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Abstract. Topic modelling aims to discover latent themes in collec-
tions of text documents [31], [40], [70]. It has various applications across
fields such as sociology, opinion analysis, and media studies. In such
areas, it is essential to have easily interpretable, diverse, and coherent
topics. An efficient topic modelling technique should accurately identify
flat and hierarchical topics, especially useful in disciplines where topics
can be logically arranged into a tree format. In this paper, we propose
Community Topic, a novel algorithm that exploits word co-occurrence
networks to mine communities and produces topics. We also evaluate
the proposed approach using several metrics and compare it with usual
baselines, confirming its good performances. Community Topic enables
quick identification of flat topics and topic hierarchy, facilitating the on-
demand exploration of sub- and super-topics. It also obtains good results
on datasets in different languages.
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1 Introduction

Topic modelling discovers the themes of collections of unstructured text doc-
uments. Topics can act as features for document classification and indices for
information retrieval. However, one of the most important functions of these
topics is to assist in the exploration of large corpora. Researchers in all fields
and domains seek to better understand the main ideas and themes of document
collections too large for a human to read and summarize. This requires topics
that are interpretable and coherent to human users.
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Interpretability is a necessary but not sufficient condition for a good topic
model. Topics naturally exist in a hierarchy. There are larger, more general
super-topics and smaller, more specific subtopics. “Sports” is a valid topic in
that it represents a concept. “Football” and “Olympics” are also topics. They
are not completely distinct from “Sports” but rather are sub-topics that fall
within sports, i.e. they are child topics of the “Sports” parent topic in the topic
hierarchy. Topics also relate to each other to varying degrees. The “movie” topic
is more similar to the “television” topic than the “food” topic. This relationship
structure is also key to understanding the topical content of a corpus. Topic
modelling methods that simply provide the user with a set of topics are not as
useful and informative as those that can provide this hierarchy and structure.

When detecting and organizing the topics, diversity is crucial to avoid having
several topics that are basically the same and thus preventing redundancy in the
extracted topics. Having a variety of topics also enables a more thorough and
nuanced comprehension of the corpus. Let’s imagine we utilize topic modelling
to identify the major themes in a corpus of news articles regarding the economy.
Without topic diversity, we might end up with multiple topics that are essentially
the same, such as “jobs” and “employment.” However, with topic diversity, we
might also identify topics such as “tax policy,” “trade agreements,” and “con-
sumer spending,” which provide a more diverse and nuanced understanding of
the economy beyond just the labor market.

The capability of topic modelling to accommodate multiple languages is an-
other crucial component. This ability is very useful when analysing text corpora
from geographical areas with several official languages or social media data from
various communities. Topic modelling supporting different languages can also
help researchers who need to analyse enormous volumes of data quickly on com-
mon computer hardware.

Recently, a new domain has emerged where topics can provide utility: conver-
sational agents, which are computer programs that can carry on a human-level
conversation. The conversation is an end in itself; the purpose of speaking with
a conversational agent is to converse, to be entertained, to express emotion and
be supported. The awareness and use of the topics of discussion are key abilities
that an agent must possess to be able to carry on a conversation with a hu-
man. Previous work has used the detected topic of conversation to enrich the a
conversational agent’s responses [17]. However, more can be done with topics to
improve the abilities of a conversational agent given the right topic model that
provides a topic hierarchy and structure. It can be used to detect and control
topic drift in the conversation so that the agent’s responses make sense in con-
text. If the user is engaged with the current topic, then the agent can stay on
topic or detect sub-topics to focus the conversation. The agent can detect super-
topics to broaden the range of conversation. The agent should be able to move
to related topics or, if the user becomes bored or displeased, jump to dissimilar
topics. This type of control over the flow of the conversation is crucial to human
communication and is needed for human-computer interaction as well.
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In the literature, various models have been proposed to automatically dis-
cover topics in collections of text documents. The most widely used topic model,
Latent Dirichlet Allocation (LDA), only provides a simple set of topics without
a hierarchy or structure and it has other drawbacks. The number of topics must
be specified, requiring multiple runs with different numbers of topics to find the
best topics. It performs poorly on short documents. Moreover it is not deter-
ministic. Thus, different runs on the same corpus can produce different topics,
especially if the order of the documents is different [41]. Finally, common terms
can appear in many different topics, reducing the uniqueness of topics [50].

Neural networks have pushed forward the state-of-the-art in topic modelling.
A relatively new algorithm called Top2Vec [2] uses word embeddings but suffers
from topic overlap [19]. Another embedding-based approach, BERTopic [27], re-
quires specialized hardware. Both Top2Vec and BERTopic are suitable for short-
text data analysis [18] [60]. Neural topic models, such as nTSNTM [13], produce
more coherent topics than LDA but retain many of its weaknesses, such as the
need to specify the number of topics and the tendency to find models with many
redundant topics [10]. These models also require more computational resources
and specialized hardware. Hierarchical topic models, such as Hierarchical LDA
(HLDA) [25], Pachinko Allocation Model (PAM) [39], and Hierarchical Pachinko
Allocation (HPA) [48], have not demonstrated good hierarchical relationships in
terms of topic specialization and affinity between super and subtopics.

Thus, Although neural topic models have produced topics of greater coher-
ence, they retain many of the weaknesses of LDA, such as the need to specify
the number of topics, while having a tendency to find redundant topics [10] and
demanding greater computational resources and specialized hardware.

These drawbacks have inspired us to search for a new approach to topic mod-
elling. We desire a method that can operate quickly on commodity hardware and
that deterministically provides not only a set of topics but their relationships and
a hierarchical structure. It should also supports different languages while main-
taining topic diversity and interpretability. Given these expectations, it seams
natural to take an information network-based approach. Our topic modelling al-
gorithm, Community Topic (CT), mines communities from networks constructed
from term co-occurrences. These topics are collections of vocabulary terms and
are thus easily interpretable by humans. The fractal nature of the network rep-
resentation provides a natural topic hierarchy and structure. The topic hyper-
vertices form a network with connections of varying strength between the topic
vertices derived from the aggregated edges between their constituent word ver-
tices. Super-topics can be mined from this topic network. Indeed, each topic itself
is also a sub-graph with regions of varying density of connections that can be
mined to find sub-topics. Our algorithm has only a single hyperparameter and
can run quickly on simple hardware which makes it ideal for researchers from all
fields for exploring a document collection. With proper data pre-processing, this
algorithm is also language-agnostic, enabling it to be applied to diverse linguistic
datasets.
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In this paper, Section 1 presents a review of the current state-of-the-art in
topic modeling. Section 2 describes our algorithm, how it constructs term co-
occurrence networks and mines topics from them. It explains how our method
discovers topic hierarchies and can adapt on-the-fly based on user requirements.
To assess our algorithm’s effectiveness, we evaluated it both for simple and
hierarchical topic discovery, and for different languages. Our evaluation met-
rics include coherence, interpretability, diversity, hierarchical specialization, and
affinity. Our experimental results, presented in Section 5 after our evaluation pro-
tocol detailed in Section 4, demonstrate that our approach outperforms existing
methods in finding a more coherent topic structure and establishing a stronger
relationship between parent and child topics. Thus, our algorithm yields flat or
hierarchical topics efficiently and enables on-demand sub- and super-topic dis-
covery. It should be noted that the open-sourced python library along with code
and usage tutorial is available online 5.

