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Abstract. Class imbalance is one of the challenging problems for machine learn-
ing in many real-world applications. Other issues, such as within-class imbalance
and high dimensionality, can exacerbate the problem. We propose a method HPS-
DRS that combines two ideas: Hybrid Probabilistic Sampling technique ensemble
with Diverse Random Subspace to address these issues. HPS improves the perfor-
mance of traditional re-sampling algorithms with the aid of probability function,
since it is not sufficient to simply manipulate the class sizes for imbalanced data
with complex distribution. Moreover, DRS ensemble employs the minimum over-
lapping mechanism to provide diversity and weighted voting, so as to improve the
generalization performance. The experimental results demonstrate that our method
is efficient for learning from imbalanced data and can achieve better results than
state-of-the-art methods for imbalanced data.
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1. Introduction

Class imbalance has been recognized as a crucial problem in machine learning and data
mining [7,17]. This problem occurs when the training data is not evenly distributed a-
mong classes; that is when some classes are significantly larger than others. This prob-
lem is growing in importance and has been identified as one of the 10 main challenges
of Data Mining [39]. This problem is also especially critical in many real world appli-
cations, such as anomaly detection in credit card transaction, fraud detection, medical
diagnosis etc. The imbalanced data issue occurs not only in stationary environments, but
also in data stream [21,16]. In these cases, standard classifiers generally perform poorly.
Classifiers usually tend to be overwhelmed by the majority class and ignore the minority
class examples, since most classifiers assume an even distribution of examples among
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classes. Therefore, we need to improve traditional algorithms so as to handle imbalanced
data.

Much work has been done in addressing the class imbalance problem. The proposed
methods can be grouped in two categories: the data perspective and the algorithm per-
spective [6,37]. The methods with the data perspective re-balance the class distribution
by re-sampling the data space either randomly or deterministically, so that the minority
class can be well represented in the training set [17]. Cost-sensitive learning tries to learn
more characteristics of samples with the minority class by setting a high cost to the mis-
classification of samples of the minority class [12,14]. In addition, ensemble methods
[9,20,8] are also a good solution for solving the class imbalance problem, since ensemble
learning is incorporated with a re-sampling technique or a weighting strategy to acquire
better classification performance and generalization capability.

The re-sampling technique is the most straightforward and effective method for deal-
ing with imbalance, since it is not dependent on the classifier and is simple to implement.
Weiss et al. observed that the naturally occurring distribution is not always optimal [36].
Therefore, one needs to modify the original data distribution. The existing re-sampling
indeed improves the classification performance on the imbalanced data as a whole. Nev-
ertheless, they target only the characteristic of the imbalanced distribution between class-
es. Besides the between-class imbalance, the presence of inherent complex structures
in the data distribution, such as within-class imbalance [23,22] and high-dimensionality
[29], are other critical factors of decreasing classification performance. Within-class im-
balance refers to the case where a class is formed of a number of sub-clusters with dif-
ferent sizes, concerns itself with the distribution of representative data for subconcepts
within a class [23,22]. The existence of within-class imbalance is closely intertwined
with the problem of small disjuncts, which has been shown to greatly decrease classifica-
tion performance [35,24,32]. In addition, high-dimensionality poses further challenges
when dealing with class-imbalanced prediction. The complex data distribution aggra-
vates the imbalanced data classification, since the sensitivity of traditional classifiers to
class imbalance increases with the domain complexity and the degree of imbalance.

Although traditional re-sampling methods across the entire data distribution can re-
duce the imbalance between two classes from a global perspective, they cannot solve the
within-class imbalance issue as they cannot create appropriate instances without consid-
ering the spatial distribution from local distribution, leading to decreased performance.
Moreover, existing re-sampling techniques only manipulate the instance in the whole
feature space; the irrelevant and redundant features in the high dimensional space may
cause the synthetic instances to be inaccurate and biased. To counter the complications
introduced above, the solution needs to follow three criteria.

(1) The within-class imbalance may occur in the class distribution. The re-sampling
procedure needs to be conducted according to the local distribution by considering the
position and distance rather than manipulating data blindly on the whole region. There-
fore, the original data need to be decomposed into simple local regions based on cluster-
ing, thus the local regions need to be re-sampled separately.

(2) Unlike the scheme duplicating the instances or interpolating new instances along
the line between two instances, the artificial instances need to be created through a prob-
ability distribution with learned parameters from the training set, so as to generate more
accurate and actual instances.



(3) The problem becomes even more severe when imbalanced data sets are involved
with high dimensions [29]. The re-sampling may gain more when working in some ran-
dom reduced feature spaces instead of the whole large feature space, given that it will not
only inject more diversity into the scheme of re-sampling, but also reduce the negative
influence by the irrelevant and redundant attributes.

These criteria above suggest that when conducting re-sampling, two key issues need
to be considered: where the new instances are generated, and how the new instances are
produced. The criteria aim to generate more accurate samples which can obey the real
sampling, in order to improve the recognition ability of the minority class without a big
loss of the prediction ability on the majority class.

The contributions of this work can be listed as follows:
(1) On the basis of the criteria introduced above, we propose a hybrid probabilistic

re-sampling algorithm with Gaussian Mixture Model (GMM) [34], which provides an ef-
fective solution for re-sampling according to the distribution probability of each instance.
It offers an effective solution for within-class in tandem with the between-class imbal-
ance. The procedure of the hybrid re-sampling is carried out according to the distribution
probability without jeopardizing structure of data.

(2) To avoid the impact on the clustering of GMM and procedure of re-sampling due
to some irrelevant features in the whole feature set, as well as to improve the classifica-
tion performance, we design a novel ensemble based on the Diverse Random Subspace
(DRS). When constructing the random subspace ensemble [19], we explicitly guarantee
a minimum overlap of each component through the generation of diverse subsets and a
final weighted average based on the performance of each component.

This paper is organized as follows: After presenting a brief review of within-class
imbalance as well as small disjuncts issues, and re-sampling algorithms under class
imbalance in Section 2, we introduce in Section 3 our proposed method: HPS-DRS. Sec-
tion 4 details the experimental results comparing our approach to other methods in the
literature.

