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Abstract—Associative classifiers have shown competitive perfor-
mance with state-of-the-art methods for predicting class labels. In
addition to accuracy performance, associative classifiers produce
human readable rules for classification which provides an easier
way to understand the decision process of the model. Early models
of associative classifiers suffered from the limitation of selecting
proper threshold values which are dataset specific. Recent work on
associative classifiers eliminates that restriction by searching for
statistically significant rules. However, a high dimensional feature
vector in the training data impacts the performance of the model.
Ensemble models like Random Forest are also very powerful tools
for classification but the decision process of Random Forest is not
easily understandable like the associative classifiers. In this study
we propose Dynamic Ensemble Associative Learning (DEAL)
where we use associative classifiers as base learners on feature
subspaces. In our approach we select a subset of the feature
vector to train each of the base learners. Instead of a random
selection, we propose a dynamic feature sampling procedure
which automatically defines the number of base learners and
ensures diversity and completeness among the subset of feature
vectors. We use 10 datasets from the UCI repository and evaluate
the performance of the model in terms of accuracy and memory
requirement. Our ensemble approach using the proposed sampling
method largely decreases the memory requirement in the case
of datasets having a large number of features and this without
jeopardising accuracy. In fact, accuracy is also improved in most
cases. Moreover, the decision process of our DEAL approach
remains human interpretable by collecting and ranking the rules
generated by the base learners predicting the final class label.

Index Terms—Associative classifier, Ensemble Learning, Ex-
plainable Ensemble

I. INTRODUCTION

With the vast increase of the application of machine learning
techniques in real life scenarios, the importance of classification
is steadily and assuredly increasing. Classification is a method
of analyzing the data and learning to label them into different
classes. Currently a huge number of classification algorithms
are available. Many researchers performed in depth studies to
compare and analyze the performance of classifiers. Among
them the study of Fernández-Delgado, Manuel, et al. [1] is
mention-worthy where they analyzed the performance of 179
classifiers using 121 different datasets. Associative classifiers,
however, remain little known and unexplored. Moreover, most
of the classifiers work in a black box fashion, that is, after
training the model, the model remains opaque without revealing
what has actually been learned. For instance, even though

amazingly accurate, neural networks, after convergence of the
edge weights and node biases, are not interpretable. In addition,
during inference, they do not provide necessary explanation for
the prediction, which becomes troublesome in some application
fields like medical diagnosis, financial decision making, etc.
Since Machine learning is becoming popular and ubiquitous,
explanation is now even legislated in many jurisdictions. This
has lead to many effort attempting to explain salient features
in deep learning, but also a return to rule-based classifiers.
Associative classifiers are among them. Associative classifiers
use an association rule mining approach [3] to discover frequent
patterns, and lately statistically significant patterns, from which
to derive classification rules. The test data is then classified
using the rules that are generated during the training phase. A
rule is in the form of X → Y where X , the antecedent, is a
conjunction of co-occurring features, and Y , the consequent,
is a class label. Several associative classifiers have been
proposed namely CBA [2], ARC [4] , CMAR [5] , CPAR
[6]. Rules generated by the associative classifiers are simple
and human readable thus their predictions can be interpreted.
Though the associative classifiers are competitive with the
state of the art classifiers and have a huge advantage of built-
in explainability, they suffer from the limitation imposed by
the required threshold tuning, namely support and confidence,
which are dataset specific.
To solve this issue, Li and Zaiane [8] proposed SigDirect
where they used the Kingfisher algorithm [9] to find statistically
significant classification rules. Sood and Zaiane [10] proposed
SigD2, a classifier based on SigDirect with a two stage
rule pruning strategy which removes the noisy rules. The
improvement is promising as it reduces the number of rules
without compromising the accuracy. In fact it was shown
that SigD2 outperforms other rule-based classifiers as well
as classical classifiers such as SVM, Bayesian, C4.5 and even
simple neural networks [10]. However, the performance of
both SigDirect and SigD2 is limited in terms of required
memory and run-time if the feature vector of the feature space
is large. An Ensemble of classifiers, each trained on a subset
of the feature space, could address this issue. However, one
has to fixed the size of the ensemble. In this paper we propose
Dynamic Ensemble Associative Learning (DEAL) to improve
the efficiency of SigD2 in terms of memory requirement and
runtime without hampering the accuracy. As a base learner,
we considered SigD2 as Sood and Zaiane [10] showed SigD2
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outperforms other associative classifiers. In our model, we
added a dynamic feature sampling technique inspired from
the work of Cao et al. [11] which eliminates the necessity of
defining the number of base learners for the ensemble model
and ensures diversity and coverage of the feature space among
the base learners. We first sampled the features randomly
to form a subset of the feature vector. After sampling, we
calculate the overlap of the new subset with the previously
generated subsets. If the overlap of the new subset is high
we discard the subset and start another sampling. We stop
the sampling procedure either if after subsequent sampling,
we do not find any more subset which has low overlap with
the previous subsets or all the features are covered by the
generated subsamples. We train one SigD2 model with each of
the subsamples and perform max-vote among the class label
predictions. The class label with the highest vote is assigned
to the new test instance. The main contribution of our work
are:

• Our proposed model DEAL significantly decreases mem-
ory requirement and the runtime in comparison with SigD2
without affecting the accuracy for dataset with large feature
vector,

• We proposed a feature sampling technique which auto-
matically determines the number of base learner in an
associative classifier bagging approach ensuring diversity
and feature space coverage.

The following sections are organized as follows: Section 2
provides the necessary background and related works, Section 3
describes the methodology that we followed in our experiment,
Section 4 is the evaluation and analysis of the performance
of DEAL, and finally Section 5 is the conclusion with some
future research direction of the work.

II. RELATED WORKS

While still little known, Associative Classifiers have attracted
the attention of many researchers for many years, and are
unfortunately now overshadowed by the very successful deep
learning approaches. Associative Classifiers hinge on one of
the canonical tasks in data mining, association rule mining
introduced by Agarwal and Srikant’s algorithm Apriori [3].
Liu et al. [2] showed it is possible to use association rule
mining to build a classifier. Their proposed Classification
Based on Association (CBA) uses an Apriori based approach
to generate class association rules. In their approach, all
constrained association rules from the database are generated
and ranked based on metrics. The highest matching rule is used
for the classification task. Their subsequent work [12] attempts
to decrease noisy rules. They improved the performance of
the classifier by choosing the most accurate class association
rules for the classification task. Being inspired from this
work many researchers came forward with different approach
to improve the performance of associative classifier, mainly
differentiating themselves by proposing different strategies to
select the applicable rules during inference. Yin and Han [6]
proposed Classification based on Predictive Association Rules
(CPAR). They generate association rules directly from the

training data by a greedy approach. To evaluate each of the
generated rules, they use an expected accuracy and finally select
the best k rules for the classification task. Li et al. [5] proposed
CMAR which is Classification based on Multiple Association
Rules. They extended FP-growth [7] frequent pattern mining
method to construct an FP-tree for class distribution association.
In this approach the class association rules are stored in a
special data structure. The generated rules are pruned based
on the confidence, correlation and database coverage. Using
multiple strong association rules with a Weighted χ2 measure, a
datapoint is labeled to the appropriate class. Antonie and Zaiane.
[4] propose another Association rule based classifier that they
apply for text categorization. They put forward two different
approaches; ARC-AC, considering all generated rules from
the whole training set, and ARC-BC, where data from each
class is mined separately allowing the handling of unbalanced
datasets. Indeed, being based on frequency, minority classes
risk not being expressed in a predictive model when all dataset
entries are mined together. Another approach, CCCS, proposed
by Arunasalam and Chawla [14] introduces a measure named
"Complement class support" (CCS). The authors claim CCS
guarantees a positive correlation among the class label and
the generated rules. Antonie et al. [15] also propose a two
stage associative classifier where associative classification rules
are discovered in a first stage and in a second stage, another
algorithm learns how to use those rules for class prediction.
Instead of basing the selection of rules to apply during inference
on some heuristics, they use a neural network to learn how to
predict the best rules to apply. This approach showed improved
efficiency in terms of accuracy.
One limitation of associative classifiers is the generation and
the need to evaluate a huge number of rules, among them
many are noisy rules. To overcome this problem Zaiane and
Antonie [17] performed an extensive study with the focus of
reducing the number of rules without decreasing the accuracy
of the classifier. The authors propose a new pruning strategy to
reduce the number of class association rules. They also propose
different heuristics for selecting rules which can obtain high
accuracy for a given instance. However, it remains that the
proper support and confidence values have to be selected and
tuned. This is one major drawback of associative classifiers
inherited from association rule mining. The performance of the
model largely depends on these values. It is a tedious task to
find the proper confidence and support values for each of the
dataset, hampering the adoption of associative classifiers. To
solve this issue, Li and Zaiane [8] propose SigDirect where they
improvised the kingfisher algorithm [9] to find the statistically
significant rules for classification, instead of frequent ones.
Their proposed method increases the accuracy of the classifier.
The main contribution of their work is eliminating the necessity
of the annoying support and confidence thresholds. However,
SigDirect also has some limitation. Sood and Zaiane [10] show
that noisy rules can be further eliminated proposing in SigD2
a two stage pruning technique which can reduce the number
of rules without jeopardising the accuracy of the classifier
and therefore making a learned model even more practically