2 Related Work

Topic modelling emerged from the field of information retrieval and research to
more effectively represent documents for indexing, query matching, and docu-
ment classification. The performance of topic models on these tasks has been
surpassed by deep neural models but topic models have become extremely pop-
ular tools of applied research both inside and outside of computing science [29].
One early approach is Latent Semantic Analysis (LSA) [15] which decomposes
the term-by-document matrix to find vectors representing the latent semantic
structure of the corpus and can be viewed as (uninterpretable) topics that relate
terms and documents. Another matrix decomposition method is Non-negative
Matrix Factorization [38]. Researchers unsatisfied with the lack of a solid sta-
tistical foundation to LSA developed Probabilistic Latent Semantic Analysis
(pLSA) [28] which posits a generative probabilistic model of the data with the
topics as the latent variables. A drawback of pLSA is that the topic mixture is
estimated separately for each document. Latent Dirichlet Allocation (LDA) [7],
not to be confused with Linear Discriminant Analysis, was developed to remedy
this. LDA is a fully generative model as it places a Dirichlet prior on the latent
topic mixture of a document. The probability of a topic z given a document d,
p(z|d; θ), is a multinomial distribution over the topics parameterized by θ where
θ is itself a random variable sampled from the prior Dirichlet distribution. The
number of topics must be specified and the model provides no topic hierarchy
or structure.

There have been many methods developed that attempt to improve upon
LDA. Promoting named entities to become the most frequent terms in the doc-
ument has been tried [35]. In [77], the authors use a process to identify and
re-weight words that are topic-indiscriminate. To improve the performance of
LDA on tweets, the authors of [45] pool tweets into longer documents. Super-
vised LDA (sLDA) is an LDA extension that incorporates supervised information

5 https://github.com/DATAMI01/DSA
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such as class labels [44]. In the same vein, the MetaLDA model [81] incorporates
also meta information such as document labels. Structural Topic Models (STM)
[58] is an LDA extension that models the structure of the covariates and their
relation to topics while Relational Topic Models (RTM) models co-occurrence
patterns between documents [11]. The author-topic model [64] extends LDA by
conditioning the topic mixture on document author and, the Correlated Topic
Model (CTM) [4] takes into account the correlations between topics but its com-
putational cost may limit its scalability. Finally, the Dynamic Topic Model [5]
allows for the modelling of topic evolution over time.

Topic modeling algorithms like LDA [7] are not initially designed to de-
tect topic hierarchies, but several hierarchical methods have been developed to
find super and sub-topics in documents. The nested Chinese restaurant process
(nCRP) [25] [6] and the nested hierarchical Dirichlet process (nHDP) [55] are
examples of topic models that address this limitation. The Hierarchical LDA
model (HLDA) [25] models the topic hierarchy using a tree structure. The depth
of the tree must be specified but the number of topics is discovered. A flexi-
ble generalization of LDA is the Pachinko Allocation Model (PAM) [39]. Like
HLDA, PAM allows for a hierachy of topics but this hierarchy is represented by a
directed acyclic graph rather than a tree of fixed depth, allowing for a variety of
relationships between topics and terms in the hierarchy, although this structure
must be specified by the user. Hierarchical Pachinko Allocation (HPA) [48] ex-
tends PAM to generate a hierarchy of medoids, useful for identifying global and
local structures in the data. However, HPA can be computationally expensive
and requires hyperparameter tuning.

Although many of the topic models discussed above have been successful in
analyzing documents, their applicability to different languages remains unclear.
Multilingual topic models (MTMs) have been proposed to overcome this limita-
tion by uncovering latent topics across languages and revealing commonalities
and differences across cultures [54] [62]. In a recent study [78], Yang et al. im-
proved upon previous MTMs by learning weighted topic links and connecting
cross-lingual topics only when the dominant words defining them are similar,
resulting in better classification performance than LDA and previous MTMs.

Another important aspect of topic modeling is its application to short docu-
ments. To address this, various methods have been proposed, such as Sentence-
LDA [57], which models topics at the sentence-level, and Dirichlet Multinomial
Mixture Model (DMM) [79], Biterm topic model [76], and Dirichlet Process
Multinomial Mixture Model (DPMM) [57], which are specifically designed for
short text topic modeling.

In recent years, new topic models have emerged based on neural networks
[73]. For instance, the Embedded Topic Model (ETM) [16] combines word em-
beddings trained using the continuous Skip-gram algorithm [47] with the LDA
probabilistic generative model. Another approach is to use a variational autoen-
coder (VAE) [33][34] to learn the probability distributions of a generative prob-
abilistic model, as with the neural variational document model (NVDM) [46],
the stick-breaking variational autoencoder (SB-VAE) [49], ProdLDA [63], and
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Dirichlet-VAE [10]. These models discover topics that are qualitatively different
than those found by traditional LDA, although there is debate as to whether
they are truly superior [29]. Other approaches use word embeddings learned by
a neural network but do not use the probabilistic generative model framework.
For example, the Top2Vec algorithm [2] clusters document vectors learned by
the Doc2vec algorithm [37]. Correlation Explanation (CorEx) is another topic
model that produces informative topics about a set of documents [23]. How-
ever, it may face difficulties in accurately identifying topics in datasets where
words are generated by multiple topics or where topics have overlapping words.
In this family, we can also mention BERTopic, an unsupervised method that
does not require the number of topics to be specified a priori [27]. It uses pre-
trained BERT embeddings but may not perform as well on domain-specific or
low-resource datasets where pre-training may be limited.

Neural models that provide a topic hierarchy have also been developed. In
[80], the authors develop Weibull hybrid autoencoding inference (WHAI) to
model multiple layers of priors for deep LDA and thus multiple layers in a
topic hierarchy. However, the number of hyperparameters, complicated train-
ing process, and need for special hardware make this type of model unsuitable
for applied researchers seeking a tool for corpus exploration. TSNTM [30] and
nTSNTM [13] are two other models designed to detect topic hierarchies. They
exploit a doubly-recurrent neural network (DRNN) to parameterize the topic
distribution over an infinite tree. It should be noted that although these models
have achieved high coherence scores, they are also computationally expensive
and require tuning of many hyperparameters.

