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Abstract—Deep neural networks architecture provides a pow-
erful technique for solving various problems including clas-
sification. They owe their performance to the complex and
layered data representation and processing built upon neural
networks. The success of deep neural networks in various fields
has resulted in less focus on other techniques like rule-based
models, especially associative classifiers. Associative classifiers
are competitive models to deep neural networks on tabular data
but suffer from certain limitations i.e., require proper threshold
values that differ for different datasets. Even though deep neural
networks have resulted in huge success, they have complex and
lengthy hyper-parameter tuning. In recent years, attempts to
develop models that can compete with deep neural networks
using deep representations with decision trees while reducing
hyper-parameters have been tried. In this study, we propose a
Deep Associative Classifier (DAC), an ensemble of associative
classifiers that transforms features in a deep model represen-
tation. This model has deep neural network like architecture
with associative classifiers as a base learner and overcomes some
of the limitations of deep neural network architecture as well
as associative classifiers. We use 10 UCI datasets and compare
our approach with other existing deep neural network models,
a gcForest approach, and associative classifiers. Our proposed
model outperforms various state-of-the-art classifiers not only in
terms of accuracy but also memory requirement and has fewer
hyper-parameters to tune.

Index Terms—Deep Architecture, Learning Representation,
Associative Classifier, Deep Neural Network, Ensemble Learning.

I. INTRODUCTION

Classification is a supervised machine learning technique
that is used to label the data in various distinct class
labels. To solve classification problems, some of the popular
classification algorithms are Decision Trees, Random Forest
and Support Vector Machines. Even though these models
have good performance in classification tasks, they generally
do not perform well for complex classification tasks. Deep
learning techniques are better able to handle such tasks,
with high accuracy and efficiency. Deep learning is a sub-
branch of machine learning and uses deep neural networks
with a layered architecture. In recent years deep neural
networks have shown promising results in data classification,
among other tasks, and in many cases surpassing human
performance.
One of the main reasons for the high performance of
deep learning techniques is their layered architecture. It
has been conjectured that the success of deep learning is
due to the layer-by-layer processing, the in-model feature
transformation, and the complexity of the model [6]. But

deep learning approaches suffer from many limitations like
the necessity of hyper-parameter tuning, and the effect of the
parameter tuning is hard to interpret. They also require a large
amount of labelled training data, which is often not available
in most domains. Zhou et al. [6] tried to utilize this deep
representation of deep neural networks while eliminating
some of the limitations of the deep neural networks by
developing a deep model called the gcForest. gcForest is an
ensemble of decision trees with the architecture of the deep
neural networks. Their model showed promising results but,
their model still requires some predefined hyper-parameters
such as window size, number of windows, number of trees in
the forest, etc.
We speculate using the idea adapted by gcForest and further
exploit the layered architecture of deep neural networks. This
motivated us to develop a new classifier that requires fewer
hyper-parameters, is easy to tune, requires less memory, has
the potential to be explainable and utilizes the advantage of
the layer-wise data processing architecture of deep neural
networks. Associative classifiers are one such classifier that
have very good performance and is also easy to interpret.
The central concept of associative classifiers is association
rule mining [17] and they make use of constrained rule
mining and classification to build classification models. The
resulting rules are represented in the form of X→Y, where
X, the antecedent, is a conjunction of features, and Y, the
consequent, is a class label.
In the last decade, associative classifiers have shown
competitive results against the state-of-the-art classifiers.
However, they suffer from many limitations inherited from
association rule mining, i.e. they require proper threshold
values, which vary from dataset to dataset. To remove the
necessity of adjusting difficult threshold values for different
datasets, Li and Zaiane [1] propose an associative classifier
which is further improved by Sood and Zaiane [3]. Their
models eliminate the necessity of prefixing any threshold
values to generate rules from the dataset. In their models,
they used the Kingfisher Algorithm [2] to find the statistically
significant rules from the dataset which are used for the
classification task. Though their model showed a promising
result, it requires significant memory and huge run time for
high-dimensional datasets.
In this paper, we endeavour in using and combining the deep
representation of deep neural networks and the simplicity of
the associative classifier. We propose an ensemble model,
Deep Associative Classifier (DAC) that uses associative



