
Detecting the Onset of Machine Failure Using
Anomaly Detection Methods ?

Mohammad Riazi1, Osmar Zaiane1, Tomoharu Takeuchi3, Anthony Maltais2,
Johannes Günther1, and Micheal Lipsett2

1 University of Alberta, Dep. of Computing Science Edmonton AB, CANADA
2 University of Alberta, Dep. of Mechanical Engineering, Edmonton AB, CANADA
3 Mitsubishi Electric Co., Information Technology R&D Center, Kanagawa, JAPAN

{riazi, zaiane}@ualberta.ca

Abstract. During the lifetime of any machine, components will at some
point break down and fail due to wear and tear. In this paper we pro-
pose a data-driven approach to anomaly detection for early detection of
faults for a condition-based maintenance. For the purpose of this study,
a belt-driven single degree of freedom robot arm is designed. The robot
arm is conditioned on the torque required to move the arm forward and
backward, simulating a door opening and closing operation. Typical fail-
ures for this system are identified and simulated. Several semi-supervised
algorithms are evaluated and compared in terms of their classification
performance. We furthermore compare the needed time to train and test
each model and their required memory usage. Our results show that the
majority of the tested algorithms can achieve a F1-score of more than
0.9. Successfully detecting failures as they begin to occur promises to
address key issues in maintenance like safety and cost effectiveness.

Keywords: Anomaly detection · Fault detection · Predictive Mainte-
nance · Machinery Diagnostics · Onset of failure · Machine learning.

1 Introduction

Numerous factors can contribute to the quality of a product, and not every
one of these factors are under manufacturers control. One of the most common
sources of quality problems is faulty equipment which has not been properly
maintained [10]. Hence, monitoring the condition of machines and components
such as cooling fans, bearings, turbines, gears, belts and maintaining a desirable
working state becomes very crucial.

When a machine or a component fails, corrective maintenance is performed to
identify the cause of failure and decide on repair procedures required to maintain
and re-initiate the machine to its normal working conditions. However, because
the machine has already failed without any prior warnings, time is required for
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procuring and repairing of the failed component. Therefore, a maintenance strat-
egy needs to be considered to minimize the downtime of a service. But machines
and their components degrade through time, and the time of failure is not known
in advance. Hence, time-based maintenance strategies are predominantly used
for maintaining the conditions of machines and equipment [11].

There are many advantages to using scheduled maintenance. First, due to
regular checks, the operational reliability of the machine is extended and catas-
trophic failures are somewhat prevented. Second, the time required to maintain
the equipment is drastically reduced because the necessary tools and resources
are obtained well in advanced. But, there still remains substantial disadvantages
including, costs pertaining to tools and experts performing regular maintenance
even-though it might not be necessary at all. Another problem is unforeseen
failure that might occur during maintenance intervals. Moreover, during a regu-
lar maintenance a part may end up being replaced regardless of its considerable
Remaining Useful Life (RUL), which incurs additional costs.Last but not least,
the risk of failure may increase during maintenance due to improper diagnosis
and or because of intrusive measures taken during repairs.

Prognostics and Health Management (PHM).is a discipline that consists of
technologies and methods to evaluate the reliability of a product in its actual life
cycle conditions to detect the development of failure and mitigate system risk
[3]. Sensor systems are needed for PHM for online monitoring of an equipment.
With online monitoring the condition of the equipment is constantly checked
throughout its life cycle to identify any potential failure. This strategy is referred
to as Condition-Based Maintenance (CBM). PHM can be implemented in several
ways: physics-based models, knowledge-based models and data-driven models.

During recent years, data-driven models also known as data mining methods
or machine learning methods for machine health monitoring are becoming more
attractive due to the substantial development of sensors and computing plat-
forms. Data-driven methods use historical data to automatically learn a model
of system behaviour. Features that encompass the health state of a machine are
extracted using a series of procedures. These features are then used by a vari-
ety of machine learning methods to decide on the health state of the machine.
Based on the availability of datasupervised, semi-supervised, unsupervised or
reinforcement learning could be used to achieve the desired result.

Unfortunately, there are no freely published datasets available on machine
degradation through time. The purpose of this study is two fold: Design and
development of a robot-arm platform that can generate data at different opera-
tional states; Apply and compare a number of semi-supervised anomaly detection
techniques on the data collected for detecting the onset of failure.

2 Background

Fault detection is a major task across many applications [1] including quality
control, finance, security and medical. In an industrial or manufacturing settings,
an equipment or product fault is an abnormal behaviour that may lead to the
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total failure of a system. In general, there is a time gap between the appearance
of a fault and its ultimate failure. This time gap can be used by condition-based
maintenance to reduce the probability of failure by monitoring the stages of
failure and prevent fault from becoming a failure.