Finally, among all the models in the literature, the one that is closest to
ours is hSBM [24] since it also discovers topics by looking for communities in
network. But, unlike CP, hSBM detects communities using a stochastic block
model (SBM) and therefore, as the probabilistic topic models previously men-
tioned, it suffers from the same shortcomings that led us to propose our model
Community Topic (CT), described in the next section.

3 Community Topic

Community Topic (CT) is a topic modelling algorithm that leverages community
detection to identify topics in a given corpus. It supports both flat and hierar-
chical topic modelling and the code is available in an open-sourced library6 with
a tutorial7. CT follows several steps to identify topics in the corpus as discussed
in below subsections, just after a brief reminder of notions from social network
analysis, useful in the sequel.

6 https://github.com/DATAMI01/DSA
7 https://shr1911.github.io/communitytopic/api-reference/
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3.1 Network and Communities

A comprehensive review of network theory is beyond the scope of this paper
and we refer the reader to [52], [74] for more details. We just define sufficient
terminology to be able to understand our method.

A network is represented by a graph G = (V,E) where V is the set of vertices
and E is the set of edges. A network may be unweighted, in which case there is a
binary alternative between the existence or non-existence of an edge ei,j between
any two vertices vi, vj ∈ V that indicates a relationship between those vertices.
A network may be weighted, in which case an edge ei,j has an associated weight
wi,j which is a numeric value that characterizes in some way the relationship
between vertices vi and vj . The degree of a vertex vi, denoted ki, is the number
of edges connected to that vertex, i.e. ki = |{ei,j : vj ∈ V }|. The internal
degree of a vertex vi, denoted kinti , is the number of edges that connect vi to
another vertex of the same community. The weighted degree of a vertex vi,
denoted kwi , is the sum of the weights of all edges connected to that vertex, i.e.

kwi =
∑

vj∈V wi,j . The internal weighted degree of a vertex vi, denoted kw,int
i ,

is the sum of the weights of all edges that connect vi to another vertex of the
same community. The embeddedness of a vertex vi is k

int
i /ki. The weighted

embeddedness of a vertex vi is k
w,int
i /kwi .

Community structure is the tendency of networks to consist of groups of
vertices where the density of edges within the group is much higher than the
density of edges between groups. These groups of highly-connected vertices are
called communities. There is no single formal accepted definition of a community
or how dense the connections must be to form a community. Certainly a fully
connected group of vertices, i.e. a clique, would constitute a community, but
communities need not be so densely connected. We are interested in finding
all of the communities of the network. This global partitioning of the network
into communities is called community detection. Many different community
detection algorithms have been developed over the years and are reviewed in
[14], [21], [22], and [65].

Our community detection-based topic modelling algorithm Community Topic
(CT) has three main steps. First, a network is constructed from the document
corpus. After the network is constructed, CT applies a community detection
algorithm to find the communities in the network. Finally, the communities are
filtered out and, each topic (i.e. community) is sorted so that the most important
and relevant terms for the topic come first and the topics are returned. By this
way, CT can identify both flat topics within a corpus but by adding a fourth step
it can also discover hierarchical topics. These different steps are detailed below
and, the pseudo-codes for each type of topic modelling are given in algorithm 1
for flat topics and in algorithm 2 for hierarchical topics.

3.2 Co-occurrence Network Construction

First, a network is constructed from the document corpus with terms as vertices.
An edge exists between a pair of vertices vi and vj if the terms ti and tj co-occur
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in the same sentence or within a sliding window applied on the text. The weights
of edges are derived from the frequency of co-occurrence. One method is to use
the raw count as the edge weight. However, this does not adjust for the frequency
of the terms themselves so more common terms will tend to have higher edge
weights. An alternative weighting scheme is to use normalized pointwise mutual
information (NPMI) between terms (Eq. 1).

NPMI(ti, tj) =
log

p(ti,tj)
p(ti)p(tj)

−log(p(ti, tj))
(1)

NPMI assigns higher values to pairs of terms ti and tj whose co-occurrence,
p(ti, tj), is more frequent than what would be expected if their occurrences in the
texts were random, p(ti)p(tj). This is normalized to adjust for the frequencies
of the terms in the corpus. The edges of the network are thresholded at 0, i.e.
those edges with weights less than or equal to 0 are removed from the network.
This is because the community mining algorithm we will use to discover topics
uses modularity Q [53] to discover the more densely connected regions of the
network. This formula uses the product of the weighted degrees of two vertices
to determine the expected value of the strength of their connection if the graph
was random, which does not work if a vertex has a negative weighted degree.

Q =
1

2m

∑
ij

(
Ai,j −

kwi k
w
j

2m

)
δ(Ci, Cj) (2)

Here m is the sum of weights of all edges in the network, Ai,j is the weight
of the edge connecting vi and vj , k

w
i (kwj ) is the sum of weights of edges incident

to vi (vj), Ci (Cj) is the assigned community of vi (vj), and δ is an indicator
function that returns 1 when the two arguments are equal and 0 otherwise.

The distribution of edge weights differs greatly between the raw count and
NPMI. The raw count weights follow a power law distribution with the vast
majority of edges having very low weight and very few edges with very high
weight. This mirrors the power law distribution of term frequencies. Given this
distribution of term frequencies, a given edge weight value can carry very dif-
ferent information. An edge weight of 2 could indicate a significant relationship
between two terms that occur 5 times each. Between two terms that occur hun-
dreds of times each, an edge weigh of 2 would be noise. When we convert the
edge weights to NPMI values, they are scaled to the range [-1,+1] and high
values are assigned to edges that represent frequent co-occurrence relative to
the frequencies of the connected terms. This distribution resembles a bell curve.
We see very few edge weights less than or equal to 0 that will be removed by
thresholding. This indicates that conditioned on co-occurring at least once, two
terms are likely to co-occur more often than would be expected by chance. In
our experiments we found slightly better results using the NPMI edge weights.
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3.3 Community Mining

Once the co-occurrence network is constructed, CT discovers topics by applying
a community detection method.

A community is a group of vertices that have a greater density of connections
among themselves than they do to vertices outside the group. Many community
detection algoritms exist and have been surveryed in other papers such as [14],
[21], [22] or [65]. CT employs the Leiden algorithm [68] as this was found to work
best in experimentation but other algorithms can be used. The Leiden algorithm
has a resolution parameter that is used to set the scale at which communities are
discovered. Smaller values of this parameter lead to larger communities being
found and larger values lead to smaller communities. For illustration, Figure 1
shows the distribution of community sizes found when using a Leiden resolution
parameter of 1.0 on the BBC News dataset8. CT returns 5 large topics that
correspond to the five article categories of the dataset. In Figure 2, we see that
a resolution parameter of 1.5 returns a greater number of small topics with
a greater variance of topic size, from hundreds of terms to just a few. This
represents the only hyperparameter necessary for CT and is less a value that
needs to be carefully tuned for good performance but is rather a way for the
user to get communities of a desired size. However, as other community detection
algorithms can be used instead of Leiden, such as Louvain [8] which does not
require a parameter, it is easy to make CT free parameter.