classifiers as base learners and has a deep architecture.
We implemented a two-step classifier where in the first
step, we scan through the feature vectors to generate class
probabilities using the associative classifier SigD2. These
class probabilities are appended with the feature vector and
form the input for the second step. In the second step, we
adopt the general idea of deep neural networks where the
input data is processed in a layer-wise fashion. Each layer in
the second step is an ensemble of an associative classifier.
To reduce the increase of the output vector in each layer, we
introduce a filtering process eliminating the need to append
probabilities of equal base learners in the feature vector
output. In contrast to deep neural networks, our model does
not need any predefined number of layers. The model itself
defines the number of layers during the classification task.
With this approach, we seek to improve classification
accuracy by utilizing the layered architecture of the deep
neural networks and associative classifiers. Further, we try to
improve the performance of the associative classifier in terms
of memory requirement for datasets with high dimensions
and reduce the number of hyper-parameter to make the model
more practical to tune. Deep Associative Classifier has much
fewer hyper-parameters and lower memory requirements than
gcForest. It also outperforms gcForest in terms of accuracy
on the majority of the datasets we tried. Moreover, our model
is also able to perform well across most datasets with default
settings. The contribution of our work can be stated as follows:

1) A new ensemble of the associative classifier with a
layered architecture in accordance with deep neural net-
works, which provides better accuracy than existing as-
sociative classifiers, deep neural network classifiers and
gcForest.

2) A classification approach with less memory requirement
3) A classification model that requires fewer hyper-

parameters, is easy to tune and the impact of changing
the hyper-parameters is easy to understand.

The rest of the paper is organized as follows. In Section II
we discuss the related work. Section III describes our approach
of utilizing associative classifiers and deep layered architec-
ture. In Section IV we describe our experimental findings.
Section V highlights some possible future refinements of the
model, and finally, Section VI concludes our paper.

II. RELATED WORK

This section describes related works on ensemble learning,
associative classifiers and deep architectures.

A. Ensemble learning

Ensemble learning is a technique that utilizes multiple mod-
els to solve computationally difficult problems and provide
high accuracy [7], [8]. Kowsari et al. [9] used an ensemble of
deep architecture to predict the class of different types of data
like image, text and tabular data. Bagging [18] and boosting
[19] are popular ensemble techniques used for improving the
performance by adopting different ways to combine weak

learners to produce a strong learner. In [20] the authors
showed that bagging and boosting improved classification
performance for demographic classification of handwriting.
Prusa et al. [21] evaluated 12 different techniques that im-
prove the classification performance on 3 datasets for twitter
sentiment classification. Based on their experimental findings,
they concluded that bagging provided superior performance
as compared to the rest of the techniques and significantly
improved the classification performance.

B. Associative classifiers

Associative classifiers are a type of rule-based classifiers
that provide a classification approach that is intuitive and easily
understandable. Liu et al. [12] first came up with the idea to
utilize the association rules for classification. They made use
of the Apriori algorithm to generate classification association
rules. Following their work, several other rule-based classifiers
have been developed i.e., CMAR [13], ARC [14]. These mod-
els are easy to interpret and also have very good performance.
But as mentioned earlier, they suffer from the limitation of the
requirement of predefined threshold values. These approaches
sometimes tend to generate meaningless rules, which leads to
poor classification accuracy. To overcome these limitations of
rule-based classifiers, Li and Zaiane [1] proposed SigDirect, an
approach that mines statistically significant rules without the
need for support and confidence measures. This methodology
was derived by pushing the rule constraints of the Kingfisher
Algorithm [2]. Sood and Zaiane [3] further extended this work
by proposing SigD2 with a novel rule pruning strategy to
remove the noisy classification rules. Their model achieved
better results than the original Sigdirect and other rule-based
classifiers, including decision trees.

C. Deep architectures

Deep neural networks are a powerful technique used for
classification. They not only provide high accuracy but are
highly efficient. However, they are complex, have a tedious
hyper-parameter tuning process and require high computa-
tional power. In addition, deep neural networks require a high
volume of data for training purposes. Training a deep model
with a low volume of data results in overfitting [4]. Thus deep
model cannot perform well if the dataset is not large enough.
Zhou et al. [6] tried to overcome some of these limitations
of deep neural networks by proposing gcForest, an ensemble
of decision trees that exploits the significant features of a
neural network like representation learning, ability to deal with
high dimensional data and model complexity. Tanno et al.
[15] proposed another architecture where they used adaptive
neural trees whose architecture is hierarchical and can learn
the parameters of the model over the progressive growth. The
parameters are auto-tuned according to the size of the dataset.
Sun et al. [16] also proposed a model which is inspired
by the gcForest [6] where they select important features by
following some measures for classification. The subsequent
phases remain the same as gcForest, but in each step, they
choose the important features only. Both the work of Tanno



et el. [15] and Sun et al. [16] focus more on image data.
Their architecture performs well in the case of classification
of an image dataset. Though our focus is on tabular data, their
works provide a significant direction for our model because,
in our case, we want to develop a model which is efficient for
datasets of different sizes.
As we highlighted earlier one of the limitations of the associa-
tive classifiers such as Sigdirect and SigD2, is that they cannot
handle data well if the feature vector is large. To solve this
limitation, we utilize the idea of gcForest [6] by building an
ensemble but of associative classifiers, namely SigD2.