interpretable.
Another noteworthy rule-based classifier is RIPPER proposed

by WW Cohen [13]. RIPPER forms classification rules in the
process of rule growing and pruning. During the growing
phase, rules are generated in a very restrictive manner and
less restriction is put on the rules during pruning to avoid
overfitting. This model, while not based on association rules,
also shows very competitive result.

As we stated earlier, SigDirect and SigD2, suffer from
the limitation of large memory requirement and run time if
the feature vector of the training dataset is large. To solve
this, we propose an ensemble method using SigD2 as base
learner since ensemble based classifiers can boost the accuracy
of classification models by combining the results of the
base learners. Here base learners can be applied on different
subspaces for the input feature space. In an extensive study,
Bauer and Kohavi [18], show empirically that the ensemble
model can enhance the performance of a classifier for most of
the classification tasks.

III. METHODOLOGY

In this section we describe our methodology for the bagging
approach using SigD2 as a base learner. As mentioned above,
SigD2 was shown to outperform other rule based classifiers and
certainly all other associative classifiers in terms of accuracy
and number of generated classification rules. In most cases
of bagging, the dataset instances are randomly sampled. We
instead sample the feature space and use all instances. In most
known ensemble approaches, the number of classifiers in the
ensemble is predetermined and fixed. Therefore, initially we
start proceeding with the same and randomly sampling the
feature space for each classifier in the ensemble. This random
sampling does not guarantee completeness as some features
may never be picked, and does not ensure diversity among
the classifiers since different classifiers in the ensemble may
end-up with exactly the same features selection. For that reason
we later introduce our dynamic sampling technique that ensures
completeness and diversity and automatically determines the
necessary number of learners in the ensemble. The procedures
are explained in detail in the next sub sections.

A. Ensemble with random subsample

At first, we use 100 base learners in the ensemble model.
Each of the base learners is trained on a random subsample
of size N of the original feature space. We show the process
of creating random subsamples in Algorithm 1. Following this
method, we generate 100 subsamples and train the base learners
with each of the subsamples. During inference, the prediction
of the class label is done with each of the base learners and a
vote determines the final prediction.

Generating subsample in this way presents some limitation. A
feature can be selected every time or some of the features might
not be selected at all. Thus many important features which are
strongly correlated with the class label can be excluded from
the training process. Another limitation is the need to fix the
number of base learners, in our case 100, based on common

Algorithm 1 Subsample generation by randomly selecting
features
Input: features: all features of the feature space; N: Number
of the features in each subsample
Output: 100 subsample of the feature
space

1: all_subsample ← []
2: for i in range(100) do:
3: new_subsample ← []
4: n ← 0
5: reset features
6: while n < N
7: f ← randomly select without replacement a feature

from features
8: add f to new_subsample
9: n← n+ 1

10: end while
11: add new_subsample to all_subsamples
12: end for
13: return all_subsamples

practice in the literature. If the number of features is not large
enough, there is no need for 100 base learners. Indeed many
base learners would be trained on the same subsample of the
feature space. To solve these issues we propose a new feature
sampling technique which addresses both of the limitations.

B. Dynamic Ensemble Associative Learning

Our goal is to make sure all input features are used by
at least one base learner, and the set of base learners are
diverse. Therefore, to subsample from the feature vector, we
follow a sequential procedure until all features are selected
(ensuring completeness). To ensure diversity, we make sure
the feature spaces of any pair of base learners do not overlap
more than some fraction threshold. Our method to generate
diverse subsamples is provided in Algorithm 2 and Algorithm
3. In the input of the algorithm, N is the number of features
to be selected in each of the subsamples. From previous
literature we know that if the feature vector of the dataset
is large, SigD2 requires high volume of memory and run time.
Therefore we limited the size of the feature vector using N .
In our experiments, we have tested across different values
for N but in all cases we used small value of N . The next
parameter of the algorithm is Ov . Ov is the maximum allowed
overlap between any two subsamples. The value of Ov ranges
from 0 to 1 where 0 indicates no overlap between any two
subsamples and 1 indicates features of two subsamples can be
identical. If we put a very small value close to 0 for Ov, all
the subsamples would be almost unique and the number of
generated subsamples small, which results in a small number
of base learners, defeating the purpose of the ensemble. If we
use a value close to 1, the subsamples would be almost similar
to subsamples generated using a random subsampling. Thus
we have to find an optimum value for Ov . The last parameter
is T which indicates how many times we will try to get a