Algorithm 1: Flat Community Topic

Require: Preprocessed corpus D, parameters window, weight, threshold
G← buildNetwork(D, window, weight, threshold)
Communities← communityDetection(G)
Topics← {}
for community ∈ Communities do
if |community| > 2 then

sort(community)
Topics.add(community)

end if
end for
return Topics

3.4 Topic Filtering and Term Ordering

Once the communities are discovered, small communities of size 2 or less are
removed as outliers. Probabilistic graphical topic models such as LDA produce

8 https://www.kaggle.com/competitions/learn-ai-bbc/data
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Fig. 1: Distribution of community sizes found by Leiden with resolution
parameter 1.0 on BBC News dataset.

topics that are probability distributions over vocabulary terms. The most im-
portant terms for a topic are simply those that have the highest probabilities.
The communities discovered by the Leiden algorithm are sets of vertices, so CT
needs a way of ranking the terms represented by those vertices. To do so, we take
advantage of the graph representation and use internal weighted degree to rank
vertices/terms, which is calculated as the sum of weights of edges incident to a
vertex that connect to another vertex in the same community/topic. This gives
higher values to terms that connect strongly to many terms in the same topic
and are thus most representative of that topic. Once the filtering and ordering
is complete, the set of topics is returned to the user.

3.5 Topic Hierarchy

This basic formulation of CT produces a set of topics like vanilla LDA. However,
there exists a natural structure to the graph representation and it is straight-
forward to adapt CT to return a hierarchy. By iteratively applying community
detection to each topic sub-graph, CT discovers the next level of the topic hi-
erarchy. This can be done to a specified depth or we can allow CT to uncover
the entire hierarchy by stopping the growth of the topic tree once the produced
sub-topics are smaller than three terms. An example of 3 levels of topics discov-
ered on the BBC corpus is show in Figure 6. The level 1 topics correspond to the
5 article categories of the corpus. Level 2 and then 3 show increasingly specific
sub-topics.

The topic hierarchy can also be constructed in a bottom-up fashion. If a low
Leiden resolution parameter is initially used, CT produces many small topics.
Applying community detection to the network of topic vertices groups these
small sub-topics into super-topics. We can see an example of this in Figure
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Fig. 2: Distribution of community sizes found by Leiden with resolution
parameter 1.5 on BBC News dataset.

7 that shows the clustering of the initial small topics discovered on the BBC
corpus into super-topics which roughly correspond to the 5 article categories of
the corpus. The pseudocode of CT for discovering hierarchical topics is given in
algorithm 2.

Algorithm 2: Hierarchical Community Topic

Require: Preprocessed corpus D, parameters window, weight, threshold, n level
level 1← findFlatTopics(D, window, weight, threshold)
HierarchicalTopics← {}
for n ∈ range(2, n level) do

nextLevel← findNextLevelTopics(currentLevel)
HierarchicalTopics.add(nextLevel)
currentLevel← nextLevel

end for
return HierarchicalTopics

4 Evaluation protocol

We extensively evaluate Community Topic through empirical experiments to
identify the optimal hyperparameters and also compare CT with various base-
lines. Our experiments encompass flat topic modeling, hierarchical topic mod-
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eling, and analysis of different languages. All the data and code used in the
experiments are publicly available on our GitHub repository 9.

4.1 Datasets

We use four datasets to assess the effectiveness of various topic modelling ap-
proaches, namely 20Newsgroups10, Reuters2157811, BBC News12, and EuroParl13.
The 20Newsgroups dataset comprises 18,846 posts from the Usenet discussion fo-
rum covering 20 distinct topics such as ”atheism” and “hockey”. The Reuters21578
dataset consists of 21,578 financial articles that were published on the Reuters
newswire in 1987 and cover economic and financial topics such as “grain” and
“copper”. The BBC News dataset comprises 2,225 articles grouped into five cat-
egories: “business”, “entertainment”, “politics”, “sport”, and “tech”. The Eu-
roParl parallel corpus is extracted from the transcripts of European Parliament
proceedings. We have randomly selected 19,000 documents from EuroParl as
the training dataset and 6,000 documents as the test dataset. This corpus in-
cludes versions in 21 European languages, and hence we have used this particular
dataset to compare the performance of Community Topic and other baselines
across multiple languages.

4.2 Preprocessing

To prepare a text corpus for topic modeling, there are numerous techniques that
have been found to be effective in the literature. We use spaCy14 to lowercase
and tokenize the documents and to identify sentences, parts-of-speech (POS),
and named entities. We employ the appropriate spaCy model depending on the
language of the input dataset. Only noun-type entities, such as EVENT, FAC
(buildings), GPE (geo-political entities), LOC (non-GPE locations), ORG (or-
ganizations), PERSON, PRODUCT, and WORK OF ART, are detected and
merged into single tokens, for example, “united”, “states”, “of”, and “america”
become “united states of america”. While stemming and lemmatization have
been commonly used in the topic modelling literature, the authors of [61] found
that they do not improve topic quality and hurt model stability so we do not
stem or lemmatize. We remove stopwords and terms that occur in over 90%
of documents. This formula is more effective in larger corpora but is only pro-
portional to

√
|d|. Following [29], we remove terms that appear in fewer than

2(0.02|d|)1/log10 documents. It was shown in [42] that topic models constructed
from noun-only corpora were more coherent so we detect and tag parts-of-speech
to be able to filter out non-noun terms as in [12]. This is intuitive as adjectives

9 https://github.com/DATAMI01/DSA
10 https://scikit-learn.org/0.19/datasets/twentynewsgroups.html
11 https://huggingface.co/datasets/reuters21578
12 https://www.kaggle.com/competitions/learn-ai-bbc/data
13 https://www.statmt.org/europarl/
14 https://spacy.io/
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and verbs can be used in many different contexts, e.g. one can “play the piano”,
“play baseball”, “play the stock market”, and “play with someone’s heart”, but
music, sports, finance, and romance are separate topics. Even with nouns there
are issues with polysemy, i.e. words with multiple meanings and thus multiple
different common contexts. To help with this problem, we use Gensim15 using
NPMI to extract meaningful n-grams [9]. An n-gram is a combination of n ad-
jacent tokens into a single token so that a term such as “microsoft windows”
can be found and the computer operating system can be distinguished from the
windows of a building. We apply two iterations so that longer n-grams such as
“law enforcement agencies” can be found. To support different languages, we use
connector words specific to each language. For English we use connector words
from Gensim library and for other languages we translate these connector words
into that language for consistency purpose. Currently, our pre-processing mod-
ule supports five languages: English, Italian, French, German, and Spanish. We
compare the quality of topics to ensure that different algorithms are not more
sensitive to generic terms and that there are no topical adjectives or verbs with
n-gram combinations.