III. METHODOLOGY

This section introduces the proposed model, the Deep
Associative Classifier (DAC). To develop our model we
followed the deep neural network architecture. In case of
deep neural networks, the input data are processed at multiple
layers which might be a reason for their good performance.
Gcforest proposed by Zhou et al. [6] utilizes the layered
architecture of deep neural networks and builds an ensemble
using a decision tree as a base learner. While our architecture
is different, we borrow the idea of the ensemble but use the
associative classifier SigD2 as the base learner. In SigD2, an
additional rule pruning technique is used to prune the noisy
rules which enhances the performance of the model while
significantly reducing the number of classification rules in the
model. We use different ensembles, one in each layer of our
architecture and another one at the start while scrutinizing
the feature space. Building our layered architecture follows
different steps.
In the first step, our architecture performs a scanning through
the feature vectors of the dataset, this is the scanning phase of
our architecture. In this phase, a fixed-size window slides over
the input feature vector and selects a pre-specified number
of feature vectors sequentially. In the work of Zhou et al.
[6], they used 3 windows at the same time. We experimented
with a different number of windows and found that only
one window is sufficient for the model. This is discussed in
detail in the experimental result section. As we are taking
the subset of the feature vector for each base learner, our
reasoning behind adding the class probabilities created by the
base learners is that they would serve as a heuristic for the
base learners of the following layer to more accurately predict
the class label. In the scanning phase, subsets of the feature
vectors are formed and with each subset, a base learner SigD2
is trained. Each base learner provides class probabilities for
the instances and the class probabilities are concatenated to
the original input vector. For example, if we have a dataset
with a feature vector size of 100 and the dataset consists of
the instances of binary classes, with a sliding window size
of 30, we will have, 71 subsets of the dataset. Each of the
SigD2 base learners provides class probabilities at the end of
the learning. That is as the data is of binary class, each base
learner generates two-class probabilities - one for each class.
Thus, with 71 base learners, we have a total of 142 class
probabilities. These class probabilities are then concatenated

with the original features resulting in 242 features at the
end of the scanning phase. The newly formed dataset with
the concatenated features is provided as an input to the next
phase, the cascading phase. Algorithm 1 shows the steps
performed in the scanning phase. Figure 1 illustrates the
scanning phase of our architecture.

Algorithm 1 Algorithm Scanning phase
Input: Features: All features in dataset
Output: Features concatenated with class probabili-
ties

1: WindowSize=30
2: NewFeatures=[]
3: n=0
4: while n+WindowSize ≤ features.length do
5: features to train ← Features[n:n+WindowSize]
6: NewFeatures.append(Sigd2.classProbabilities(

features to train)
7: n=n+1
8: end while
9: Features ← Features.concatenate(NewFeatures)

10: return Features

Fig. 1: Scanning phase of Deep associative classifier

The next step of our model is the cascade phase. Like the
scanning phase, we again use Sigd2 as the base learner. In
this step, the feature vector generated in the scanning phase
acts as an input. The features are processed layer by layer. At
each layer, we use 100 SigD2 base learners. For each base
learner, 30 features are selected randomly with shuffle and
replacement from the input feature vector. For the scanning
phase and the cascading phase, we selected 30 features because
if the feature vector size is very large, the memory requirement
and run time of SigD2 increases, that is the effectiveness
and efficiency of SigD2 tend to decrease with a dimension
larger than 30 in terms of memory requirement and run time.
Thus we decided to run the experiment with 30 features,
a hyper-parameter in our model. After training, each of the