satisfactory new subsample with our required overlap. This is
to avoid blocking infinite loops. When generating a subsample
by selecting features, if there is at least one previously generated
subsample with which overlap of the selected features of new
subsample is more than Ov , we discard the current subsample
and generate a new one. T provides a boundary for how many
times we try for a single subsample. If after trying T times
we do not find any subsample with less than overlap Ov, we
stop the sampling procedure. We also keep track of whether
all the features are already covered by the subsamples or not.
If all the features in feature space are covered by the generated
subsamples, we stop our sampling procedure.

Algorithm 2 Algorithm GenerateSubsample
Input: Features: all features in the feature space; N: Number
of the features in each subsample, Ov: Maximum overlap
between any two subsamples, T: maximum number of tries
to generate a subsample
Output:Subsamples of the feature
space

1: try=0;
2: all_subsamples ← []
3: while try < T do
4: new_subsample ← subsampleGen(Features, N)
5: if(Overlap(new_subsample)< Ov) then
6: Add new_subsample to all_subsamples
7: try ← 0
8: else
9: try ← try+1

10: end if
11: if (all_feature_covered(all_subsample) ==True) then
12: break
13: end if
14: end while
15: return all_subsamples

Algorithm 3 shows how a subsample is generated. Here we
randomly select a feature from the feature space and add it
to the new subsample. N indicates the number of features in
each subsample.

Algorithm 3 Algorithm SubsampleGen
Input: Features: all features in the feature space; N: Number
of the features in each subsample
Output: subsample of the feature
space

1: subsample← []
2: n← 0
3: while n < N do
4: new_feature ← randomly select a feature
5: Add new_feature to subsample
6: n ← n+1
7: end while
8: return subsample

After generating a new subsample we evaluate whether
the features of the newly generated subsample has more
overlap than the Ov ratio with any of the previously generated
subsamples. Between two subsample S1 and S2 where the
features are FS1

and FS2
respectively and the number of

features in each of the subsamples is N then the overlap
between the subsamples is calculated using the following
equation:

Current_overlap =
FS1 ∩ FS2

N
(1)

If there is at-least one previously generated subsample with
which the feature overlap is greater than Ov, we discard the
subsample. If there is no previous subsample with which the
newly generated subsample has overlap greater than Ov, we
consider the current subsample satisfies the required condition
and accepts the sample. After generating the subsamples, we
train one SigD2 model with each of the generated subsamples.
The size of the output set of subsamples determines the size of
the ensemble. We use the trained base learners to predict the
class label of the test dataset. The class label with the highest
vote of the base learners is determined as the final predicted
class label. We evaluate the model using the predicted value
in terms of accuracy, memory requirement and runtime.

IV. RESULT ANALYSIS

We use 10 different UCI datasets [19] to test our model.
Before using a dataset we discretize the numerical values as
stated in [20]. We convert the features to a binary feature vector.
We used the same vector form of discretized values for all our
experiments will all contenders. Thus the results of mentioned
algorithms can be slightly different from their original papers.
For each of the datasets, we use 80% of the data as training
data and the rest 20% as test data. We compare the result
of our model DEAL with different values of N which is the
number of features for each base learner, against the result
of C4.5 [21], Random Forest [22], RIPPER, SigD2 and the
ensemble using 100 random sampling of features, we denote
as RS. We also experiment with an ensemble of C4.5 as base
learner using our proposed feature sampling method DEAL.

The reported result is the average of 20 runs for each of
the datasets. We compare the performance of our proposed
model in terms of accuracy, memory requirement and runtime.
We also provide an analysis on the performance of DEAL for
different values of Ov . Finally, we discuss the interpretability
of the prediction by DEAL.

A. Classification Accuracy

We compare the performance of our proposed method with
SigD2 since it was demonstrated to have better performance
than other associative classifiers, rule-based classifiers [8],
[10]. We include RIPPER, however, since it is a rule induction
algorithm different from association rules. We also compared
the performance of DEAL with C4.5 and an ensemble of C4.5.
As a representative of the traditional ensemble approaches,
we use Random Forest [22] to compare our result. In the
case of random sampling of the features (RS), we experiment



with different values of N (i.e. number of features in each
subsample) and different values of Ov (i.e. maximum overlap
among the selected features of base learners). From the
experiment, we find the optimum result when the value of N
is between 25 and 30.