4.3 Hyperparameter Tuning

We performed extensive experiments on the four datasets mentioned above by
training them with and without parts-of-speech filtering. Co-occurrence networks
were created using both raw count and NPMI edge weights, with threshold val-
ues of 0 and 2 for count networks and 0 and 0.35 for NPMI networks. We used a
sentence co-occurrence definition and sliding windows of size 5 and 10. Commu-
nity detection was performed using WalkTrap [56] and Leiden [68] algorithms
with resolution parameters of 1, 1.5, 2, and 2.5. The Leiden resolution parame-
ter determines the scale of discovered communities, with larger values yielding
more, smaller communities.

Topics were ordered by various metrics such as degree, weighted degree, in-
ternal degree, internal weighted degree, embeddedness, and weighted embedded-
ness. The results were evaluated with CV and CNPMI , described in Section 4.4,
with top-N values of 5, 10, and 20, leading to a total of 18,144 evaluations.
Based on our results, we found that Community Topic works best with the Lei-
den algorithm. Since Leiden performed well on all datasets with the same set of
hyperparameters, we recommend using a sentence co-occurrence window, NPMI
edge weights, no thresholding, and noun-only POS filtering as the standard set-
tings and report results corresponding to this setting. These hyperparameters
are chosen such that the algorithm is hyperparameter-free, but our published
library allows for flexibility in experimenting with different combinations.

15 https://radimrehurek.com/gensim/
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4.4 Evaluation metrics

Different evaluation metrics can serve as objective targets to better analyze a
topic model’s behavior [66]. The following metrics have been used in our exper-
iments.

Topic Coherence Metrics Even if perplexity is frequently considered for topic
models evaluation, various studies ([11], [51]) have established that it is not an
effective means for evaluating the interpretability of extracted topics. Instead,
Lau et et al. [36] demonstrated that the normalized pointwise mutual information
(NPMI) coherence between word pairs in each topic closely aligns with human
annotators’ evaluation of topic interpretability. Therefore, following the approach
taken by [63], we use NPMI rather than perplexity as the primary evaluation
metric.

To assess the quality of the topics extracted by each model, we adopt two
coherence measures: CV [59] and CNPMI [1] [29]. Both measures have been
shown to correlate with human judgements of topic quality with CV having the
strongest correlation [59]. Even though CV has stronger correlation that CNPMI

with human evaluations, CNPMI is more commonly used in the literature [29],
possibly due to the extra computation required by CV . We prefer the CV mea-
sure as, in addition to being more highly correlated with human judgement,
it considers the similarity of the contexts of the terms, not just their own co-
occurrence. We use Gensim16 to compute both measures and consider the top 5
terms of each topic for evaluation. Each dataset has a train/test split. We train
all models on the train documents and evaluate using the test documents. We
use the standard 110-term window for CV and 10-term window for CNPMI . We
use the top 5 terms of each topic for evaluation

Topic Diversity Measures In addition to coherence measures, we also con-
sider diversity metrics to assess the quality of topics produced by each model.
These metrics are computed based on the distribution of topic words and pro-
vide a numerical score that indicates how diverse the words are in the topics.
Ideally, for topics that are semantically different from each other, we expect the
diversity scores to be close to 1. This is because diverse topics are more infor-
mative and useful for downstream applications such as document classification
or information retrieval. In our experiments, we consider PUW , PJD, IRBO
and, use implementation of topic diversity17 given by [66].

– Proportion of Unique Words (PUW) [16] is used to determine the
percentage of unique words in a topic. A PUW score that is close to 0
indicates that the topic contains a lot of redundant words, while a score close
to 1 suggests that the topic is more diverse and contains a wider variety of
words.

16 https://radimrehurek.com/gensim/models/coherencemodel.html
17 https://github.com/MIND-Lab/OCTIS
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– The Average Pairwise Jaccard Diversity (PJD) [69] measures the
average pairwise Jaccard distance between the topics. The resulting diver-
sity score increases as the topics become more dissimilar, providing better
coverage of various aspects.

– Inverted Rank-Biased Overlap (IRBO) metric [3] is a measure of the
rank-biased overlap between topics, indicating the diversity of topics gener-
ated by a single model. To calculate IRBO, we use the inverse of the standard
RBO [67], which compares the top 10 words of two topics. The RBO18 metric
allows for the possibility of disjointedness between the lists of topics, mean-
ing that two topics can have different words, and uses weighted ranking.
For instance, if two lists share some of the same words, albeit at different
rankings, they are penalized less than two lists that share the same words
at the highest ranks. An IRBO score of 0 indicates identical topics, while a
score of 1 indicates completely different topics [75].

We believe that the combination of coherence and diversity metrics provides a
more comprehensive evaluation of topic models and can help researchers to make
informed decisions about which models to use for their specific applications.

Hierarchical Analysis To measure the quality of the topic hierarchy, we use
two measures proposed in [32]: topic specialization and hierarchical affinity.

– Topic Specialization measures the distance of a topic’s probability distri-
bution over terms from the general probability distribution of all terms in the
corpus given by their occurrence frequency. We expect topics at higher levels
in the hierarchy closer to the root to be more general and less specialized
and topics further down the hierarchy to be more specialized.

– Hierarchical Affinity measures the similarity between a super-topic and
a set of sub-topics. We expect higher affinity between a parent topic and its
children and lower affinity between a parent topic and sub-topics which are
not its children.

4.5 Comparative baselines

Flat topic detection Regarding the detection of flat topics, we evaluate our
Community Topic algorithm against LDA [7] , Top2Vec [2], an algorithm based
on word embeddings learned by a neural network and BERTopic [26], which
is similar to Top2Vec in terms of algorithmic structure but dedicated to topic
detection. Another baseline we consider is Correlation Explanation (CorEx) [23],
which employs an information-theoretic approach to learn latent topics over
documents. Unlike LDA, CorEx does not make any assumptions about the data
generating model and searches for topics that provide maximum information
about a set of documents. We assess the performance of these algorithms in

18 https://github.com/dlukes/rbo
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terms of topic coherence, diversity, runtime, and stability of topic quality across
multiple runs.

