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Abstract. We introduce a novel efficient approach for community de-
tection based on a formal definition of the notion of community. We name
the links that run between communities weak links and links being in-
side communities strong links. We put forward a new objective function,
called SIWO (Strong Inside, Weak Outside) which encourages adding
strong links to the communities while avoiding weak links. This process
allows us to effectively discover communities in social networks without
the resolution and field of view limit problems some popular approaches
suffer from. The time complexity of this new method is linear in the
number of edges. We demonstrate the effectiveness of our approach on
various real and artificial datasets with large and small communities.
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1 Introduction

Community detection is an important task in social network analysis and can
be used in different domains where entities and their relations are presented
as graphs. It allows us to find linked nodes that we call communities inside
graphs. There are community detection methods that partition the graph into
subgroups of nodes such as the spectral bisection method [4] or the Kernighan-
Lin algorithm [27]. There are also hierarchical methods such as the divisive
algorithms based on edge betweenness of Girwan et al. [18] or agglomerative
algorithms based on dynamical process such as Walktrap [20], Infomap [24] or
Label propagation [22]. We do not detail them and refer the interested reader to
[7, 10, 12], but we come back on another class of hierarchical algorithms that aim
at maximizing Q-modularity introduced by Newman et al. [18]. After the greedy
agglomerative algorithm initially introduced by Newman [19], Blondel et al. [5]
proposed Louvain, one of the fastest algorithms to optimize Q-modularity and
to solve the community detection task. However, Fortunato et al. [11] showed
that Q-Modularity suffers from the resolution limit which means by optimizing
Q-modularity, communities that are smaller than a scale cannot be resolved.
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The field of view limit [25] is in contrast to the resolution limit leads to overpar-
titioning the communities with a large diameter.

To overcome the resolution limit of Q-modularity, several proposals have been
made, notably by [2, 17, 23], who introduced variants of this criterion allowing
the detection of community structures at different levels of granularity. However,
these revised criteria make the method time-consuming since they require to
tune a parameter. Therefore, we retain the greedy approach of Louvain for its
efficiency and ability to handle very large networks, but we introduce SIWO
because it relies on the notions of strong and weak links defined in Section 2.

We consider that a community corresponds to a subgraph sparsely connected
to the rest of the graph. Contrary to the majority of methods which do not
formally define what is a community and simply consider that it corresponds
to a subset of nodes densely connected internally, we define the conditions a
subgraph should meet to be considered as a community in Section 2. In Section
3, we present the generic community detection algorithm. We can apply this
general process regardless of the objective function to improve other community
detection methods as our experiments show.

Finally, the extensive experiments described in Sections 4 and 5, confirm that
our objective function is less sensitive to the resolution and the field of view limit
compared to the objective functions mentioned earlier. Also, our algorithm has
consistently good performance regardless of the size of communities in a network
and is efficient on large size networks having up to a million edges.

2 Notations and definitions

2.1 Strong and weak links

A community is oftentimes defined as a subgraph in which nodes are densely
connected while sparsely connected to the rest of the graph. One way to find
such subgraphs is to divide the network into parts so that the number of links
lying inside that part is maximized. However, if there is no prior information
about the number of communities or their sizes, one can maximize the number
of links within communities by putting all the nodes in one community, but the
final result will not be the true communities. To avoid this approach, we penalize
the missing links within the communities and we introduce the notions of strong
and weak links.

Fig. 1. A network with two communi-
ties; each consists of a clique of size 5.

Fig. 2. A network with 2 communities
and 4 dangling nodes (1, 2, 3, and 4).



Addressing Resolution and Field of View Limits 3

Weak links lie between communities, while strong links are inside them. We
develop our criterion so that it encourages adding strong links to the communi-
ties while avoiding weak ones instead of penalizing the missing links. As these
different types of links play different roles in graph connectivity; removing a
weak link may divide the graph into disconnected subgraphs, whereas removing
a random link would not. Let us focus on the link between nodes i and j in Fig.
1 and also the link between nodes j and k in this graph. Node j is connected to
all the neighbors of node k, whereas node i and j have no common neighbors.
As generally, nodes in the same community are more likely to have common
neighbors, (i,j) can be considered as a weak link whereas (j,k) as a strong link
and it is exactly what we want to capture through weights assigned to the links.

2.2 Edge Strength

Given a graph G = (V,E) where V is the set of nodes and E the set of edges, we
propose to assign a weight in the range of (−1, 1) to each edge; such that strong
links have larger weights. As nodes in the same community tend to have more
common neighbors compared to nodes in different communities, if Sxy > Sxy′

then exy is more likely to be a strong link compared to exy′ with Sxy defined by:

Sxy = |{k ∈ V : (x, k) ∈ E, (y, k) ∈ E}| (1)

We can compare two links according to S only if they share a node. Thus, if
we consider nodes x and y that have 5 and 20 links incident to them, then S
can be in range of [0, 4] and [0, 19] for x and y respectively. Consequently, for
comparisons, we have to scale down S values to (−1, 1). If Sxy has the maximum
value of Smax

x (Smax
x = maxy:(x,y)∈E Sxy) for a particular node x. We divide the

range [−1, 1] into Smax
x + 1 equal length segments. Each S value in the range of