2. Related work

2.1. Within-class imbalanced and small disjuncts

Within-class imbalance refers to the case where a class is formed of a number of
sub-clusters with different sizes, concerns itself with the distribution of representative
data for subconcepts within a class [23,22]. This can cause problems as we shall
discuss later. Real data is commonly distributed according to a mixture density whose
components have relative densities that may vary greatly, since the data from the same
class may not be homogeneous or arise from noisy misclassified instances. Hence the
data with within-class imbalanced distribution occurs. When faced with such a situation
the existing methods that address the class imbalance problem may be counterproductive.
While they decrease the difference between the prior probabilities of the classes (the
between-class imbalance), there is a chance they will increase the difference between the
relative densities of the sub components within each class (the within-class imbalance).

Within-class imbalanced data distribution may yield small disjuncts, which is the
essential challenge in the within-class imbalanced data issue. A phenomenon sometimes



referred to as the problem with small disjuncts and that these small disjuncts collectively
contribute a significant portion of the total test errors [18]. Weiss suggests that there is
a relation between the problem of small disjuncts and class imbalance, stating that one
of the reasons why small disjuncts have a higher error rate than large disjuncts is due
to between-class imbalance [35]. Japkowicz enhances this hypothesis stating that the
problem of learning with class imbalance is increased when it yields small disjuncts [23].

Holte et al. [18] evaluate several strategies for improving learning in the presence
of small disjuncts. They show that the strategy of eliminating all small disjuncts
is ineffective, because the emancipated examples are then even more likely to be
misclassified. The common effective solutions to overcome the small disjuncts as well as
within-class imbalance are to design better classifiers that address the problem with small
disjuncts, and re-sampling approaches. Ting [33] designed a hybrid method using C4.5 to
determine if an example is covered by a small or large disjunct. If it is covered by a large
disjunct, then C4.5 is used to classify the example. However, if the example is covered
by a small disjunct, then IB1, an instance-based learner, is used to classify the example.
Japkowicz proposed a cluster-based oversampling algorithm (CBOS), which solves the
between-imbalance and within-imbalance issues at the same time [23]. It makes use of
K-means clustering to separate into multiple clusters the instances in each class, then
a random oversampling method is used for targeting within-class imbalance in tandem
with the between-class imbalance. However, some issues remain:

(1) The number of clusters needs to be fixed by the user. It is difficult to determine
this number, and if it is not exact, it can significantly impact the result of re-sampling.

(2) The clustering is done in the whole feature space. Many features are redundant
and noisy, potentially leading to inaccurate clustering, resulting in inappropriate
re-sampling. This is particularly true in the case of high dimensional datasets. In the case
of high dimensionality, it is also inefficient. Moreover, data often exhibit characteristics
at a local level rather than the global level; therefore, it is necessary to manipulate the
data in the reduced subspace.

(3) The instances chosen to be over-sampled are random, resulting in overfitting [6].
Moreover, there still exit redundant instances in the majority class.

2.2. Re-sampling methods for imbalanced data learning

Re-sampling methods are attractive under most imbalanced circumstances. This is be-
cause re-sampling adjusts only the original training data set instead of modifying the
learning algorithm; therefore it provides a convenient and effective way to deal with im-
balanced learning problems using standard classifiers. In this paper, we are only interest-
ed in sampling based approaches and hence we provide a brief overview of the methods
proposed in this category.

2.2.1. Over-sampling techniques

1. SMOTE algorithm
A popular and effective over-sampling method is the synthetic minority

over-sampling technique (SMOTE) [6]. SMOTE introduces synthetic examples
throughout the line segments joining all of the k minority class nearest neigh-
bors of each minority class instance. SMOTE can address the between class im-
balance issue. However it manipulates the instances blindly without considering



the data distribution on the whole feature space, resulting in creating wrong in-
stances when the class dispersion or class noise exist. There exist many methods
based on the SMOTE for generating more appropriate instances. ProWSyn [3]
was proposed to create weight values for original minority samples based on
sample’s proximity information, and MWMOTE proposed in [2] can not only
select the hard-to-learn minority class samples effectively but also assigns them
weights appropriately.

2. Ensemble over-sampling
The ensemble framework has also drawn attention in the context of learning

from imbalanced data. Not only multiple classifiers could have better answer
than a single one, but also the ensemble framework provides diversity for avoid-
ing overfitting. SMOTEBoost [8] and RAMOboost [9] were designed to alter
the imbalanced distribution based on Boosting. Hoens and Chawla recently pro-
posed the random subspace method integrating SMOTE and empirically demon-
strated that sampling methods, achieve better when working in a reduced feature
space [20].

3. Cluster-based over-sampling
Japkowicz proposed a cluster-based oversampling algorithm (CBOS) with

K-means clustering [23]. Wu et al. proposed a local clustering method with
over-sampling (COG) for rare class analysis, which performs clustering within
each class and produces linearly separable subclasses with relatively balanced
sizes[38]. The COG has more impact on the performances of linear classifiers.

2.2.2. Under-sampling techniques

Besides over-sampling methods, under-sampling is a popular method in dealing with
class-imbalance problems. Under-sampling uses only a subset of the majority class based
on the data characteristics of the majority class. Liu et al. [28] proposed two ensemble
methods to strengthen the use of majority class examples, called EasyEnsemble and
BalanceCascade. They construct an ensemble of ensembles with Bagging, where each
individual classifier is also an ensemble of AdaBoost. Yen et al. [40] proposed a
cluster-based under-sampling approach for selecting the representative data from the
majority class, so as to improve the classification accuracy for the minority class.
Zhang et al. [30] proposed an informed under-sampling using K-nearest neighbor (KNN)
classifier to achieve under-sampling. Based on the characteristics of the given majority
data distribution, four KNN under-sampling methods were proposed, in order to select
a representative subset of the majority class. Yu et al. [41] developed a under-sampling
method based on the idea of ant colony optimization (ACO) to filter less informative
majority samples and search the corresponding optimal training sample subset.

3. HRS-DRS Method

In this section we begin by describing the hybrid probabilistic sampling. We then de-
scribe how to incorporate this method into the diverse random subspace ensemble to
create HPS-DRS.



3.1. Hybrid Probabilistic Sampling

Gaussian Mixture Models (GMM) are generative probabilistic models of several Gaus-
sian distributions for density estimation in machine learning applications. A Gaussian
mixture can be constructed to acceptably approximate any given density. Therefore, we
assume the distribution of two classes follows the Gaussian mixture model with unknown
parameters. The parametric probability density function of GMM is defined as a weight-
ed sum of Gaussians. The finite Gaussian mixture model with k components may be
written as:

p(y|µ1, . . . ,µk;σ1, . . . ,σk;π1, . . . ,πk) = ∑
k
j=1π jN(µ j,σ j) (1)

and

0≤ π j ≤ 1,∑
k
j=1π j = 1 (2)

where µ j are the means, σ j are covariance matrixes, π j are the mixing proportions,
and N(µ j,σ j) is a Gaussian with specified mean and variance.