base learners calculates the class probabilities. For example,
if we consider our previously mentioned example of a dataset
with binary classes, each of the base learners produces two
class probability. With 100 base learners, we have 200 class
probabilities which we append to the features after the filtering
process and weight assignment. In the cascading phase, we
also predict the class label of the test dataset with each of
the base learners to evaluate the accuracy at the current layer.
The goal is to have an increase in accuracy from one layer
to the other. We perform a max vote strategy to find the final
class label of the instances and calculate the accuracy. Figure
2 shows the architecture of a single layer in the model, in fact,
the very first layer of the cascading phase. The difference is
that for the first layer the input feature vector comes from
the scanning phase while for any other layer its input feature
vector is the output vector of the previous layer. For example,
at the end of the first layer, new class probabilities generated
by the base learners of the first layer are appended with the
input feature vector of the first layer. This updated feature
vector is the input for the second layer. The output feature
vector of the second layer acts as an input to the third layer
and so on. Figure 3 shows the input feature vector and output
feature vector at each layer.
Before forwarding the data to the next layer, we append the
class probabilities from the base learners as a feature, similar
to the scanning phase. But before appending, we introduce
a filter to assign weights to the repetitive class probabilities.
From our analysis, we found there are many base learners
which produce the same class probability for each of the
classes for each of the instances. Adding them directly to the
output vector fed to the next layers produces more identical
base learners and reduces the diversity in the ensemble.
Thus instead of appending the identical class probabilities,
we append the matched class probabilities multiplied with a
weight factor. The weight factor is simply the count of learners
generating the same class probabilities. In other words, If
there is a set of identical class probabilities repeated n times,
we only append the class probabilities multiplied by n to
the output vector, making the feature vector increase with a
smaller extension. While comparing the class probabilities, we
compare them up-to 7 digits precision. Algorithm 2 shows
the ensemble procedure and Algorithm 3 reveals the filtering
procedure for the new features.

The number of layers in our architecture is not preset
but determined automatically. At each layer, a prediction on
test data is performed. The goal is to have an improvement
of the prediction accuracy from one layer to the other. If
no improvement is noted at a given layer compared to the
previous layer, the creation of a new layer is halted and the
layer with the best accuracy is considered the final layer. Since
each layer is an ensemble of SigD2 classifiers, the prediction
of a layer is a max voting among base learners. This prediction
is not appended in the output vector but its sole purpose is
to decide whether to continue creating another layer if the
accuracy improves or to halt and ignore the last layer if no
improvement is noted. Because we cease adding new layers

Fig. 2: Architecture of one single layer in the cascade phase

Algorithm 2 Algorithm Cascade
Input: Features: Concatenated features from scanning phase:
Output: Accuracy, Concatenated features for next
layer

1: NewFeatures=[]
2: prediction=[]
3: for i in range 1 to 100 do
4: subsample→ randomly select 30 features from Features
5: Sigd2.train(train data)
6: predict ← Sigd2.predict(Test data)
7: prediction.append(predict)
8: NewFeatures.append(Sigd2.classProbabilities(subsample)
9: end for

10: finalprediction ← max vote(predictions)
11: accuracycalculate accuracy(test label, finalprediction)
12: if (accuracy > previous layer accuracy) do
13: NewFeatures← weightedNewFeature(NewFeatures)
14: Features ← Features.concatenate(NewFeatures)
15: else
16: accuracy ← previouslayer accuracy
17: end if
18: return Features, accuracy

when there is no progress in the accuracy, the model will
converge to a final output at the end of a particular layer. No
improvement means that we cease adding additional layers
even if the accuracy is the same as the layer before. This
prevents the model from running indefinitely. The highest level
of accuracy we can get is 1 if performance keeps improving
in additional layers. As a result, the model will eventually



Fig. 3: Cascade phase of Deep associative classifier

Algorithm 3 Algorithm weightedNewFeature
Input: NewFeatures: generated class probabilities
Output: weightedfeature weighted class probabilities as fea-
tures

1: unique features ← unique value set from NewFeatures
2: for unique in unique features do:
3: count ← unique in NewFeatures
4: weightedfeature.append(unique * count)
5: end for
6: return weightedfeature

converge to the desired result. Figure 3 shows the architecture
of the cascading phase of the model and the whole architecture
is provided in Figure 4.

IV. EXPERIMENTAL RESULTS

In this section, we provide an in-depth analysis of our
experimental findings.

A. Dataset and Performance Measure

We use 10 different datasets from the UCI repository [10]
to evaluate the performance of our proposed model. Before
applying the algorithms to the datasets, we discretize the
numerical attributes of the dataset as stated in [11]. We then
vectorize the features. In the result, the reported feature
vector size is the size of the feature after discretization
and vectorization. For all the experiments, we use the same
discretized values so that the performance is measured across
the same format of the dataset. We select these datasets
so that we can evaluate the performance of our model on
different types of datasets i.e., datasets having a different
number of records and a different number of features. By
evaluating the performance of our proposed model on these
datasets, we try to ensure that our proposed approach works
well across datasets with different sizes in records and features.