[0, Smax
x ] is then mapped to the center of (n+ 1)th segment using equation:

wx
xy = Sxy

2

Smax
x + 1

+
1

Smax
x + 1

− 1 (2)

where wx
xy is the scaled value of Sxy from the viewpoint of node x (min-max

normalization could also work). We can also scale Sxy from the viewpoint of
node y: wy

xy = Sxy
2

Smax
y +1 + 1

Smax
y +1 − 1 where Smax

y = maxx:(y,x)∈E Sxy. To

decide whether we should trust x or y, we need to look at the importance of
each one in the network. Local clustering coefficient (CC) [28], given below, is a
measure that reflects the importance of nodes and it can be computed even on
large graphs, for instance with Mapreduce [15].

CC(x) =
|{eij : i, j ∈ Nx, eij ∈ E}|(

dx

2

) (3)

where dx and Nx are respectively the degree and the set of neighbors of node x.
CC is in the range of [0,1] with 1 for nodes whose neighbors form cliques, and
0 for nodes whose neighbors are not connected to each other directly. Here, we
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scale each edge from the viewpoint of the endpoint that is more likely to be in
a dense neighborhood characterized by a large CC:

wxy =

{
wx

xy, if CC(x) ≥ CC(y)

wy
xy, otherwise

(4)

2.3 SIWO Measure

The new measure that we propose encourages adding strong links into the com-
munities while keeping the weak links outside of the communities (Strong Inside,
Weak Outside). This measure is defined as follows:

SIWO =
∑
i,j∈V

wijδ(ci, cj)

2
(5)

where ci is the community of node i and δ(x, y) is 1 if x = y and 0 otherwise.
SIWO is the sum of weights of the edges that reside in the communities. This
objective function provides a way to partition the set of nodes but it does not
specify the conditions required by a subset of nodes to be a community. These
conditions are defined in the following.

2.4 Community Definition

Following [21] we consider that a subgraph C is a community in a weak sense if
the following condition is satisfied:

1

2

∑
v∈C
|NC

v | >
∑
v∈C
|Nv −NC

v | (6)

where Nv is the set of the neighbors of node v and NC
v is the set of the neighbors

of node v that are also in community C. This condition means that the collective
of the nodes in a community have more neighbors within the community than
outside. In this paper, we expand this definition by adding one more condition.
Given a partition p = {C1, C2, ..., Ct} of a network, subgraph Ci is considered
as a qualified community if it satisfies the following conditions:

1. Ci is a community in a weak sense (Eq. 6).

2. The number of links within Ci exceeds the number of links towards any other
subgraph Cj (j 6= i) in the partition p taken separately, such that:

1

2

∑
v∈Ci

|NCi
v | >

∑
v∈Ci

|NCj
v |, j ∈ [1..t], j 6= i (7)
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3 The SIWO Method

This method has four steps: pre-processing, optimizing SIWO, qualified commu-
nity identification, and post-processing. They are discussed in detail below.
Step 1. Pre-processing
The first step calculates the edge strength weights (wij) needed during the SIWO
optimization. Moreover, to reduce the computational time, we remove the dan-
gling nodes temporally. Node x is a dangling node if there exists node y such
that by removing exy, the network would be divided into two disconnected parts
with partx (the part containing node x) being a tree. Since partx has a tree
structure, it cannot form a community on its own. So all the nodes in partx
belong to the same community as node y. In Fig. 2, nodes 1, 2, 3 and 4 are
dangling nodes and they belong to the same community as node 5, unless we
consider them outliers. Even though such tree-structured subgraphs attached
to the network are very sparse and cannot be considered as communities, they
satisfy Eq. (6) and (7) defined for qualified communities. So we do not need to
consider them during the community detection process. To remove them (and
the links incident to them), we need to investigate every node of the network in
the first time to identify nodes with degree of 1. However, after the first visit,
we only need to check the list of the neighbors of the nodes that are removed in
the previous time.
Step 2. Optimizing SIWO
We use Louvain’s optimization process to maximize SIWO since it has been
proven to be very efficient but we replace the modularity by our criterion. This
greedy optimization process has two main phases, iteratively performed until a
local maximum of the objective function (SIWO measure) is reached. The first
phase starts by placing each node of graph G in its community. Then each node
is moved to the neighbor community which results in the maximum gain of the
SIWO value. If no gain can be achieved, the node stays in its community. In the
second phase, a new weighted graph G′ is created in which each node corresponds
to a community in G. Two nodes in G′ are connected if there exists at least one
edge lying between their corresponding communities in G. Finally, we assign
each edge exy in G′ a weight equal to the sum of the weights of edges between
the communities that match with x and y. These two phases are repeated until
no further improvement in the SIWO objective function can be achieved.
Step 3. Qualified community identification
This step determines qualified communities complying with Eq. (6) and (7) for
the dense subgraphs discovered in the previous step. However, there may exist
communities consisting of one node weakly connected to all of its neighbors
(Smax