We need to estimate the parameters of GMM with the existing instances of both
the classes. The standard method used to fit finite mixture models to observe data is the
expectation-maximization (EM) algorithm, which converges to a maximum likelihood
estimate of the mixture parameters. However, the drawbacks are that it is sensitive to
initialization and it requires the number of components to be set by users. Since the FJ
algorithm [15] tries to overcome the major weaknesses of the basic EM algorithm partic-
ularly vis-à-vis the initialization, and can automatically select the number of component,
we use it here to estimate the parameters of GMM.

Each instance xi will then be assigned to the cluster k where it has the largest poste-
rior probability p(k|xi). When calculating the probability of each instance on each com-
ponent, the probabilities for the numeric attributes is obtained by a Gaussian density
function, and for the nominal attributes, the probabilities of occurrence of each distinct
value are determined using Laplace estimates. At the same time, we obtain the parame-
ters of each Gaussian component. For different clusters, the re-sampling rates are differ-
ent; within the cluster, the probabilities of each instance to be chose for re-sampled are
different.

We use the over-sampling combined with under-sampling to balance the class size.
The sizes of the two classes are Mma j and Mmin. The gap G between two uneven classes is:
G = Mma j−Mmin. Thus, the amount of instances in the minority class for over-sampling
is: OSmin = G×α , and the amount of instances in the majority class for under-sampling
is: USma j = G× (1−α). To adjust the within class imbalance, we need to balance cluster
sizes in each class. For the majority class, the numbers of instances to be under-sampled
are proportional to the size of the cluster; for the minority class, the number of instances
to be over-sampled is inversely proportional to the size of the cluster. For example, there
are three clusters of size 20, 15 and 10 in the majority class, and two clusters of size
10 and 5 in the minority class. If α is set to 50%, the gap G is 30, NUS = NOS = 15.
The sizes of the three clusters in the majority class become 13, 10 and 7 after under-
sampling, while both the sizes of the two clusters in the minority class become 15 after
over-sampling. This reduces the within class imbalance, and in this case equalizes the
class sizes.



Furthermore, we use the probabilities of each instance to conduct the re-sampling
with maintaining the data structure, in order to address the two type imbalance issues.
In the clusters of the majority class, the instances with higher probability are dense, they
are frequent in the subclass, and hence they have higher chance to be under-sampled. We
choose the instances to be under-sampled according to the Gaussian distribution. In the
clusters of the minority class, the new instances are produced according to the proba-
bility function of Gaussian distribution, resulting in finding more potentially interesting
regions. The main steps in under-sampling for the clusters of the majority class and over-
sampling for the clusters of the minority class according to the distribution probability
are the following:

Over-sampling phase:
Step 1:
In the over-sampling for the minority class, the smaller the size of cluster within the

class, the more instances are over-sampled, so as to avoid the small disjuncts. For the i-th
cluster, the amount of synthetic instances needed to be generated is:

Ni
OS = (

1
sizei

min

/
∑

Nmin
j=1

1

size j
min

)×NOS (3)

where size j
min is the size of i-th cluster, Nmin is the number of clusters in the minority

class.
Step 2:
In the i-th cluster, Ni

OS instances are generated with the parameters from the cur-
rent Gaussian distribution. The new instances are generated according to the probability
function of the Gaussian distribution with parameters learned from the available data.
Firstly, the probability from the Gaussian distribution of each instance is calculated and
normalized:

p̂k = pk

/
∑

sizei
min

j=1 p j (4)

Then, the amount of new instances for each instance xk is obtained according to:

nk = p̂k×Ni
OS (5)

For ensuring that synthetic instances created via this method always lay in the region
near xk, the nk instances are generated in its K nearest neighbors region. It can extend
more potential regions rather than being limited along the line between the minority
example and its selected nearest neighbors. In addition, this guarantees the creation of
minority samples in the cluster, and avoids any incorrect synthetic instance generation.

Under-sampling phase:
Step 1:
In the under-sampling for the majority class, we calculate the amount of instances

to be under-sampled for each cluster. The number of instances to be under-sampled are
proportional to the size of clusters. For the i-th cluster, the amount of instances needed
to be removed is:



Ni
US = ( sizei

ma j

/
∑

Nma j
j=1 size j

ma j )×NUS (6)

where sizei
ma j is the size of i-th cluster, Nma j is the number of clusters in the majority

class.
Step 2:
In each component Gaussian distribution, the center region is denser than the border

region. These instances from the center are more possible to be redundant, and so are
better candidates to be under-sampled. We need to choose the instances to be ignored or
removed located on the center of the distribution more than the border. The probabilities
to be chosen for under-sampling are proportional to the normalized probability p̂ of the
Gaussian distribution for each instance in a cluster.

Before applying GMM, to avoid the effect of noise instances, we filter out the noise
by checking the labels of nearest neighbors. We remove any noisy example which vio-
lates the rule that the class label of each instance is consistent with the one of at least three
of its five nearest neighbors. The rule extends the Edited Nearest Neighbor (ENN) Rule
[37], which is an under-sampling method that removes data examples whose class label
differs from that of at least two of its three nearest neighbors. ENN could inadvertently
remove important points when just two out of three neighbors are labeled differently. For
example in Figure 1, point A is critical as it locates the decision region, however it would
be removed if only three neighbors (solid line) are considered according to the ENN
rule, resulting in loss of important information. It is remained when the region of nearest
neighbors is expanded to five (dashed line). Therefore, in order to determine the role of
a instance more accurately and globally, the size of the nearest neighbors is expanded
from three to five. If more than half of its nearest neighbors belong to the opposite class,
it is regarded as noise and removed.