The comparison in accuracy of C4.5, ensemble of C4.5 using
proposed sampling method, Random Forest (RF), RIPPER,
SigD2, Random feature Sampling method (RS) with DEAL
using different values of N are provided in Table I. From
the table we can see, among the datasets, in comparison
with Random Forest and C4.5, Random Forest has better
performance than DEAL in 4 of the datasets while DEAL is a
close runner-up, and in 4 others DEAL has better performance,
with one ex aequo with the zoo dataset. In one dataset RIPPER
performed better than DEAL. On average DEAL is better. In
comparison with the original SigD2, we can see that apart from
the anneal dataset, DEAL presents an improvement for the
accuracy. The probable cause might be that some of the feature
vectors in the anneal dataset being highly correlated which
plays an important role in the class prediction. DEAL selects
a subset of the feature vectors thus the feature vectors that are
needed to be together get separated. Further investigation is
required for this dataset to find how the important features can
be kept together. That might improve the performance of DEAL
in those datasets where some feature vectors together play an
important role in class prediction. The random sampling of
the features with 100 base learners could not perform at the
same level as DEAL. In comparison with SigD2 sometimes
it improves the accuracy and in some cases the accuracy is
decreased. As the random sampling is completely random,
many important features might not be selected for any of the
base learners at all. This is the reason of the poor performance
of RS. On the average, DEAL with a feature vector size N = 30
and Ov = 0.6 has the best performance. We also compare the
performance of DEAL with other models in terms of F1 score.
Figure 1 shows the F1 score of the models for each dataset.
From the experiments, We find DEAL, either with N = 25
or N = 30, has very competitive F1 score compared to other
models.

We can get another interesting observation from Table I.
With the increase of N , the number of features for each of
the base learners, the average accuracy increases. For better
understanding of this, we experimented with different values
of N. The average accuracy for different values of N is plotted
in Figure 2. We can see a sharp increase when the value of
N is increased from 15 to 25. After 25, the average accuracy
continues to increase but not with the same steep rate.

There is a compromise to make with the required memory
and runtime, particularly due to the aforementioned limitations
of the used base learner SigD2. Therefore, we chose not to
increase the number of features per base learner more than 30.
We are also interested to know the number of base learners for
each of the dataset as we mentioned the number of base learners
is determined automatically by DEAL. Table II provides the
number of base learners for each of the dataset. These are

Fig. 1: F1 score of C4.5, C4.5 using sampling of Deal, Random
Forest (RF), RIPPER SigD2, and DEAL.

Fig. 2: Average accuracy of DEAL for different values of
N(Number of selected feature for each base learner)

significantly less than the typical 100 or even 50 used in the
literature for classical ensembles.

To understand the effect of different values of Ov we also
experiment with values starting from 0.1 to 0.9 increasing 0.1
in each step. The result is provided in Figure 3. From the figure
we can see, the performance of the model is best when the
value of Ov is in the middle. Because a small value results in
almost unique base learners and a very small number of base
learners. In the case of a large value of Ov , the results would
allow repetitions of base learners like with simple random
sampling procedure. Thus in both cases the performance is
affected. We can see good performance when the value of Ov

is between 0.4 to 0.6 for N=30 and 0.5 to 0.7 when N=25 for
the dataset we used in our experiments. Thus overlap between
0.4 to 0.7 provides optimum result for most cases.

To understand whether the improvement in accuracy by
DEAL is significant or not, we performed a statistical signifi-
cance test. We carried-out a student paired t-test with the null
hypothesis, that the improvement in the accuracy of DEAL
is not significant. We run the whole experiment 20 times and
recorded the average accuracy each time for each model. For
DEAL we used N = 30, Ov = 0.6. The difference in the
accuracy in each pair is calculated by Equation 2.