As mentioned previously, PHM can be implemented using different approaches:
physics-based models based on mathematical models [7], knowledge-based mod-
els formalized using if-then rules, and data-driven-based models which mainly
rely on anomaly detection from data.

2.1 Anomaly detection methods

There exists numerous anomaly detection methods. A rough grouping of some of
these methods include, statistical algorithms, clustering-based, nearest neighbour-
based, classification-based, spectral-based, space subsampling-based and deep
learning methods.

Statistical-based methods assume that the data follows a specific distri-
bution, so the model is created from a specified probability distribution [18]. The
simplest approach for detecting anomalies in data would be flagging data points
that deviate from common statistical properties of a distribution.For example,
one could define an anomaly based on a certain standard deviation away from
the mean [12]. The advantage of these models is that they output a probability
as a measure of outlierness.

In clustering-based anomaly detection, the assumption is that data
points that are similar belong to a similar group. This is determined by the
distance to the cluster centroid. The anomaly score is then calculated by set-
ting a threshold for the size of a cluster or the distance to the cluster centroid;
if cluster has data points less than the value of threshold they are marked as
anomalies, or if the data points distance to the centre of the cluster exceeds the
set threshold it is flagged as anomalous. Self-Organizing Maps (SOM), k-means
are examples of such methods.

The nearest-neighbour-based anomaly detection generally assumes that
normal data samples appear in neighbourhoods that seem to be dense, while
anomalies are far from their closest neighbours. Nearest neighbour methods can
be generally grouped into distance-based and density-based methods. Both ap-
proaches require a similarity or a distance measure in order to make the decision
on the degree of abnormality of a data instance. Some examples include, k-NN,
Mahalanobis distance, and Local Outlier Factor (LOF).

Classification-based anomaly detection can be divided into one-class
(normal labels only) and multi-class (multiple classes) classification depending
on the availability of labels. Anomaly detection based on a classifier comprises
of two steps [2]: The first step, which is the training phase, a classifier is learned
using available labeled training data. In a second step, the test instances are
classified as normal or abnormal using the classifier trained in initial step. The
One-Class Support Vector Machine (OCSVM) and neural network methods are
examples of such detection methods.
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Spectral or subspace-based methods try to extract features that best
describe the variability of the training data [2]. These methods assume that the
normal data can be presented in a lower dimension subspace where normal data
is distinguished from abnormal data. Principle component analysis is considered
as a subspace-based approach to anomaly detection.

Many outlier detection methods methods suffer from curse of dimensionality;
as the dimensionality of a given dataset increases, distance based approaches fail
because the relative distance between any pair of points become relatively the
same [5]. To overcome this problem sub-sampling-based methods the high
dimensional space is divided into smaller sub-spaces and the outlier ranking in
different sub-spaces is monitored. Outliers are points that consistently rank high
in the smaller sub-spaces. The T*-Framework [5], and Isolation forest [8] are
algorithms that divide the high dimensional space to smaller dimensions and try
to find anomalies in the lower dimensional space.

Deep learning is a descendant of machine learning that tries to model
high level representations hidden in a dataset and classify or predict patterns
by stacking multiple layers of neurons or processing modules in a hierarchical
structure. Each layer learns a new representation of the input data and then by
stacking multiple layers, complex patterns are learned. This eliminates expert
knowledge and designing hand crafted features, thus the models can be applied
to machine health monitoring in a very general way [16].

3 Experiment Design

A belt-driven, single degree of freedom, re-configurable robot manipulator has
been customized for this investigation. The system was developed to simulate
faults that can occur during regular operation of the arm and to assess the effect
of mass, friction and belt tension on motion. Multiple reproducible experiments
could repeatedly be run on it with similar results.

3.1 The Robot arm Platform

The robot arm is designed to move in a back and forth manner and following
a predefined trajectory. Even though this seems like a simple machine, there
exist many real life examples such as opening and closing gates in elevator doors
that require fault monitoring due to constant use and importance of up-time for
providing service.

The robot arm consists of many components that help with its operation,
data acquisition and reproducibility. A picture of the complete robot arm plat-
form is demonstrated in Figure 1.

The system is controlled by a programmed teensy 3.2 microcontroller. It is
actuated by a brushless stepper motor to drive the belt through a programmed
range of motion with a Leadshine DM542 Microstep Drive. This range of motion
is measured by two US Digital E2 optical encoders. The driving belt is adjustable
in tension. To measure the instantaneous tension in the belt, there are two strain
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gauges. As the tension has an influence on the systems functioning, its value is
needed to reset the belt tension back to its normal operating value. Another
influence on the system, the ambient temperature is measured by a thermo
couple. A third influence is the weights that are used to change the inertia. For
most experiments, 5.5 kg weights are placed on the arm. Lastly, to minimize
external vibrations the arm is connected to a 3-ton seismic mass.