The procedure described above is the main scheme of HPS. This general idea of
HPS and the difference of this idea to SMOTE are visualized in Figure 2. The (a) is the
original skewed data distribution. We can see the minority class has two subclasses with
within-class imbalance and an outlier instance. These factors may decrease effectiveness
of the learning and over-sampling. The (b) is the result of the SMOTE. The procedure of
SMOTE conducts the linear interpolation between nearest neighbor instances, resulting
in generating many wrong minority instances under the complex distribution. We see
that, some wrong minority samples are interpolated into the region of the majority class
since noise and class dispersion exist. Hence, it is not sufficient to manipulate the class
size without considering the local distribution. The (c) and (d) show the strategy of our
HPS. The clustering result of GMM is shown in (c). (d) is the final result of the HPS.
We can see that HPS is able to broaden the decision regions and the concept of minority
class from a global perspective to a perspective that encompasses local information in
order to deal with within-class imbalance and small disjuncts issues.

3.2. Integration of HPS and Diverse Random Subspace, HPS-DRS

The redundancies and noise in the feature set hinder the re-sampling techniques to
achieve their goals. Moreover, the quality of probability estimation and classification



will largely depend on the feature set. The irrelevant or redundant features can lead to a
decrease in performance on the re-sampling and prediction.

An important trend in machine learning is the appearance of ensemble learning
which combines the decisions of multiple weak classifiers to form an integrated output,
so as to provide a diversity for avoiding the overfitting for some algorithms. Moreover,
ensemble learning is also a good solution for solving the class imbalance problem, as it
is incorporated with re-sampling technique to acquire better classification performance
and generalization capability. Ho showed that the random subspace method is able to
improve the generalization error [19]. In the random subspace ensemble, the individual
classifier is built by randomly projecting the original data into subspaces and training a
proper base learner on these subspaces to capture possible patterns that are informative
on classification. The majority voting scheme is utilized when combining each specific
classifier’s prediction.

Under the current standard random subspace scheme, there are three disadvantages
requiring improvement: 1) it only picks the feature subset for the original feature set
randomly without considering the diversity of instances. Projecting the feature space on
a given subspace could produce or enhance noisy instances and even contradicting in-
stances that would lead to poor performance. This is the case when values of attributes
in the selected subspace are outliers; 2) Since the features for a classifier are selected in-
dependently from the feature subspaces of other classifiers in the ensemble, the standard
RS scheme has random characteristics through the selection of feature subsets. However,
there are still strong overlaps of the instances with feature selected when constructing
individual classifiers on different subspaces, as there is no formulation to guarantee small
or reduced overlap; 3) because some subspaces may contain noisy features and individu-
al classifier developed from these subspaces are not informative, it is not correct treating
each classifier as if it contributed equally to the group’s performance; there is a lack of
attention to appropriate weight assignments to individual classifiers according to their
respective performance based on the different subspace.

Therefore, we propose an improvement of RS, called DRS (Diverse Random Sub-
space) for addressing these disadvantages. Firstly, we extend the common random sub-
space by integrating bootstrapping samples in order to obtain the diversity with respect
to instances and features. In the bootstrapping method, different training subsets are gen-
erated with uniform random selection with replacement. Secondly, it cannot ensure the
diversity of each subset since the instances and the features are chosen randomly without
considering previously selected subspaces for other classifiers. Therefore, to improve di-
versity between each subset, we use a formulation to make sure each subset is diverse.
We introduce a concept of overlapping rate of subsets:

overlapping rate =
subseti∩ subset j

N f ea×Nins
(7)

where the subseti and subset j are two subsets within certain subspaces, N f ea and Nins are
the feature size and instance size of each subset; e.g., in Figure 3, the overlapping rate is
16%.

We then introduce a threshold Tover to control the intersection between each subset.
The overlapping rate of all the subsets should be smaller than the threshold Tover.



The GenerateDiverseSets described in Algorithm 1 generates a diverse set DiverseSet,
by iteratively projecting bootstrap sample Dk into the specific random subspace
RS(Dk). The function isDiverse(RS(Dk),DiverseSet,Tover) examines if the new projec-
tion RS(Dk) is diverse enough from the previously collected projections in DiverseSet
based on the overlapping region threshold Tover. The generation of projections stops
when there is stagnation sr, after enough trials, no new projection is diverse enough
from the collected subsets. It enforces the diversity or independence by minimizing the
overlapping region among the subset with subspace used previously.

Algorithm 1 GenerateDiverseSets
Require:

Training Dataset, Dtrain
Ratio of bootstrap samples, Rs
Ratio of feature subspace, R f
Overlapping region threshold, Tover
Stagnation rate, sr

Ensure:
Diverse dataSets, DiverseSets

1: change = 0;DiverseSet = {}
2: while change < sr do
3: A bootstrap sample Dk selected with replacement from Dtrain with Rs
4: Select an random subspace with R f from Dk
5: if isDiverse(subspace(Dk),DiverseSet,Tover) == true then
6: DiverseSet.add(subspace(Dk));change = 0;
7: else
8: change = change+1;
9: end if

10: end while

Thirdly, we employ a weighted average while combining classifiers according to the
performance of each component. In the diverse subsets, some of the selected subspaces
may have better performance on the imbalanced dataset; others lack the ability to proper-
ly discriminate between the different classes. We utilized the out-of-bag (OOB) samples
in determining different classifier’s voting power, and then each base classifier is weight-
ed when combined to create the final decision function. The goal is to assign weights
that reflect the relative contribution of each classifier in improving the overall perfor-
mance of the ensemble. It is known that the use of overall accuracy is not an appropriate
evaluation measure for imbalanced data. For example, a dataset for which the majority
class represents 99% of the data, and the minority class represents 1% of the data (this
dataset is said to have an imbalance ratio of 99:1). In such cases, the classifier which
always predicts the majority class will have an accuracy of 99%. When the performance
of both classes is concerned, two accuracies of both classes are expected to be high
simultaneously. Kubat et al [25] suggested the G-mean defined as the geometric mean of
accuracies measured separately on each class: (G-mean=

√
ACCma j×ACCmin). G-mean

measures the balanced performance of a learning algorithm between these two classes,
and is commonly utilized when performance of both classes is concerned and expected



to be high simultaneously. Therefore G-mean is chosen to be the metric for representing
the performance of each classifier.

The HPS-DRS algorithm is described in Algorithm 2.