B. Results

Our proposed model is assessed in terms of accuracy and
memory requirement. For this comparison, we select random
forest, gcForest proposed by Zhou et al [6], SigD2 proposed by
Sood and Zaiane [3] and three different deep neural network
architectures. From the rule-based classifier, we select only
SigD2 because it was shown to outperform other existing rule-
based classifiers. We also calculate the memory requirements
of the model and show a comparative analysis. Finally, we
conduct a statistical analysis on the accuracy to show the
significance of our results. In our experiments, we divide the
dataset into training and testing data, 80% and 20% respec-
tively. Among the 10 datasets, two datasets, breast and flare
have a feature vector size 18 and 30 respectively, therefore
smaller than our window size. Thus for these two datasets
we use a window size of 15. For all other datasets, we use a
window size of 30. In each layer of the cascade phase, we use
100 SigD2 base learners. In the case of gcForest, we use the
implementation [5] of gcForest proposed by Zhou et al [6]. As
we use discretized datasets, the reported results can be slightly
different from the results reported in the mentioned papers.

Among the deep neural network models, The first deep
neural network (DNN1) has one hidden layer and the second
deep neural network (DNN2) has two hidden layers and
DNN N where we incorporated N hidden layers. In the case
of DNN N, N represents the number of layers equal to the
number of layers determined by our proposed model DAC for
each dataset. DNN1 consists of one hidden layer with 256
nodes in the layer with a dropout of 0.3 and ReLU activation
function. In the output layer, we use the softmax activation
function. We use the Adam optimizer with a learning rate of
.0001. In DNN2 and DNN N we use the same parameters
with additional hidden layers with 256 nodes. With DNN1
in DNN2, one more hidden layer is added, and with DNN1
in DNN N, N-1 more hidden layers are added. For each
dataset, we utilise a different number of layers in the DNN N
model, which is dataset-specific and the number of layers are



Fig. 4: Architecture of Deep associative Classifier

determined by our proposed model. We execute the model
for 100 epochs for each dataset. We take these models as
a general representation of the deep neural network family.
With different combination of hyper-parameters for the deep
neural network architectures, the performance may outperform
the classifiers mentioned in this paper including our proposed
model. But the hyper-parameter tuning might be dataset-
specific and it is not an easy task to find proper set of hyper-
parameters. We consider this as a limitation of the deep neural
networks. For this reason, we do not perform hyper-parameter
tuning for each dataset for deep neural networks rather use
simple architectures for all the datasets.

C. Accuracy

A comparison of the accuracy of our model compared to
other models is given in the Table I
If we do not consider dataset specific model DNN N then
in 5 out of 10 datasets, DAC outperforms other models.
Among the rest 5, in breast dataset, DAC has the same
performance as Random forest. In 2 of them DNN2 has better
performance than other models. Only in 2 datasets, dataset
specific model DNN N outperforms all other models. In the
Flare dataset, SigD2 outperforms other classifiers. In the glass
dataset deep neural network model with two hidden layers
performs better than other models. For the glass dataset, the
accuracy of the associative classifier and the gcForest model
is quite low as compared to the deep neural network models.
In this dataset, the decision tree-based architecture gcForest,
rule-based classifier SigD2 and our proposed model could
not perform well. The core architecture of the deep neural
network models might have an advantage over the rule-based
models and the gcForest model for this dataset. In the case
of the Anneal dataset, we can see that gcForest architecture
outperforms all other models. In this dataset, the Random
forest also has the same performance as the gcForest. As
the base learner for both models is the decision tree, in the
case of this dataset, the method of the decision tree has an
advantage over the other classifiers. On average our model
DAC outperforms all others.

To see the effect of filtering and weighting of the augmented
feature, we tested the performance of our model by removing
the filtering phase. We only generated the class probabilities
and without further analysis, we added all the class probabil-
ities in the dataset as features. Similarly, we also tested the
performance of our model without the scanning phase. In this
case, we used the same parameters and settings as mentioned
above but just removed the scanning phase. The results of
these tests are provided in Figure 5.

Fig. 5: Comparison of accuracy with and without different
component of the proposed model

From Figure 5, we can see that removing the filtering or
the weighting of the augmented feature components from the
model has an impact on the performance of the model. Among
the two modules, filtering has more impact on the results. In all
the datasets except, Flare, removing the filtering step reduces
the accuracy more than removing the scanning step. In the case
of implementing the model without filtering, when the model
generates class probabilities, we found many base learners
produce the same class probabilities for all the instances. To
make a good ensemble we know diversity among the base
learners is a crucial factor. But without filtering many of the
base learners produce duplicate results. With those results, in



