last step, we present and
compare different rule classification methods to ensure the
correct prediction of unlabeled data.

The experimental results are very encouraging. Our asso-
ciative classifier achieves a comparably good or even better
classification result when measured against other classifiers.
Meanwhile, it is also computational efficient. By integrat-
ing negative CARs in the classifier, the classification per-
formance indeed improves compared to the classifiers built
with only positive CARs. We also propose a novel rule
pruning strategy to prune positive and negative CARs si-
multaneously. The pruning not only reduces the number
of CARs, but also greatly improves the performance of the
classification. Three different rule classification methods are
presented and compared, the SUM method works best, it in-
dicates that to classify a new instance, we should sum up the
confidence values of all matching rules and make a class label
prediction based on the summations from different classes.
A two step statistical test are used to validate all these con-
clusions.

In the future, we aim to further improve the Kingfisher
algorithm to enable the discovery of positive and negative
CARs more efficiently. Another challenging task is to find

more effective rule pruning strategies post rule generation
to further improve the classification performance.
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