Algorithm 2 HPS-DRS
Require:

Training Dataset Dtrain, Test Dataset Dtest , Ratio of bootstrap samples Rs, Ratio of
feature subspace R f , Overlapping region threshold Tover, Hybrid sampling ratio pa-
rameter α

Training:
1: Ensemble = NULL
2: DiverseSets=GenerateDiverseSets(Dtrain,Rs,R f ,Tover)
3: for each subset Dk in DiverseSets do
4: Apply HPS on the subset Dk, and generate a new balanced set BDk

s with α

5: Construct a classifier Ck on the BDk
6: Evaluate Ck on the OOB(Dk) and obtain the value of G-mean, GMk
7: Ck.Subspace = Subspace(Dk);Ck.GM = GMk
8: end for
9: Ensemble = Ensemble∪Ck

10: Calculate and normalize the weights of each classifier in Ensemble according to its
GM
Testing:

11: Calculate output from each classifier of Ensemble with Dtest
12: Generate the final output by aggregating all the outputs with weighted voting

To reduce the learning time of HPS-DRS, the procedure of sampling and learning
in each subset Dk can be carried out in parallel before aggregating. Moreover, each clas-
sifier is trained in the reduced subset with fewer instances and features. Therefore the
computational time is acceptable.

Since data often exhibits characteristics at a local rather than global level, DRS can
find more valuable local data properties so as to improve the quality of sampling. More-
over, the different imbalanced data distribution in each random subset makes the ensem-
ble classifier robust to the evolving testing distribution. Furthermore, DRS can alleviate
the effect of class overlapping on the imbalanced data distribution [10], since the two
classes may be separable in some reduced subspace.

4. Experimental study

4.1. Dataset Description

To evaluate the effectiveness of our method on the classification of different datasets,
and to compare with other methods specifically devised for imbalanced data, we tried
several datasets from the UCI database containing imbalance (Table 1). Some of these
are originally multiple class datasets and were converted into binary class problems by
keeping the smallest class as minority and the rest as majority. The datasets used contain
different degrees of imbalance from 4% up to an almost balance at 47%.



4.2. Experiment 1: Evaluating the effectiveness of HPS-DRS

In this experiment, we evaluate the effectiveness of our proposed algorithm HPS-DRS.
We conduct the comparison between the basic classifier without re-sampling (basic),
HPS, HPS-DRS, as well as CHS working on the original RSM framework (HPS-RS).
We chose unpruned decision tree (C4.5) with Laplace-smoothing as our base classifier,
because it is the most commonly used classifier with sampling for imbalanced datasets
in the literature. The ensemble size of all the ensemble methods is set to 50. In the
parameters setting of HPS, the α is set to 70% for avoiding loss of reducing too many
instances, and the parameters K is set to 5. In the parameters setting of DRS, Rs is 0.7, R f
is 0.5. The best value of Tover can be obtained from the training data, then the ensemble
size can be determined adaptively. In this experiment, it is set to 0.4 empirically. It is a
good trade-off value between the diversity and the sufficient ensemble size according to
experiments. Although it is not necessarily the best, it can guarantee the diversity among
each subset. All the experiments are carried out by 10-fold cross-validation. The results
are shown in Table 2.

From these experiments, we can show that HPS is a good re-sampling method, s-
ince it improves C4.5 categorically on all the datasets except Glass. In addition, we can
also point out that DRS is a good ensemble framework which can inject more diversi-
ty into the bias of sampling and learning algorithm, so as to help HPS acquire better
over-sampling performance and achieve a better generalization ability. Especially for the
datasets with high dimensional features such as Spambase and Sonar, HPS-DRS achieves
good generalization and avoids the negative impact of high dimensionality as well as the
strong bias of noisy features; the diverse random subspace method emphasizes ensemble
diversity explicitly during training and fuses all the components with weighted voting
achieving better performance than the traditional random subspace ensemble on the im-
balanced data. This indicates that the diversity in the ensemble can facilitate class imbal-
ance learning. However, our method cannot achieve the best result on some low dimen-
sional datasets, such as Transfusion with only 4 attributes. That is because the random
subspace method is more effective when datasets have a large number of attributes.

From the results, we can also notice that HPS-RS and HPS-DRS are performing
well and improve upon the basic classifier in the case of a balanced dataset such as
Sonar, while the improvement by single HPS is not evident. This is because in the almost
balanced data, the value of G is so small (G = Mma j−Mmin) and the re-sampling does
not change the distribution much. However, there may still exist within-class imbalance.
Since HPS is bound by G the effect of HPS is indeed minimal when we have balanced
classes. In the case of Sonar it was the DRS that improved upon basic thanks to the
ensemble with diverse subspaces. Sonar still has within-class imbalance based on GMM.
By lifting the G restriction on HPS, one could further improve the results.

The scarcity in the minority class includes relative scarcity and absolute scarcity.
Relative scarcity is when despite the imbalance the minority class is still well represent-
ed. Absolute scarcity is when the minority class does not have enough instances to rep-
resent it. As HPS is based on the estimation of data distribution, when the amount of
instances in the minority is not sufficient, it cannot obtain the exact parameters of data
distribution, resulting in low quality of hybrid sampling, such as Glass dataset with only
9 instances. Although the Letter dataset contains the same imbalance level as Glass, it
has enough instances in the minority class to be represented in the learned model. There-



fore, HPS based methods can improve C4.5 on Letter dataset effectively. For the absolute
scarcity issue, it is still a critical research question that is not well addressed by current
approaches. The minority class is so weakly represented that very little can be learned
from its rare instances.

4.3. Experiment 2: Comparison between HPS-DRS and state of the art methods

We compare between our method HPS-DRS, and the state-of-the-art methods, such as
MetaCost (MC) [12] , SMOTE over-sampling (SM) [6], SMOTEBoost over-sampling
(SMB)[8], ENN [37], Cluster-based Over-Sampling (CBOS) [23] and COG with random
over-sampling(COG-OS)[38]. These methods were considered because they are com-
monly used in research on class imbalance, some from the algorithm perspective and
some from the re-sampling perspective. Moreover, SMB and MC are the methods in-
tegrating the ensemble framework, while CBOS and COG-OS are both based on the
clustering techniques for splitting the data into segments. We don’t use the non-heuristic
random re-sampling in our comparison since that they have potential drawbacks such as
information loss or causing overfitting [6,17].

All the SMOTE based over-sampling methods are set to the commonly used 200%
threshold. Moreover, the number of nearest neighbors is set to five when generating new
synthetic instances as done in the literature. The ensemble sizes in all the ensemble clas-
sification method are set to 50 in our experiments. ENN does not require a user specified
under-sampling ratio, and K is set to the default value 3 [37]. The ratio cost of the MC is
set to the reverse of the sizes of two classes, RatioCost = Nma j/Nmin. In CBOS, the value
of K in the K-means clustering for each class is set to 2. In COG-OS, the cluster number
is set to be 4, and the minority class is over-sampled to the average size of the partitioned
large class approximately.