Dataset #cls #rec
Feature
vector
size

Random
Forest gcForest DNN1 DNN2 DNN N SigD2 DAC

Breast 2 699 18 96.42 95.76 94.43 96.14 97.15 94.29 96.42
Flare 9 1389 30 69.73 78.41 48.65 53.38 53.38 84.39 78.77
Pima 2 768 36 67.41 75.32 44.21 66.32 60.00 76.44 79.87
Glass 7 214 41 72.09 69.77 67.9 88.89 88.89 48.84 67.79
Hepatitis 2 155 54 78.38 80.65 35.42 81.25 87.50 81.54 82.26
Anneal 6 898 67 98.89 98.89 98.33 96.74 96.74 92.22 93.33
Horse 2 368 83 75.67 78.38 76.82 77.03 79.70 75.68 82.43
Mushroom 2 8124 88 69.51 99.17 78.27 79.89 79.60 99.03 99.37
Adult 2 48842 95 84.97 85.12 84.86 85.13 85.25 84.59 85.41
Ionosphere 2 336 155 95.78 94.37 85.34 96.55 96.55 90.14 95.78
Average 80.89 85.58 71.42 82.13 82.48 82.73 86.14

TABLE I. Accuracy of proposed method compared to other models

the subsequent layers, they produce even more duplicate base
learners which hampers the model.

Fig. 6: Effect of number of windows in the scanning phase

Fig. 7: Effect of different window size on accuracy

We analysed the performance of our model when using
a different number of windows in the initial scanning step
scrutinising the feature space. We experimented with two,
three and four windows. The average accuracy for the different
windows is provided in Figure 6.

In Figure 6, we can see, that increasing the number of
windows in the scanning does not have a significant impact on
the performance of the model in terms of accuracy. However,

it impacts the execution time of the model. In our model,
the layers and the base learners are trained sequentially. Thus
increasing the number of windows increases the execution time
of the model.

We also analyzed the different window sizes by experi-
menting with window sizes from 15 to 40 increasing by 5
at each step. We plot in Figure 7 the average accuracy of the
10 datasets with the increase of the window size. From the
figure we can see that the accuracy increases with the increase
in the window size. However, there is a compromise to make.
As the window size increases, so does the feature vector output
in each layer and therefore the memory requirement.

Finally, we analyse the effect of the number of base learners
in each cascading layer. Since we use a majority voting
scheme, the number of base learners can have a big impact
on the performance of the model. This is a very important
hyper-parameter for our model. In the case of the number of
base learners, we perform the test varying the number of base
learners from 25 to 200 increasing by 25 base learners in each
step. Figure 8 shows the effect of the number of base learners
on accuracy.

Fig. 8: Effect of number of base learners on accuracy

From Figure 8, we can see with the increase in the number
of base learners, the accuracy increases sharply then plateaus
beyond 100. In our model, we introduce filtering at each
layer of the cascading layer which keeps only one of the base
learners and increases redundancy by assigning some weight



Dataset #cls #rec
Feature
vector
Size

Random
Forest gcForest DNN1 DNN2 DNN N SigD2 DAC

Breast 2 699 18 127 112 1736 1760 623 92 104
Flare 9 1389 30 132 132 1762 1777 1777 106 108
Pima 2 768 36 128 119 1774 1792 660 101 105
Glass 7 214 41 128 113 1719 1741 1741 110 101
Hepatitis 2 155 54 127 111 1786 1807 688 113 104
Anneal 6 898 67 129 117 1802 1827 1827 150 116
Horse 2 368 83 128 137 1813 1833 717 235 112
Mushroom 2 8124 88 142 131 1837 1859 731 993 162
Adult 2 48842 95 253 374 1871 1876 1992 825 492
Ionosphere 2 336 155 128 276 1838 1859 1859 2519 113

TABLE II. Memory requirement (in MB) of proposed method compared to other models

to that one learner. Thus when we increase the number of
base learners, many redundant base learners are produced
and most of them are filtered out. By increasing the number
of base learners beyond 100 there is no significant change in
the accuracy of the model.

D. Memory Requirement

To see how efficient our proposed model is in terms of
memory requirement, we also measure the memory needed
for each model. Deep neural networks require a high amount
of memory for processing data at each layer. SigD2 also
requires a high amount of memory with the increase of the
feature vector size. We can see the memory requirements of
the different models in Table II. To calculate the memory
requirement for each of the model we used the python library
psutil
From the table, we can observe the high memory requirement
of deep neural networks. The memory requirement is also high
for SigD2 for a dataset with a large feature vector. The gc-
Forest architecture largely decreases the memory requirements
for all types of datasets. Our proposed model further decreases
the memory requirements. In the case of a dataset having a
very small number of features, SigD2 requires less memory
than our proposed model. But when the feature vector size
increases, we can see a decrease in the memory requirement
by our model in contrast to SigD2. Our model also shows
competitive performance in comparison with random forest.