3.2 Data acquisition

The arm is armed with four sensors: two full-bridge strain gauge configurations
and two encoders. For the purpose of this experiment, only the encoder on the
motor output shaft is used because we are interested in measuring the required
torque for moving the arm. The data acquisition system outputs 7 values through
the USB ports connected to a laptop. These measurements are: Timestamp,
cycle number, cycle mode (forward or backward), Motor shaft angle (in degress),
Motor output torque (Nm), Belt tension (N), and ambient temperature (degree
cel.) around the arm. A representative set of complete cycles of the torque under
normal belt tension set at 150 N is shown in red in Figure 2.

3.3 Failure Types

After establishing a baseline normal torque profile, a number of typical faults
expected in a similar system were simulated. In order to account reproducibility,
multiple sensors were installed on the robot arm. These are shown in figures
1(a) and 1(b). In total, five different fault modes were simulated: The belt was
loosened on two different to either (1) 120N or (2) 100N. For the third experiment
the belt was tightened to (3) 168N. Sand was scattered on the surface for the
fourth experiment. The fifth experiment simulated a increase in the ambient
temperature to 40 degrees Celcsius.

Table 1 summarizes the data collected from the robot arm platform. To have
a better understanding of the tensions, Figure 2 shows the trend of tension over
time for the normal state and the interval at which each fault falls considering the
tension value. Moreover, to show how close and subtle the faults are in relation
with the normal profile, overlaid torque signals for normal and fault conditions
are also shown.

3.4 Data Pre-processing

A majority of the outlier detection algorithms use distance (Euclidean) as a
measure of similarity and assume normality of input data. Hence feature nor-
malization is required to approximately level the ranges of the features and
enforce the same effect in the computation of similarity [13]. For the purpose of
this study, torque samples were rescaled so the features have the properties of a
standard normal distribution with mean zero and a standard deviation of one.

Torque data is collected through a data acquisition system which is guar-
anteed to output reliable measurements in a structured format. The torque is
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Fig. 1. Sensors installed on the belt and the arm and simulated faults. (a) Strain gauge
for measuring the belt tension. (b) Thermocouple for measuring ambient temperature
with halogen bulbs for generating heat to see the effect of temperature on the belt
tension. (c) Friction using sandy surface. (d) Loose and tight belt tension faults using
loosening and tightening of bolts and adjusting the height of idler pulley.

TEMP TENSION NO. SAMPLES

Normal ˜23.5 ˜150 7193 (˜22 hrs)
Loose L1 ˜23.5 ˜120 182
Loose L2 ˜23.5 ˜99-100 180
Tight ˜23.5 ˜168 194
High Temperature ˜40-42 ˜166-169 210
Sand (Friction) ˜23.5 ˜150 183

Table 1. Summary of data collected from the robot arm platform

sampled at 200Hz and each observation should contain 2000 sampled data points
per cycle. The collected samples are saved in a tabular CSV file with each row
representing a single observation with 2000 sampled data points.

3.5 Feature-based representation of Torque Waveforms

Feature-based representation of time series have been used across many disci-
plines ,e.g. medical or speech recordings [6]. Constructing these features is usually
subjective for a given dataset.A very simple example of representing a time series
is using its mean and variance characteristics.
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Fig. 2. Top: Normal vs faulty tension signals demonstrated through time —Bottom:
Overlaid torque signals for normal and faulty data

As a first attempt to construct features from the torque dataset (2000 data
points per sample), we followed the work of [9] and used the first order statistics
along other descriptive measures to extract a total of 11 features.

In a second attempt, additional features were extracted using the ”Time
Series Feature extraction based on scalable hypothesis tests” abbreviated as
tsfresh python package [4]. The package contains numerous feature extraction
methods and a robust feature selection algorithm. Using the tsfresh library, a
total of 714 features were extracted, which was further pruned to 114 using the
built-in feature selection method.

To further prune the extracted features and select the most important and
discriminating features, we have used the gradient boosting machine imple-
mented in LightGBM library and the Pearson correlation to remove the low
importance and correlated features in both manually extracted feature sets and
the tsfresh generated features.

The final set of features were reduced from 11 to 8, including mean, variance,
skewness, kurtosis, mean, variance, skewness, kurtosis, and RMS for the manual
features. From the automatic tsfresh features, 76 out of 114 were chosen.