To make our comparisons more convincing, we further use AUC as the performance
evaluation. AUC measures the performance of ranking the minority examples above the
majority example. It can capture the trade-off between true positives and false positives,
producing a robust metric for even the most imbalanced datasets.

From Table 3 and 4, we find that, HPS-DRS provides the best results in terms of
G-mean and AUC in most of the datasets. SMOTE and SMB consider the class skewness
and properties of the dataset as a whole, and manipulate the instances blindly without
taking the majority class into consideration, resulting in overgeneralization [31]. It leads
to the creation of wrong instances when the class dispersion or the class noise exists,
decreasing the value of G-mean and AUC. Although CBOS solves both imbalance is-
sues, the disadvantages of CBOS introduced in 2.3 lead to poor results. COG-OS is only
effective on the linear classifier, thus it cannot offer consistent performance based on the
decision tree.

HPS-DRS shows appealing performances on imbalanced data through hybrid sam-
pling with probability function and the diverse ensemble framework. HPS-DRS solves
the issues of two types of imbalance more flexibly and efficiently. From Table 3 and
Table 4, we can also notice that for the datasets with high dimensional features such as
Spambase and Sonar, HPS-DRS offers a great advantage over other sampling techniques.



4.4. Experiment 3: The effectiveness of sampling ratio α on HPS-DRS

The optimal re-sampling ratio is usually unknown. In order to observe the influence of
the re-sampling ratio in HPS-DRS on the classification performance, we chose German
dataset with a moderate imbalanced level 30% as an example of the variation of perfor-
mance with the ranging of α . The range of α is set to be [0, 1] and the step is set to 0.1.
With each α , we conduct a 10-fold cross validation to obtain an averaged G-mean and
AUC results.

From Figure 4, we can see the changes of G-mean and AUC when varying the value
of α in HPS-DRS. When α is 0, only under-sampling for the majority class is carried
out and no new instances are generated. Important information of the majority class may
be lost, hence the performance is lowest. When increasing the value of α , the two per-
formances increase. When α is 1, over-sampling for minority class is performed without
removing any redundant instance from the majority class. The issue of overfitting may
occur due to the large amount of the minority class as well as the redundant informa-
tion of majority class. Moreover, we found G-mean and AUC to be highest when α is
60% and 65% respectively. It demonstrates the hybrid re-sampling scheme with an ap-
propriate sampling ratio can achieve optimal classification performance. Moreover, it il-
lustrates the effectiveness of the hybrid sampling method compared with each individual
re-sampling technique.

Clearly, the choice of α affects directly the final performance, so it is desirable to
obtain the optimal parameter of sampling ratio. However, many studies have shown that
for certain imbalanced data sets, the prior degree of imbalance between class distribution
is not the only factor influencing performance of classification of imbalanced data. Data
set complexity (overlapping, lack of representative data as well as small disjuncts), the
specific data distribution of each class and the choice of classifier are all factors of
final classification performance. For instance, in a dataset with a high between-class
imbalanced ratio, if a minority class with a simple concept has sufficient instances, it may
not require extra synthetic instances, so the corresponding value of α may be a lower
value. If a minority class lacks instances to represent its own concept, the corresponding
value of α may be a higher value. Furthermore, the value of α depends on the redundancy
level of the majority class. Therefore, there are no explicit relationships between the
class prior ratio and the optimal sampling ratio. As a result, we are unable to obtain the
optimal sampling ratio beforehand and have to empirically discover the optimal value of
the sampling ratio parameter for obtaining the best performance on each dataset.

In order to estimate the optimal parameter α , the best α is chosen by cross validation
in the data set. In imbalanced data cases, available data instances, mainly instances of the
minority classes, are insufficient for traditional cross validation in the training set. For
this reason, we randomly divided the original data set into two sets: the training set (80%)
and the validation set (20%) for measuring the performance of each value of α . This
process is repeated 10 times. The output is a value of α which yields the best measure
metric value among all tests. We chose G-mean and AUC as the guidance metric to tune
the parameter, respectively. Moreover, we compared the optimized HPS-DRS with SMB
of which over-sampling percentage is optimized by G-mean in the[100%, 500%] range
with 50% step. The parameter of sampling level of both ensemble based sampling need to
be searched separately. This ensured that both approaches were independently optimized
in the same fashion to achieve their best performances.



After identifying the optimal parameter of sampling level for both sampling meth-
ods on each dataset, we compared them having this selected sampling parameter. All
the methods are conducted by 10 fold cross validation. The section of the 10 fold cross
validation is totally independent from the one of cross validation for obtaining the opti-
mal sampling parameter. All the results of G-mean are shown in Table 5. Moreover, we
list the optimal sampling parameter value. In the majority of cases, for HPS-DRS, the
G-mean value from the G-mean wrapper is higher than the one of the AUC wrapper, but
in some cases, the G-mean value from the AUC wrapper is higher, such as Vowel and
Spambase datasets. From this, we believe that by using AUC as the wrapper evaluation
function we get better performances. Moreover, the optimized HPS-DRS outperform the
optimized SMB with the same metric of G-mean on 8 datasets.

4.5. Experiment 4: The robustness of noise effective

Data are said to be noisy if they contain erroneous data values. These erroneous values
can occur in the dependent (class noise) or independent (attribute noise) variables in a
data set [43]. Noise in imbalanced datasets may exhibit unpredictably negative effects
on the performance of learning algorithms. In order to systematically investigate the
robustness of HRS-DRS, we manually introduced noise with different levels into the
German dataset, then assessed the performance of HRS-DRS and other comparative
methods on the new datasets. We generated two types of noisy instances manually: class
label noisy instances and attribute noisy instances, so as to simulate and evaluate the
robustness of our method in both cases.

We employ the same experimental procedure as in [1,9] to inject the label noisy
instances into the German dataset. Given a noise label l, each instance sees its label
permutated with a probability of l%. Table 6 shows the AUC value of HRS-DRS and
other comparative learning algorithms under different class label noise levels. Moreover,
we employ the same experimental procedure as in [42,9] to generate the attribute noisy
instances. Given a noise level l, each attribute in each instance is changed with a different
value with a probability of l%. This new value is selected uniformly among the other
possible values for this attribute. Table 7 shows the AUC value of HRS-DRS and other
comparative learning algorithms under different attribute noise levels. We find that the
class noise is more detrimental to classification performance. The results clearly indicate
the superiority of our method in the presence of noisy data, particularly the higher the
noise level gets.