Dataset #cls #rec Feature
vector
Size

C4.5 C4.5
with

DEAL

RF RIPPER SigD2 RS
N=25

RS
N=30

DEAL
N=20
Ov =
.6

DEAL
N=25
Ov =
.6

DEAL
N=30
Ov =
.6

Zoo 7 101 35 95.24 95.24 97.62 85.48 94.55 85.53 85.53 91.66 92.85 97.62
Pima 2 768 36 76.62 73.38 67.41 76.08 76.44 77.21 79.81 75.26 79.82 77.61

PageBlocks 5 5473 41 93.15 92.23 93.51 80.37 91.67 90.04 91.23 84.16 91.84 88.53
Heart 5 303 47 50.82 52.45 52.45 64.9 45.9 46.86 48.51 47.54 49.18 49.18

Hepatitis 2 155 54 70.97 74.19 78.38 78.72 81.93 80.65 81.29 78.06 80.64 82.58
Wine 3 178 65 91.67 91.67 77.78 93.33 92.7 91.57 93.26 86.51 94.38 92.13

Anneal 6 898 67 97.22 86.67 98.89 97.5 92.22 84.41 88.86 80.51 83.85 92.2
Horse 2 368 83 78.38 75.67 75.67 80.56 78.8 70.38 81.25 80.43 82.33 81.79
Adult 2 48842 95 84.06 82.31 84.97 83.91 84.59 79.67 81.81 80.52 84.92 81.51

Ionosphere 2 336 155 88.73 95.78 95.78 92.81 90.18 88.1 90.77 90.47 92.85 94.04
Average 82.686 81.96 82.25 82.77 82.89 79.44 82.23 79.512 83.27 83.72

TABLE I: Accuracy of C4.5, Ensemble of C4.5 using feature sampling of DEAL, Random Forest (RF), RIPPER, bagging
using random sampling (RS), SigD2, and DEAL.

Dataset #Base Learner Dataset #Base Learner
Zoo 4 Wine 13
Pima 4 Anneal 12

PageBlocks 8 Horse 19
Heart 7 Adult 21

Hepatitis 10 Ionosphere 45

TABLE II: Number of base learners using N = 30 and Ov =
0.6

Fig. 3: Average accuracy across different values of Overlap
(Ov)

δ =MDEAL(test_data)−Mi(test_data) (2)

Here, MDEAL is our proposed model and the subscript i
stands for the other models. Running the models on test data
provides the accuracy of the models and δ is the difference in
the accuracy.

We performed the paired t-test followed by the work of
Henry et al. [23] for pairwise comparison among the models
and calculated the p-value. If the calculated p-value is less than
the threshold alpha(0.05) then we can say the improvement by
the proposed model is significant. The calculated p-values are
provided in Table III.

From Table III we can see the p-value for each pair is less
than the threshold alpha(0.05) except for DEAL vs RIPPER.
Thus, except RIPPER, for the other models we can say, the

improvement in accuracy of our proposed over other models
is significant.

Algorithm p-value
DEAL vs C4.5 0.0091

DEAL vs C4.5 ensemble 4.4e-05
DEAL vs Random Forest 0.0077

DEAL vs SigD2 0.0001
DEAL vs RIPPER 0.087

TABLE III: Statistical result

B. Memory Requirements

One of the main goals of DEAL is to reduce the memory
requirements for datasets having large feature vector size. In
previous sections we showed that DEAL does not reduce
the accuracy in comparison to the original SigD2 rather in
almost all datasets, it increases the accuracy. Using DEAL we
can reduce the memory requirements for datasets having a
large number of features. The memory requirements of C4.5,
ensemble of C4.5 using proposed feature sampling method,
Random Forest, SigD2 and DEAL using N as 25 and Ov as
0.6 are shown in Table IV. Here we did not provide memory
requirement using the random sampling procedure as for any
given number of feature vectors in base learners, the memory
requirement of SigD2 is the same. In the memory requirements,
the reported result for DEAL is the highest memory used by
a base learner in the process as we run the base learners
sequentially. In the case of Random Forest, the trees in the
forest are executed in parallel. Thus the memory requirement
reported here is the memory required for running 100 decision
tree in parallel.

Running base learners in parallel has a huge advantage for
runtime, which we discuss in the next subsection. Further
studies are required to understand whether this trade-off
between memory requirement and runtime is feasible by
executing the base learners of DEAL in parallel. From Table
IV we can see, in 8 datasets out of 10 DEAL has the least
memory requirement among the contenders. In adult dataset
RIPPER requires the least memory. In Heart dataset, DEAL
and RIPPER has the same performance which is the least



Dataset C4.5 C4.5
with
Deal

Random
Forest

RIPPER SigD2 DEAL

Zoo 106 108 127 107 121 105
Pima 103 109 128 102 102 101

PageBlocks 111 117 134 111 112 110
Heart 105 112 129 104 107 104

Hepatitis 103 111 127 102 113 100
Wine 104 112 128 105 165 100

Anneal 107 113 129 107 150 106
Horse 109 112 128 109 235 106
Adult 195 211 252 124 257 252