We used the best hyper-parameters for CT to achieve the best evaluation
metrics. For CT, we applied noun-only filtering and constructed co-occurrence
networks using a sentence co-occurrence window and NMPI edge weights. We
kept the edge weights as is, without applying any threshold for the noun-only
corpus. For LDA and Top2Vec, we used noun-only POS filtering for 5 topics since
5 topics is the average number of flat topics obtained from community mining.
We did not need to tune any hyperparameters for the Top2Vec algorithm. To run
BERTopic, we provided the raw text corpus to the model and set the verbose
flag to True, which helped to track the stages of the model. We then fit the
BERTopic model on a collection of documents, generated topics, and returned
the docs with topics. For CorEx, the topic model assumes that the input is in
the form of a doc-word matrix, where rows represent documents and columns
represent binary counts. Hence, we converted the raw data into the necessary
format. We also set 6 different parameters for CorEx. To compare the run times
and stability of these algorithms over repeated runs, we ran each algorithm 10
times. As the scores were almost similar, deviation was less and the results
reported correspond to the best ones.

Hierarchical topic detection Three probabilistic graphical topic models,
namely HLDA [25], PAM [39], and HPA19 [48] serve as our hierarchical baselines.

HLDA can produce topics at three levels, which are probability distributions
over vocabulary terms, and thus, they are compatible with our evaluation metrics
without any modifications. On the other hand, CT generates a list of terms sorted
by internal weighted degree, which we convert into probability distributions to
calculate specialization and affinity by dividing each value by the sum of all
values. The super-topics discovered by PAM and HPA are distributions over sub-
topics. We convert into distributions over terms by computing the expectation
for each term in the sub-topics given the super-topic distribution over sub-topics.
However, since the super-topic distribution assigns a non-zero probability to all
sub-topics, we need to distinguish between children and non-children. To address
this, we consider the top six most likely sub-topics as the children of a super-
topic, as we hypothesize an average of six sub-topics per super-topic in a topic
hierarchy.

CT applies a Leiden resolution parameter of 1.0 to identify 5 or 6 super-
topics across all datasets, each consisting of 5, 6, or 7 sub-topics on average,
which serves as a guide for the PAM and HPA models. On the other hand,
HLDA discovers hundreds of super-topics and roughly three times more sub-
topics than CT. However, this approach of generating numerous small topics at
all levels often leads to suboptimal results according to our evaluation metrics
and an imperfect hierarchy, where a child topic is frequently present in more
documents than its parent.

19 https://bab2min.github.io/tomotopy/v0.12.2/en/
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In addition, we compare CT to nTSNTMmodel [13], which leverages the neu-
ral variational inference (NVI) framework and a nonparametric prior to group
topics into a sensible tree structure. We utilized the publicly available code of
nTSNTM20 with the recommended parameters indicated in [13]. The model was
trained for 100 epochs, with a hidden size of 256, and we ensured that it was com-
patible with the latest version of Tensorflow in order to obtain accurate results.
To maintain consistency in hardware, we executed the nTSNTM model on the
same commodity hardware used by the baseline models mentioned earlier. How-
ever, it should be mention that nTSNTM requires specific pre-processed data.
But since the preprocessed data are only available for NG20 and Reuters, the
experiments could only be carried out on these datasets. Moreover, as nTSNTM
does not provide topic words, only evaluation measures computable from the
produced results are reported.

5 Experimental Results

5.1 Results for Flat Topic Detection

Topic coherence and diversity analysis: This first set of experiments al-
lows to compare Community Topic (CT) with other popular topic modeling
algorithms, namely LDA, Top2Vec, BERTopic, and CorEx for flat topics discov-
ery.

Table 1 presents a clear picture of the topic coherence and diversity scores
obtained with these algorithms. Community Topic (CT) emerges as the most
coherent algorithm in terms of CV and CNPMI among all, except BERTopic.
Although Top2Vec produces more coherent topics than LDA and CorEx, it falls
short of the coherence scores achieved by CT. Moreover, Top2Vec takes signifi-
cantly longer and is less stable over repeated runs, making it less favorable for
practical applications.

Both Top2Vec and BERTopic are word embedding-based models learned by
a neural network, and our analysis shows that their coherence validation (CV )
scores are in general higher than other baselines. However, both models fail to
provide diverse topics, as indicated by the low scores for the diversity measures
Proportion of Unique Words (PUW), Average Pairwise Jaccard Diversity (PJD),
and Inverted Rank-Biased Overlap (IRBO). On the other hand, CT and CorEx
stand out for their diverse topics, with CorEx producing the most diverse topics
among all the baselines. However, CorEx lags behind CT in terms of CNPMI

and CV scores.
Run Time Analysis: Concerning the run time, our experiments showed

that LDA, Top2Vec, BERTopic and Corex have more run times compare to CT.
For CT the reported time combines the time for building network, applying
community detection algorithm and the filtering/ordering task. It is important
to note that the community detection algorithms used by CT can be significantly
impacted by the size of the network. For larger networks, the run times of the

20 https://github.com/hostnlp/nTSNTM
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Models Datasets CV CNPMI PUW PJD IRBO Time (seconds)

CT

BBC 0.700 0.170 1 1 1 2.786
NG20 0.769 0.166 1 1 1 5.060
Reuters 0.690 0.107 1 1 1 4.051
EuroParl 0.535 0.044 1 1 1 1.384

LDA

BBC 0.461 -0.028 0.460 0.605 0.353 6.49
NG20 0.552 0.038 0.800 0.9133 0.8663 4.53
Reuters 0.453 0.002 0.620 0.796 0.580 5.32
EuroParl 0.463 -0.009 0.860 0.957 0.927 3.990

Top2Vec

BBC 0.630 0.043 1 1 1 16.98
NG20 0.655 0.082 0.637 0.966 0.998 62.47
Reuters 0.686 0.158 0.473 0.923 0.996 55.53
EuroParl 0.285 -0.482 1 1 1 92.71

BerTopic

BBC 0.550 0.041 0.504 0.767 0.843 309.592
NG20 0.784 0.165 0.795 0.997 0.998 1436.311
Reuters 0.823 0.250 0.682 0.997 0.998 1620.018
EuroParl 0.75 0.128 0.746 0.998 0.998 473.070

CorEx

BBC 0.603 -0.023 1 1 1 62.634
NG20 0.518 0.032 1 1 1 65.580
Reuters 0.605 0.051 1 1 1 64.695
EuroParl 0.314 -0.172 1 1 1 39.441

Table 1: Best evaluation scores obtained on the datasets for flat topic detection.

algorithms can increase by about one order of magnitude, which is equivalent
to half a second. Despite this, the network creation and topic filtering/ordering
steps of CT remain the same for both smaller and larger networks. In terms of
run times for the individual algorithms, CT has an average of 3 seconds, LDA
takes 5 seconds, Top2Vec takes 56 seconds, BERTopic takes 960 seconds, and
CorEx takes 58 seconds. While LDA and CT are faster compared to the other
baselines, CT still emerges as the fastest of all, demonstrating its efficiency in
processing large datasets and its potential usefulness in real-world applications.