To get a better understanding of the memory requirement
of our model, we tried different window sizes since SigD2
is sensitive to the size of feature vectors. Thus we tested
different window sizes from 15 to 40 increasing by 5 at each
step. Figure 9 shows the average memory requirement by our
proposed model as we increase the window size. By analyzing
Figure 7 and Figure 9, we can see the improvement in the
accuracy and higher memory requirement with the increased
window size. After window size 30 though the accuracy
increases but the memory requirement also rises and the trend
of increasing memory requirement is much higher than the
accuracy. For this reason, window size 30 can be considered
as an optimum window size for using our proposed model.

Fig. 9: Effect of window size in the memory requirement

E. Number of hyper-parameter and tuning feasibility

In previous sections, we mentioned, that deep neural net-
work models have a complicated hyper-parameter tuning pro-
cess and they differ for different datasets, In our experiment,
we used a simple version of the deep learning model and
we used the same model for all the datasets, these models
of deep neural networks could not perform well in most of
the datasets. But with proper hyper-parameters, deep neural
networks might perform better. Most of the time the hyper-
parameter tuning for deep neural networks is dataset-specific.
That is, for each of the datasets the hyper-parameters could be
different. Tuning the hyper-parameters is a tedious procedure.
Moreover, in the case of deep neural network models, it is
very hard to understand the effect of each hyper-parameter on
the performance of the model.

On the other hand, gcForest architecture requires fewer
hyper-parameters than the deep neural network models. Still,
several hyper-parameters are present in their model. For the
experiment, the authors found a setting where they showed
their model achieved a better performance on different types
of datasets, There can be some other settings of the hyper-
parameter by which the performance of their model can be
further improved. In their case, tuning 4 hyper-parameters
to find a suitable setting is also a complicated and time-
consuming process and like deep neural networks, there is no
way to assume the hyper-parameters without testing. In our



model, we further reduced the number of hyper-parameters.
We have two hyper-parameters which are the number of base
learners in each of the cascading layers, and the window
size. The number of layers is determined automatically. With
experiments, we found a window size 30 is a very good choice
for our model as decreasing from 30 decreases the accuracy
of the model. Increasing the window size highly increases the
memory requirement which we can see from Figure 7 and
Figure 9. Still, for some other datasets, different window sizes
may improve the performance of the model. Table III shows
the number of hyper-parameter in the case of the deep neural
network models, gcForest and our proposed model.

Deep neural networks gcForest DAC

• Activation functions
• Number of hidden layer
• Number of Nodes in

hidden layer
• Number Feature maps
• Kernel size
• Learning rate
• Dropout ratio
• Momentum
• weight regularization

penalty
• Weight initialization
• Batch size

• Number of Forests
• Number of Trees in

each forest
• Tree growth
• Sliding window sizes (3

different sizes)

• Number of
base learners

• Window size

TABLE III. Hyper-parameters

Considering the complexity of tuning hyper-parameters
for deep neural networks and gcForest, changing the hyper-
parameters for our proposed model is quite an easy task. In the
case of our model, if we increase the number of base learners
at each layer, the effect of the change that is whether there is
an improvement in the performance can be directly observed.
In the case of changing the window size, the change in the
accuracy and memory requirements is also directly discernable
from the result. Decreasing the window size makes the model
faster but decreases the accuracy, and increasing the window
size requires much memory while still improving the accuracy.
By changing the window size it is easy to determine a good
window size for a dataset which is an easier task than testing
the model with different settings of many hyper-parameters in
the case of deep neural networks and gcForest.

F. Statistical Analysis

Finally, we conducted a statistical analysis to show the
significance of the improvements in our proposed model. For
this, we performed the student paired t-test with the null
hypothesis, that the improvement in the accuracy of our model
is not significant. We run the whole experiment 20 times and
calculated the average accuracy for each model. In this case,
we used a window size of 30 and 100 base learners in each
layer of cascading phase. Then we calculated the differences in
accuracy by δ =MDAC(test data)−Mi(test data). Here
MDAC is our proposed model and the subscript i stands for
the other models. Running the models on test data provides
the accuracy of the models and δ is the difference in the

accuracy. Then with the differences, we performed the paired
t-test which is inspired by the work of Henry et al. [23].
We used their model to calculate p-values for each of the
mentioned classification models against our proposed model.
The calculated p-values are provided in Table IV.