In our method, the random subspace ensemble decreases the influence of noise
in the attribute values while bootstrap sampling reduces the effect of noise in labels. It
is possible that noise in the training set do not show up in some certain subset, as the
instances with noisy label may not be selected by the bootstrap sampling or the noise
attributes may not be chosen by the pseudo-random selection. Moreover, in the procedure
of DRS, some instances with noisy label matching the nearest neighbors rule can be
removed so as to avoid the impact on the estimation of the probability distribution and
the subsequent sampling to some extent.

SMB achieves the best AUC on the original German dataset. However, Boosting
is less robust in noisy settings. This is expected because noisy examples tend to be
misclassified, and the weight will increase for these instances, so SMB has a lower
performance as the noise level increases. In addition, SMOTE is sensitive to noise since



the interpolation of new instances is generated along the line between nearest neighbors
with the same class label in the feature space. All simulation results presented in this
section illustrate the robustness of HRS-DRS to the negative influence of noise.

4.6. Experiment 5: Lung nodule candidate data classification

In the process of lung cancer diagnosis pulmonary nodules are first uncovered. Computer
Aided Diagnosis (CAD) systems to detect lung nodule in chest radiographic images ca
be broadly divided into two major steps, an initial nodule identification step and a false-
positive reduction step [26]. For finding the suspicious nodule candidates, the initial de-
tection of the CAD requires high sensitivity, and so, it produces a number of false posi-
tives. The purpose of false-positive reduction is to remove these false positives (FPs) as
much as possible while retaining a relatively high sensitivity. This is known as the False
Positive Reduction (FPR) problem, which is a binary classification between the nodules
(TPs) and non-nodules (FPs). The most significant problem in the FPR is that the two
classes are skewed and have unequal misclassification costs.

Class imbalanced data has detrimental effects on the performance of conventional
classifiers, resulting in lowering the performance of discrimination in the candidate nod-
ule. However, in nodule classification, the problem has attracted less attention. Only few
papers have been published addressing this problem. The authors in [4] use Tomek links
with SVM (TL-SVM)to remove borderline false nodule cases in order to achieve 100%
sensitivity . Campadelli et al. prove that cost-sensitive SVM (CS-SVM) trained with im-
balanced data sets achieve promising results in terms of sensitivity and specificity, by
means of adjusting the misclassifications cost of false positives versus false negatives
[5]. Dolejsi et al. use asymmetric Adaboost (Asy-Adaboost)learning to improve the sen-
sitivity by setting different weights for two classes [11]. These are the three contenders
against which we will compare our approach.

Constructing an accurate classification method requires a training data set that rep-
resents different aspects of nodule features. Our feature extraction process generated 43
image features, features that are commonly used in medical image processing for char-
acterizing lesions. Using these features, we constructed the input space for the compared
classifiers.

Our database consists of 98 thin section CT scans containing 106 solid nodules, ob-
tained from the Guangzhou hospital in China. These databases included nodules of d-
ifferent sizes (3-30mm). We obtained the appropriate candidate nodule samples using a
candidate nodule detection algorithm, which identifies 95 true nodules as positive class
and 592 non-nodules as negative class from the total CT scans. Figure 5 shows an exam-
ple result images of candidate nodule detection.

We chose SVM as the classifier, as it is the most commonly used classification model
in the nodule recognition. The intrinsic parameters (C and γ) are obtained by grid search
under the guidance of G-mean prior to be combined with sampling or cost strategy.
Experimental results in Table 8 show that HPS-DRS improved the performance of nodule
recognition as compared to the other three methods. It means that our method can be
applied on the nodule or other lesion detection in medical images and improve upon state
of the art.



5. Conclusion

In this paper, we presented a probabilistic local over-sampling method, combined with
diverse random subspace ensemble for classification on two-class imbalanced data. The
class imbalance problem may not be a problem in itself. Rather, the complex distribution
such as within-class imbalance and high dimension are responsible for the performance
decrease. The main idea of the method is adding more accurate synthetic instances for the
minority class on local regions according to the probability function for targeting within-
class imbalance in tandem with the between-class imbalance. In addition, the diverse
random subspace provides a diverse framework to reduce the affect of high dimension
and enhance the generalization ability. We showed that HPS-DRS can achieve better
results than state-of-the-art methods for imbalanced data through extensive experiments
on multiple benchmark datasets from UCI and a real world dataset regarding lung nodule
detection.

As a new method for imbalanced learning problems, there are several interesting fu-
ture research directions for HPS-DRS. In this paper, HPS-DRS is only evaluated on im-
balanced binary class learning; we will extend it to multi-class for improving its applica-
bility in our future research. Moreover, the two ratio parameters (Rs and R f ) in DRS de-
pendent on the data distribution are determined empirically. We will explore a method to
determine them automatically according to the data distribution. Furthermore, we will e-
valuate our method on text data with much higher dimensionality. Two main issues in text
data classification are the high dimensional feature space and high feature-to-instance
ratio, a classifier usually suffers from the ‘curse of dimensionality’. Random subspace
ensemble can overcome these issues very well [13] and we can use a multinomial mixture
distribution in place of the Gaussian mixture distribution to model and estimate the
probability of text data [27] since the bag of words is the typical representation used in
text mining. In addition, since HPS is contingent on G, the differential between the ma-
jority size and the minority size, we intend to change the formulation within HPS not to
be restricted on G, as completely balanced distribution is not always the best distribution.
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Figure 1. The example of the extended ENN rule. With 3 nearest neighbors, point A would be removed (solid
line). It is not removed with 5NN (dashed line)



Figure 2. Comparison of different synthetic data generation mechanisms. (The black circles and the red trian-
gles represent the majority and minority classes, respectively. The green squares are the new instances gener-
ated by over-sampling). (a) Original imbalanced data distribution. (b) Data distribution after SMOTE. (c) the
result of Gaussian mixture clustering. (d) Data distribution after HPS.