Overall, the evaluation metrics reveal that each algorithm has its own strengths
and weaknesses, and the choice of an appropriate algorithm depends on the spe-
cific requirements of the project. CT and BERTopic offer high coherence Com-
munity Topic (CT) appears a suitable option since it considers all these factors
and strives to produce high-quality topics.

Qualitative evaluation of the extracted topics In addition, we also com-
pared the top 10 terms produced by CT and LDA on the BBC. To achieve this,
CT utilized Leiden with a resolution parameter of 1.0, sentence co-occurrence,
NPMI edge weights, and no thresholding to discover five topics. As shown in
Figure 1, the top 10 terms in each of the discovered topics were found to be
coherent, diverse, and unique, representing the categories of “Politics,” “Tech-
nology,” “Business,” “Sports,” and “Entertainment.” The ranking of the top
10 words was based on internal degree weight in the community, which was
described in the methodology section.
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Fig. 3: Top 10 words per topic produced by CT on BBC corpus.

In contrast, the topics generated by LDA, are less natural and tend to have
overlapping content as as shown in Table 2 which presents the top 10 words
produced by LDA on BBC corpus. Notably, we can observe that several words,
including year, people, government, time, film, and game, are present in mul-
tiple topics. Consequently, the topic diversity is undermined, resulting in less
distinctive and unique topics.

Topics

year, people, time, world , years, game, government, technology, music, way
people, year, time, film, government, world , number, way, game, years
year, company, firm, years, government, week, economy, people, growth, world
year, people, time, game, film, world , years, number, club, wales
year, people, government, time, election, labour, years, party, plans, music

Table 2: Top 10 words per topic produced by LDA on BBC corpus.

Thus, based on our analysis, CT is able to produce non-overlapping topics, re-
sulting in clear and distinct topic boundaries in documents. Moreover, it achieves
this with the fastest processing times compared to other algorithms. The added
advantage of being able to run CT on commodity hardware further adds to its
appeal. Additionally, CT produces highly coherent topics, which makes it more
user-friendly and easier to interpret.
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5.2 Results for Topic Hierarchy Detection

Model Coherence BBC NG20 Reuters EuroParl

CT
CV 0.661 0.753 0.709 0.420
CNMPI 0.075 0.132 0.166 -0.139

HLDA
CV 0.432 0.428 0.447 0.327
CNMPI 0.187 -0.146 -0.102 -0.269

PAM
CV 0.595 0.652 0.640 0.480
CNMPI 0.059 0.114 0.091 -0.021

HPA
CV 0.614 0.632 0.627 0.439
CNMPI 0.069 0.088 0.096 -0.080

Table 3: Best evaluation scores obtained on the datasets for hierarchical topics.

Topic coherence comparison with parametric models Concerning topic
hierarchy detection, Table 3 presents the coherence scores CV and CNMPI for
CT, HLDA, PAM and HPA. They show that CT outperforms other algorithms
in terms of coherence score CV on all datasets, except for EuroaParl, where PAM
achieves the highest score followed by HPA. In contrast, HLDA obtains the low-
est score, indicating that the topics generated by CT are more interpretable to
human users. The consistency in topics found by CT across multiple datasets
is promising, and the high coherence scores suggest that the topics identified
by CT are highly interpretable. These findings could be useful for researchers
and practitioners who use topic modeling to analyze large datasets and extract
meaningful insights from them.

Run time comparison with parametric models Moreover, out of all the
algorithms, CT is the most efficient, taking less than 5 seconds to discover the
topic hierarchy on all datasets. On the other hand, HLDA requires between 30
seconds to 5 minutes, while PAM and HPA range from 10 seconds to 2 minutes.
It’s worth noting that all experiments were conducted on a laptop with a 2.7
GHz dual-core processor and 8 GB RAM, ensuring a fair comparison between
the algorithms.

Comparison with non parametric model nTSNTM
As part of our experiments, we incorporated the Tree-Structured Neural

Topic Model (nTSNTM) that employs non-parametric neural variational infer-
ence.

Table 4 presents the scores obtained by CT and nTSNTM on NG20 and
Reuters datasets. The results indicate that while nTSNTM outperforms CT in
terms of CNPMI score, CT performs better in terms of topic diversity. Moreover,
nTSNTM takes an average of three hours to run on commodity hardware, while
CT completes the same task in just a few seconds.

Topic specialization analysis As indicated in [71], an effective topic hier-
archy is characterized by topics at the top being more general and those at the
bottom being more specific. Figure 4 illustrates the specialization scores for each
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Model Dataset CNMPI PUW Time (seconds)

CT
NG20 0.132 0.871 4.95
Reuters 0.166 0.862 13.67

nTSNTM
NG20 0.242 0.757 11700
Reuters 0.240 0.661 7380

Table 4: Scores obtained by CT and nTSNTM.

Fig. 4: Specialization Scores obtained on NG20 and Reuters.

algorithm on the NG20 and Reuters Datasets. We observed that CT, HLDA, and
nTSNTM found both super-topics (level 1), sub-topics (level 2), and sub-topics
of subtopics (level 3), while PAM and HPA only supported super-topics and sub-
topic hierarchies. HLDA has a very high specialization score, consistent with the
large number of topics found at all three levels, but it does not align with our
intuition that higher-level topics should be more general. PAM produces general
topics at level 1 and more specialized topics at level 2, but the super-topics are
too general and similar to the overall frequency distribution to provide useful
information for the user. HPA produces a similar level of specialization as PAM,
except that it generates slightly more specialized topics for NG20 at level 1, but
not more than CT. nTSNTM shows an increasing specialization from level 1 to
level 3, with more specialized topics at level 1 than PAM and HPA. However,
CT outperforms all of the models by producing reasonably high specialization
for level 1 that increases up to level 3.

The hierarchical affinity scores of each algorithm on the NG20 and Reuters
datasets are presented in Figure 5. It can be observed that HLDA displays a
higher affinity between parent topics and their children, but the overall affinity
is very low, leading to a weak relationship between super-topics and sub-topics.
On the other hand, HPA and PAM exhibit high affinities between parent topics
and both child and non-child topics, as their super-topics are distributions over
all sub-topics and are thus non-specialized. In contrast, CT parent topics demon-
strate high affinity with their children and no affinity with non-children since the
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Fig. 5: Affinity scores obtained on NG20 and Reuters.

sub-topics are a partition of the super-topic and do not overlap with any other
super-topic. For nTSNTM, the affinity between parent topics and their children
is almost the same as non-children for NG20, and slightly better for Reuters.
This indicates that nTSNTM does not produce a strong linkage between par-
ents and their children, which contradicts its higher CNPMI score compared to
other models.