Algorithm p-value
DAC vs Random Forest 1.2543e-21

DAC vs gcForest 0.0165
DAC vs SigD2 1.45335e-06
DAC vs DNN1 4.5374e-26
DAC vs DNN2 0.0009

DAC vs DNN N 0.0002

TABLE IV. Statistical result

From Table IV we can see the p-value for each pair is very
low. Thus we can reject the null hypothesis and conclude
that the improvement in accuracy of our proposed model is
significant.

V. PERSPECTIVES FOR FUTURE WORK

The structure of individual layers of our deep architecture
is consistent and the number of layers is determined automat-
ically by adding layers so long as the accuracy is improved.
Once the accuracy of the last layer declines, adding layers
stops. The hyper-parameters remain consistent among layers.
However, once the accuracy declines, instead of stopping, the
number of base learners and the window size (i.e. the number
of features per base learner) do not need to remain the same
for subsequent layers and could be tuned again to improve
the accuracy of the last layer if a decline is noted. It is worth
investigating hyper-parameter auto-tuning per additional layer
to insure improvement of accuracy while increasing the depth
of the model.

In the cascading step, we employ a filtering process to
ensure that identical class probabilities are not appended
more than once in the output feature vector. Our current
filtering strategy simply avoids repetition by multiplying the
probabilities by a weight equal to the count of repetitions of
identical predictions. The performance of our model could be
improved by exploring other filtering methods that still ensure
diversity in the subsequent ensemble and safeguard the feature
vector size in the layer output. Moreover, the random sampling
of features for the base learners in the layer ensemble during
the cascading step makes the model less stable across different
runs. A better strategy of feature sampling that guarantees
diversity and coverage could not only ensure stability but also
eliminate the need to select the size of the ensemble as a
hyper-parameter but instead automatically determine this size
per layer.

SigD2 was shown to outperform SVM and decision trees,
but more importantly other rule-based classifiers such as
Ripper [22] or other associative classifiers. This was the main
reason for selecting it as a base learner in our ensembles.
However, SigD2 has drawbacks, particularly its limitations vis-
à-vis large dimensional data. This is not a significant restriction
in our current model as tested, however, this constitutes



a possible obstacle for hyper-parameter tuning (i.e. finding
an optimal window size beyond 30). Exploring other rule-
based classifiers as base learners or directly addressing the
shortcomings of SigD2 could be an interesting open problem
to address.

Another important direction to explore is to investigate
how we can exploit the interpretability of the rule-based
classifier, SigD2, to make DAC explainable. Understanding
the important features in a decision is tricky with a cascade of
layers each with an ensemble of deciders voting by majority.
Moreover, the salient features composing the vectors in each
layer are made up not only of the initial input features but
also collected weighted probabilities from the ensemble of
the previous layers. Finding the salient features is a problem
in itself but translating those back to the original features is
another open problem worth investigating.

VI. CONCLUSION

In this paper we present an attempt at exploit one of the
main reasons behind the success of deep learning: the layered
and deep representation learning. Our proposal expands on the
idea of the gcForest by using a rule-based classifier, SigD2, as
a base learner, introduces a filtering process to tackle diversity
in ensembles, and further reducing hyper-parameters. One of
the main questions we try to answer through this paper is Can
we have a deep architecture with fewer hyper-parameters, low
memory requirement and exploit a layer-wise data processing
architecture of deep neural networks while making use of
a rule-based base learner?. To answer this question and
overcome some of the limitations of deep neural networks,
gcForest, and some hindrances of associative classifiers, we
designed a deep associative classifier architecture using SigD2
as a base learner.
We compared the performance of our approach with the other
state-of-the-art models in terms of accuracy, memory require-
ments and hyper-parameter tuning feasibility on 10 different
UCI datasets. We explored different sampling and tuning
methods and added a filtering phase along with scanning and
cascading phase to the ensemble architecture to improve the
accuracy of our proposed model. From our experiments, we
show that our model performs better than other existing models
including gcForest and deep neural networks for different
datasets not only in terms of accuracy but also in terms of
memory needs. We also show that our model reduces the
memory requirement to a great extent in comparison to deep
neural networks and SigD2 which makes our model suitable
to run in low-resource hardware. Our proposed model has
only two hyper-parameters to tune as compared to gcForest
which has four to tune and deep neural networks which
have several hyper-parameters. Further, our model achieves
excellent performance across various datasets in terms of
accuracy.
There are several avenues for future research in the context of
our proposed model which we came across while implement-
ing and testing our model. We have highlighted some of them
that we want to explore in future studies.
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