Ionosphere 124 117 128 112 2519 108

TABLE IV: Memory requirement(in Megabyte) by contenders
and DEAL(N = 30 and Ov = 0.6)

memory requirement in comparison to other algorithms. The
memory requirement in SigD2 increases with the increase in
features. One main reason behind this is when working with
a large size feature vector, SigD2 has to go through a huge
number of class association rules (CAR). CAR increases with
the increase of the feature vector size. But in our approach,
with a dataset with large feature vector size, the number or
rules for each of the base learners is reduced dramatically. In
case of a dataset having very large size of feature vector, our
proposed sampling method decreases the memory requirement
to a significant extent.

C. Runtime

We also measure the runtime of DEAL for the same datasets
in comparison to Random Forest and SigD2. The runtime of
the methods are provided in Table V. In this table we do not
include random sampling (RS) as in random sampling we have
to train 100 base learners in a sequential manner which would
always require a longer runtime than DEAL. From Table V,
we can see Random Forest is always the fastest except for
Zoo dataset where C4.5 is faster. Despite the fact that DEAL
is an ensemble and we are not running the base learners in
parallel, DEAL is still faster than SigD2 in many cases. SigD2
beats DEAL when the input feature space is small, because
for datasets with a small feature space, DEAL still has to go
through the sampling and for not having enough feature, DEAL
has to sample many subsample and compare with the previously
generated subsamples which increases the runtime. However,
with larger feature vectors, DEAL outperforms SigD2.

D. Interpretability of the model

One of the major advantages of our ensemble model
is that the prediction of the model is interpretable. After
creating subsamples of the feature space and training the
base learners with each of the subsamples, base learners
uncover classification rules expressed in their respective feature
subspace. When predicting the class label of an instance,
base learners use their own rules. There are applicable rules,
applicable to the instance case, and there are applied rules,
effectively used for the decision by each base learner. The
applied rules that agree with the majority vote are kept. Using

DEAL, we can easily gather all the applied rules selected by
base learners. Those would be part of the decision explanation.
In addition, the set of applied rules and the applicable rules
can be used to rank features by importance vis-à-vis the
final prediction. Rules gathered from the base learners can
be grouped according to the class label, and ranked based on
their frequency among the base learners. Features are ranked
by importance for a particular class label prediction. The more
a feature appears in an applied rule, the more important it is.
Features appearing in applicable rules get an additional boost
of importance. Table VI gives a glimpse of the individual
interpretable models learned by the different base learners.
In the case of the Zoo dataset, there are 4 base learners.
The learned models are sets of human readable classification
rules with their strength measures, typically sorted by these
measures). In Table VI we provide a subset of these rules and
the feature subspace for each base learner. At inference time,
each base learner finds the applicable rules for that instance
and selects the rules to apply for the decision. Table VII shows
the applicable rules per base learner for a given test instance as
well as the decision for each learner before the vote. We can
see that the consensus is for class 5 in this case and that there
is agreement for the importance of features 16 and 28. What
constitutes the decision explanation is the list of important
features but also the list of applied rules as well as applicable
rules with the final class label decision as their consequent.

Dataset C4.5 C4.5
with
Deal

Random
Forest

RIPPER SigD2 DEAL

Zoo 0.06 0.58 0.12 0.08 3.64 6.65
Pima 1.76 3.84 0.15 0.41 0.47 0.89

PageBlocks 21.04 35.83 0.24 0.46 10.23 17.86
Heart 0.69 3.04 0.13 0.40 8.55 3.11

Hepatitis 0.23 2.62 0.11 0.26 10.41 1.25
Wine 0.17 1.27 0.11 0.33 0.46 1.05

Anneal 2.1 9.46 0.14 0.56 7.99 5.38
Horse 0.92 6.24 0.13 0.53 32.49 2.97
Adult 13.2 19.8 3.19 171.56 263.12 167.16

Ionosphere 1.86 16.13 0.12 0.32 1905.44 6.22

TABLE V: Runtime (in Seconds) by contenders and DEAL
(N = 30, Ov = 0.6)

V. CONCLUSION AND FUTURE WORKS

We propose Dynamic Ensemble Associative Learning
(DEAL) where we use SigD2 as a base learner and present a
feature sampling method which eliminates the need to fix the
size of ensemble while ensuring diversity and feature space
coverage. Evaluating the model over different datasets, reveals
an increase of the accuracy. DEAL solves the limitation of
SigD2 requiring huge memory and runtime if the feature
vector space is large. Memory requirement and runtime of
DEAL does not increase with the increase in feature vector
like SigD2. Along with decreasing the runtime and memory
requirement, we designed DEAL in such a way that the
decision process of DEAL is human readable and explainable.