For illustration, an example of 3 levels of topics discovered by CT on the BBC
corpus is show in Figure 6. The level 1 topics correspond to the 5 article categories
of the corpus. Level 2 and then 3 show increasingly specific sub-topics. Applying
CT with Leiden again to the “Tech” topic finds 7 sub-topics such as “video
games”, “the web”, and “cellphones”. “The web” sub-topic produces another
set of 5 sub-sub-topics such as “email”, “web search”, and “internet security”.
With a resolution parameter of 2, CT with Leiden initially finds a set of 48
small topics. Performing community detection on the network of topics results
in 9 super-topics, 5 of which are large and correspond to the article categories.
These super-topics are shown in Figure 7.

After evaluating the performances of CT, we have come to the conclusion that
CT with Leiden is the most effective one. It offers the most comprehensive topic
hierarchy, which can cater to communities of varying sizes, and performs consis-
tently well across all datasets using the same CT hyperparameters. Moreover,
CT with Leiden is incredibly fast and can generate a coherent topic structure in
a shorter duration than other algorithms, even when using commodity hardware.

Our experiment findings reveal that CT generates clear and interpretable
topics with the best hierarchy. The topic hierarchy produced by CT demon-
strates greater specialization for sub-topics as compared to super-topics, while
still maintaining enough specificity at both levels to make the topics useful. Fur-
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Fig. 6: Hierarchy of BBC corpus topics found by iteratively applying CT algorithm.

thermore, the super-topics of CT show a strong affinity with their corresponding
sub-topics, indicating a robust linkage.

5.3 Evaluation of CT on Different Languages

In order to further explore the capabilities of CT, we conducted experiments on
documents written in five different languages: English, Italian, French, German,
and Spanish. The baselines for these experiments were the same as that used
for the flat topic experiments. Though, the BERTopic baseline failed to run
on French language for which CamemBERT is most suited [43]. We chose the
EuroParl dataset as it provides the same content in different languages, making
it ideal for measuring the consistency of the algorithm across languages.

The results in terms of coherence and diversity are presented in Table 5. CT
performs better or equivalent to Top2Vec and CorEx for all languages in terms
of coherence scores (CV and CNPMI), as seen previously for flat topic detection.
BERTopic achieves the highest coherence scores, but it is worth noting that CT
exhibits consistency across different languages for the same dataset, with scores
ranging from 0.530 to 0.580. In contrast, BERTopic has high scores for English
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Fig. 7: Super-topics found by applying community detection on network of
small topics.

and Italian but experiences a decline of around 30% for Spanish. Although LDA
produces good scores for the French, Spanish and German languages compared
to CT, it has negative CNPMI scores. Overall, CT yields consistent and positive
CNPMI coherence scores for all languages.

The topic diversity for CT and CorEx equals 1 across all languages. However,
BERTopic and LDA show poor diversity across all languages. Top2Vec produces
more diverse topics for English and Spanish, but fails to maintain this diversity
for Italian and German. Furthermore, the time taken by all the algorithms re-
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Model Language CV CNPMI PUW PJD IRBO

CT

English 0.535 0.043 1 1 1
Italian 0.555 0.036 1 1 1
French 0.554 0.033 1 1 1
German 0.534 0.009 1 1 1
Spanish 0.579 0.051 1 1 1

LDA

English 0.411 -0.065 0.88 0.951 0.929
Italian 0.543 -0.021 0.480 0.641 0.227
French 0.567 -0.013 0.400 0.470 0.768
German 0.571 -0.018 0.440 0.603 0.527
Spanish 0.557 -0.004 0.440 0.615 0.437

Top2Vec

English 0.268 -0.215 1 1 1
Italian 0.320 -0.491 0.453 0.943 0.977
French 0.555 0.036 0.614 0.922 0.942
German 0.316 -0.496 0.500 0.882 0.911
Spanish 0.264 0.491 1 1 1

BerTopic

English 0.750 0.142 0.735 0.998 0.998
Italian 0.736 0.104 0.819 0.999 0.999
German 0.407 -0.104 0.853 0.998 0.999
Spanish 0.330 -0.147 0.884 0.999 0.999

CorEx

English 0.314 -0.172 1 1 1
Italian 0.385 -0.157 1 1 1
French 0.419 -0.175 1 1 1
German 0.452 -0.059 1 1 1
Spanish 0.354 -0.161 1 1 1

Table 5: Evaluation scores obtained on EuroParl dataset across different languages.

mains the same as in the flat topic experiments, with CT remaining the fastest
algorithm.

To showcase the human interpretability of the topics generated by our ap-
proach, we have leveraged DeepL translation21 to translate the resulting topics
into English. We observed that the translated topics have similar themes across
languages. Furthermore, Figure 8 displays the top 10 words of each topic gener-
ated by our method, after translation. Notably, CT produces consistent topics,
with diversity and coherence maintained for all languages, which demonstrates
its consistency and robustness.

6 Conclusion

This paper presents a novel topic modeling algorithm, Community Topic (CT),
that combines the fields of topic modeling and social network analysis to over-
come the deficiencies of existing popular approaches.

The experiments show that CT outperforms other popular algorithms in
terms of coherence, topic diversity, and interpretability. The results also indicate

21 https://www.deepl.com/translator
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Fig. 8: Top 10 words per topic for different languages on EuroParl dataset.

that CT remains consistent across different languages with similar dataset con-
tent and thus can potentially aid in various natural language processing tasks.
It also provides a topic structure that can be utilized in downstream tasks since
sub- and super-topics can be found and there are relationships between topics
which can all be used to guide a researcher exploring a corpus or an agent having
a conversation.

Looking ahead, there are several avenues for further research to enhance the
quality of topics generated on co-occurrence networks.

A first perspective relies in the extension of CT to allow for overlapping top-
ics. Currently, topics are partitions of the vocabulary, but introducing a method
such as persona splitting [20] could create multiple instances of a vertex and
enable terms to fall into multiple topics. Another option consists to apply a
method for overlapping community detection [72] instead of Leiden. This would
open up new possibilities for more nuanced and granular topic modeling, and
could enhance the practical applications of CT in domains such as information
retrieval and natural language processing.

Additionally, we plan to investigate the effectiveness of CT on short-text
data, such as sentences, and optimize its performance in this context.

Finally, another possible direction for future exploration relies in the exploita-
tion of our topic model in concrete application. Indeed, if automated coherence
metrics can provide some insight into the quality of topics, we aim to take this
a step further by integrating CT into a conversational agent and testing the
coherence and structure of topics in a real-world application.
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