3.6 Feature learning & extraction using auto-encoders

We use a 1D segment from raw input data (torque data) as the input to our CNN
auto-encoder because the torque signal is correlated only in the time domain,
this is followed by 1D filters in the convolutional layers of the model.
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Evidently, a deep learning model with deeper architecture achieves a better
performance compared to a shallow one. However, a deeper network results in a
more complicated number of hyper-parameters and a variety of network archi-
tectures. This in fact makes the building of an appropriate and efficient model
quite difficult [14]. For the purpose of this study we have particularly followed
the work of Zhang et al., [15] to determine the 1D-CNNAE architecture.

The proposed 1D-CNNAE consists of a CNN encoder network and a mirrored
decoder network with 5 layers of alternating convolution and pooling layers. The
first convolutional layer consists of 64 filters (dimensionality of output space) and
kernel size of 1, followed by a max-pooling layer. The subsequent layers are four
alternating small (10x1) convolutional layers followed by max-pooling.

The learned features from the bottleneck layer of the CNNAE network is
extracted and saved to use with the anomaly detection methods to further in-
vestigate the performance of the automatically extracted features.

4 Training Procedure

The normal dataset was split into train, validation and test sets with a ratio of
80%, 10%, and 10%, respectively. The train and validation datasets are used at
the time of training with the validation dataset used for early stopping criterion
for the auto-encoder to prevent overfitting. The normal test dataset was set aside
to be merged with the abnormal test datasets to obtain a more realistic testing
set. The algorithms were first trained using the normal only dataset with the raw
torque values (2000 features), the manually extracted features, tsfresh features
and the features extracted by CNNAE. A contamination ratio which determines
the amount of contamination of the data set, i.e., the proportion of outliers in
the data set was predetermined (once assumed 90% of data are normal and once
95%) and used when fitting each model to define the threshold on the decision
function. Once the detectors were fit, the outlier scores of the training set is
determined using the corresponding decision function of a detector.

The nearest rank method is then used to find the ordinal rank of the anomaly
scores outputted by the detectors.

5 Results and Concluding Remarks

The trained models were used on the unseen mixed normal and anomalous
dataset to determine the anomaly scores. The anomaly scores were then cat-
egorized into anomalous and normal according to the set threshold (assuming
90% & 95% normal data). An anomaly score beyond the threshold is then flagged
with label 1 as being anomalous and 0 if smaller than threshold.

Figure 4 shows a side-by-side comparison of performance of each algorithm
using the 8 manual features. The results show that the performance of all
anomaly detectors using the hand crafted features is comparable to that of the
raw torque measurements/features. Similarly, the 76 tsfresh features also produce
comparable results to that of the 8 manually created and raw features, showing
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that the additional features extracted have no or near to none performance in-
crease in the models. We recommend the isolation forest anomaly detection if a

Fig. 3. Trained models applied to mixed data (normal + fault modes) with threshold
set at 90%. Grey points mark normal, orange points mark abnormal data.

single algorithm is to be choosen. Although based on the evaluation metrics, the
algorithm is slightly slower in training time, some of its properties makes it the
winner among other algorithms. These properties include: no need for calculat-
ing distance or density of samples; at the time of training a tree is constructed
and at test time it passes sample points down the tree to calculate the average
number of edges required to reach an external node. It is very robust in terms
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of choosing parameters; to configure it, one would need to (1) provide maximum
samples to draw from training dataset to train each of the base estimators, (2)
number of base estimators (the number of ensembles), (3) contamination, the
ratio of outliers in the dataset (if used as a semi-supervised algorithm). Liu et
al., [8], show that the choice of sample size is very robust and that the algorithm
converges very fast with low sample size. We think the most important configu-
ration parameter is the contamination ratio, which stands the same for all the
other algorithms. However, according to Liu et al., the choice of contamination
may be rectified by using a larger sampling size. In addition to its performance,
the memory requirement for isolation forest is very low because of sub-sampling
and so it makes it a great practical choice for deployment and in industry.

Figure 3 illustrates the anomalous scores of normal and faulty signals on a
scatter plot with grey marking points identified as normal and orange points as
anomalous for manually constructed features. The threshold (90%) is represented
as a golden horizontal line, marking the cut-off at which a sample is flagged
normal or anomalous.

Fig. 4. A side by side comparison of the anomaly detection algorithms applied to mixed
data (normal + fault modes) with threshold set at (a) 90% and (b) at 95%.

6 Future Work

In a future study, a comparative assessment of the presented anomaly detection
techniques will be made against the physics-based models of the normal and the
different fault modes (loose belt, tight belt and friction).
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