Base learner 1 Base learner 2

Selected features
[0, 2, 4, 6, 9, 10, 11, 12, 14, 14,

15, 15, 16, 19, 19, 19, 19, 21, 21,
23, 24, 25, 26, 29, 30, 31, 33, 33, 34, 34]

Selected
Features

[0, 1, 1, 3, 3, 3, 4, 4,
6, 6, 15, 15, 15, 18, 20, 20, 21, 23, 25,

25, 27, 27, 28, 29, 29, 31, 32, 32, 33, 34]

Rules

6, 23 -> 3;(0.1375,1.000,-29.980)
0, 25 -> 1;(0.1625,1.000,-33.384)

.........................
2, 34, 19 -> 0;(0.3500,0.966,-28.991)

31, 2, 33, 14 -> 6;(0.1125,0.750,-20.776)

Rules

27 -> 6;(0.0250,1.000,-4.475))
18, 29 -> 6;(0.0750,1.000,-15.090)

.........................
33, 15, 21 -> 2;(0.0250,0.667,-5.185)

0, 29 -> 6;(0.1000,0.615,-14.797)
Base learner 3 Base learner 4

Selected features
[1, 3, 6, 7, 7, 8, 10, 13, 14, 15, 16,
17, 19, 20, 21, 22, 24, 24, 24, 25,

27, 28, 29, 30, 30, 30, 31, 31, 32, 33]
Selected features

[0, 0, 1, 1, 1, 2, 3, 4, 5, 7, 8,
9, 9, 10, 11, 12, 12, 14, 16, 17, 17,
18, 20, 21, 22, 23, 28, 28, 30, 34]

Rules

27 -> 6;(0.0250,1.000,-4.475))
3 -> 1;(0.1625,1.000,-33.384)

.........................
15, 6, 19 -> 4;(0.0375,0.600,-9.014)

10, 6, 17, 8 -> 2;(0.0375,0.600,-7.647)

Rules

7 -> 0;(0.4500,1.000,-52.636)
3 -> 1;(0.1625,1.000,-33.384)

.........................
0, 14, 17 -> 1;(0.1625,0.929,-30.745)

0, 16 -> 6;(0.1125,0.750,-20.776)

TABLE VI: Rules from the learned model in the form of "Antecedent -> Class label;(support, confidence, -ln(p-value))" where
Antecedent is a conjunction of tokenised features. For interpretability, tokens are mapped back to features (attribute-value pairs)

Test instance: [1, 2, 5, 6, 9, 10, 12, 14, 16, 19, 20, 22, 28, 29, 31, 33]
Vectorized test instance:[0,1,1,0,0,1,1,0,0,1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0,0,
0,0,1,1,0,1,0,1,0]
Applicable rules by BL 1 Applicable rules by BL 2
9, 29 -> 5;(0.0250,1.000,-6.267)

16, 12 -> 5;(0.0500,0.667,-11.566)
31, 16 -> 6;(0.1125,0.750,-20.776)

28 -> 5;(0.0500,0.667,-11.566)
1, 20 -> 0;(0.4250,1.000,-45.694)

Predicted class label: 6 Predicted class label: 5
Applicable rules by BL 3 Applicable rules by BL 4
19, 28 -> 5;(0.0500,1.000,-14.274) 10, 28 -> 5;(0.0500,1.000,-14.274)
Predicted class label: 5 Predicted class label: 5

TABLE VII: Applicable rules from the generated rules by the
base learners(BL) and decision process of DEAL

The sampling method of DEAL provides promising results
when using SigD2 as a base learner since it ensures diversity
and feature space coverage. Random Forest also uses a subset
of the features and the subsets are chosen randomly. It would
be interesting to use our sampling method in the case of
Random Forest. This would eliminate the need to predetermine
the number of estimators in Random Forest. As we have
shown DEAL provides better result in the case of tabular
data. In the future we would like to deploy DEAL on text
and image data. DEAL is a framework where the base learner
SigD2 could be replaced. A better rule based learner that
is not as constrained by the dimensionality of the feature
space could allow experimenting with a larger sampled feature
subspace. Finally, we are considering investigating counter
factual explanations given the availability of other applicable
rules that lead to other class label then the one voted for by
the ensemble.
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