Figure 3. The overlapping rate between two subsets
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Figure 4. The performance of HPS-DRS in terms of G-mean on German dataset



 

Figure 5. Initial detection result of candidate nodules. TPs indicated by arrow, other spots are FPs



Table 1. Dataset characteristics used in experiments

Dataset(+) Instances Features Class ratio

Glass(tableware) 214 9 4%
Letter(Z) 20000 16 4%

Vowel(hid) 990 10 9%
Page(2,3,4,5) 5473 10 10%

Satimage(damp) 6435 36 10%
Segment(bricface) 2310 19 14%
Transfusion(yes) 748 4 24%

Vehicle(opel) 846 18 25%
German(1) 1000 20 30%

Pima(positive) 768 8 35%
Spambase(spam) 4601 57 40%

Sonar(Rock) 208 60 47%



Table 2. Average values of G-mean for four methods on multiple data sets shown in Table 1.

Dataset Basic HPS HPS-RS HPS-DRS

Glass 0.859 0.855 0.863 0.859
Letter 0.928 0.943 0.965 0.967
Vowel 0.982 0.991 0.984 0.987
Page 0.755 0.779 0.789 0.803

Satimage 0.808 0.831 0.834 0.846
Segment 0.933 0.979 0.989 0.996

Transfusion 0.571 0.589 0.573 0.567
Vehicle 0.607 0.685 0.692 0.724
German 0.577 0.628 0.649 0.656

Pima 0.612 0.657 0.675 0.692
Spambase 0.832 0.837 0.872 0.879

Sonar 0.740 0.754 0.778 0.767
Average 0.760 0.795 0.808 0.815

Number of Wins 0 2 2 8



Table 3. Average values of G-mean for seven compared methods on multiple data sets shown in Table 1.

Dataset MC SM SMB ENN CBOS COG-OS HPS-DRS

Glass 0.889 0.887 0.892 0.865 0.834 0.877 0.859
Letter 0.930 0.933 0.933 0.921 0.931 0.919 0.967
Vowel 0.986 0.972 0.979 0.967 0.971 0.982 0.991
Page 0.782 0.809 0.809 0.785 0.775 0.798 0.803

Satimage 0.813 0.829 0.835 0.821 0.776 0.809 0.846
Segment 0.971 0.976 0.982 0.968 0.975 0.944 0.996

Transfusion 0.581 0.583 0.594 0.581 0.568 0.606 0.567
Vehicle 0.625 0.688 0.683 0.635 0.669 0.633 0.724
German 0.618 0.641 0.662 0.589 0.605 0.643 0.656

Pima 0.649 0.669 0.688 0.631 0.639 0.609 0.692
Spambase 0.837 0.835 0.848 0.803 0.791 0.861 0.879

Sonar 0.728 0.731 0.745 0.711 0.764 0.755 0.767
Average 0.784 0.796 0.804 0.773 0.775 0.786 0.812

Number of Wins 0 1 3 0 0 1 8



Table 4. Average values of AUC for seven compared methods on multiple data sets shown in Table 1.

Dataset MC SM SMB ENN CBOS COG-OS HPS-DRS

Glass 0.991 0.979 0.983 0.966 0.972 0.981 0.974
Letter 0.989 0.999 0.998 0.979 0.981 0.983 0.998
Vowel 0.998 0.993 0.998 0.989 0.988 0.996 0.996
Page 0.835 0.839 0.842 0.821 0.817 0.877 0.885

Satimage 0.945 0.926 0.942 0.902 0.917 0.941 0.982
Segment 0.998 0.999 0.997 0.998 0.993 0.999 0.999

Transfusion 0.751 0.755 0.774 0.750 0.751 0.786 0.744
Vehicle 0.981 0.989 0.992 0.979 0.984 0.975 0.997
German 0.715 0.728 0.754 0.695 0.697 0.741 0.748

Pima 0.744 0.766 0.779 0.731 0.724 0.741 0.816
Spambase 0.967 0.972 0.976 0.964 0.911 0.985 0.993

Sonar 0.779 0.808 0.822 0.781 0.795 0.822 0.843
Average 0.891 0.866 0.905 0.880 0.876 0.902 0.915

Number of Wins 2 2 2 0 0 2 7



Table 5. Average values of G-mean for HPS-DRS and SMB with optimized by measure metric on multiple
data sets shown in Table 1.

Dataset
SMB HPS−DRSGM HPS−DRSAUC

G-mean Ros G-mean α G-mean α

Glass 0.907 450% 0.879 0.85 0.871 0.8
Letter 0.939 250% 0.974 0.75 0.967 0.7
Vowel 0.991 350% 0.996 0.8 0.991 0.85
Page 0.817 300% 0.809 0.75 0.809 0.75

Satimage 0.851 350% 0.867 0.8 0.875 0.85
Segment 0.987 300% 0.997 0.55 0.996 0.7

Transfusion 0.594 200% 0.574 0.75 0.574 0.75
Vehicle 0.691 150% 0.741 0.6 0.724 0.7
German 0.667 250% 0.664 0.6 0.664 0.6

Pima 0.691 150% 0.707 0.8 0.695 0.75
Spambase 0.849 200% 0.879 0.65 0.884 0.6

Sonar 0.755 100% 0.768 0.3 0.768 0.3



Table 6. Experimental results (AUC) of tuning the class label noise level

Noise level MC SM SMB ENN CBOS COG-OS HPS-DRS

10% 0.697 0.705 0.742 0.695 0.684 0.721 0.745
20% 0.685 0.682 0.734 0.684 0.697 0.703 0.729
30% 0.662 0.658 0.715 0.695 0.658 0.682 0.717
40% 0.645 0.649 0.691 0.695 0.633 0.665 0.702
50% 0.621 0.628 0.668 0.695 0.617 0.647 0.679



Table 7. Experimental results (AUC) of tuning the attribute noise level

Noise level MC SM SMB ENN CBOS COG-OS HPS-DRS

10% 0.702 0.711 0.747 0.695 0.683 0.741 0.741
20% 0.707 0.708 0.729 0.684 0.657 0.716 0.733
30% 0.685 0.689 0.722 0.681 0.653 0.708 0.735
40% 0.669 0.672 0.704 0.667 0.636 0.671 0.720
50% 0.655 0.651 0.676 0.644 0.612 0.652 0.708



Table 8. Experimental results of candidate nodule classification

Methods Sen. Spec. G-mean AUC

CS-SVM 0.839 0.862 0.850 0.839
Asy-Adaboost 0.828 0.943 0.883 0.866

TL-SVM 1 0.656 0.810 0.847
HPS-DRS 0.871 0.939 0.904 0.911