x = 0) and that have links with non-positive weight incident to it, we
call them Lone communities. Since the decision about the communities of such
nodes can not be made on edge strength, we let the majority of their neighbors
decide about their communities but, to reduce the computational time, like for
dangling nodes, we temporarily remove these nodes in this step and bring them
back in the final step. Then, we identify the unqualified communities which do
not satisfy Eq. (6) or (7). We keep merging each unqualified community with
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one of its neighboring communities (qualified or not) until no more unqualified
community exists. For that, first, we assign a weight equal to 1 to each edge.
Then, we repeat the two phases of Louvain. In phase 1, we create a new graph
G∗ in which each node corresponds to a community identified in step 3 for the
first iteration of in phase 2 for the next ones and where each edge exy is assigned
a weight equal to the sum of the weights of edges between the communities that
correspond to x and y. We also add a self-loop to each node that has a weight
equal to the sum of the weights of the edges that reside in its corresponding
community. In phase 2, we visit all nodes in G∗. If a node x has a self-loop with
a weight that is larger than 1) half of sum of the weights of the edges incident
to it and 2) weight of any edge connecting x to another node in G∗, it means
the community assigned to x satisfies both the conditions in Eq. (6) and (7),
we let x stay in its community. Otherwise, we move node x to the neighboring
community that results in the maximum decrease in the sum of the weights of
the edges that lie between communities of G∗.
Step 4. Post-processing
Finally, each lone community that was temporarily removed is sequentially added
back to the network and merged with the community in which it has the most
neighbors. If two or more communities tie and they have more than one con-
nection to the node, then one is chosen at random. Otherwise, we choose the
community of the most important neighbor, based on the largest degree of cen-
trality within its community. Since we add lone nodes one after the other, the
community that a former node is assigned to, might not be the best for that
node. To resolve this issue, once all lone nodes are added to the network, we re-
peat moving each one of them to the community of the majority of its neighbors
until no further movement can be made. Dangling nodes are also added to the
network in the reverse order that they were removed and they are assigned to
the community of their unique neighbor.

4 The resolution limit of SIWO

Fortunato and Barthélemy [11] used two sample networks, shown in Fig. 3, to
demonstrate how Q-modularity is affected by the resolution limit. The first ex-
ample is a ring of cliques where each clique is connected to its adjacent cliques
through a single link. If the number of cliques is larger than about

√
m with m

being the total number of edges in the network, then optimizing Q-modularity
results in merging the adjacent cliques into groups of two or more, despite that
each clique corresponds to a community. The second example is a network con-
taining 4 cliques: 2 of size k and 2 of size p. If k >> p, Q-modularity similarly
fails to find the correct communities and the cliques of size p will be merged.

To prove how SIWO resolves the resolution limit of Q-modularity, the exact
structure of the network should be known ; which is not possible. So, we analyze
whether SIWO is affected by the resolution limit on these networks Given the
definition of SIWO, let us consider the edge exy between two adjacent cliques
in the first network. Since x and y do not have any common neighbors, the
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Fig. 3. Schematic examples a) a ring of cliques; adjacent cliques are connected through
a single link b) a network with 2 cliques of size k and 2 cliques of size p.

edge between them has a non-positive weight. Therefore, by maximizing SIWO
measure in our algorithm, the adjacent cliques will not be merged. For the edge
exy between the cliques of size p in the second network, since x and y have at
most one common neighbor, the edge between them has a non-positive weight.
Therefore, the cliques in the second network will not be merged either.

5 Experimental results

We compared the performance of our method with the most widely used and
efficient algorithms, as pointed out in several recent state of art studies [8, 29],
on both real and synthetic networks. The algorithms are: 1- Fastgreedy [6]; 2-
Infomap; 3- Infomap+ which is Infomap to which we added the third step of
our algorithm (to relieve its sensitivity to the field of view limit and demon-
strate that our framework can be used to improve other algorithms); 4- Label
Propagation [22]; 5- Louvain3 [5]; 6- Walktrap4 [20]. It should be noted that
Infomap is the only algorithm that suffers from the filed of view limit among
these algorithms.

The results are evaluated according to the Adjusted Rand Index (ARI) [14]
and Normalized Mutual Information (NMI) [26]. As both ARI and NMI show
similar results, we only present ARI results for lack of space. We also compared
the results of different methods according to the ratio of the number of detected
communities over the true number of communities in the ground-truth to observe
how a method is affected by the resolution and the field of view limits.

5.1 Real networks

We used 5 real networks and the ground-truth communities are available for 4
of them. Table 1 presents the properties of these networks.

We compared SIWO and Louvain on Eurosis network [9] which represents
scientific web pages from 12 European countries and the hyperlinks between
them without known ground-truth communities. However, since each European
country has its own language, web pages in different countries are sparsely con-
nected to each other. Moreover, as reported in [9], some of the countries can be

3 https://github.com/taynaud/python-louvain
4 https://www-complexnetworks.lip6.fr/~latapy/PP/walktrap.html
5 http://www.orgnet.com
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Table 1. Properties of real networks

Network #nodes #edges #C Network #nodes #edges #C

Karate [30] 34 78 2 Eurosis [9] 1218 5999 -

Polbooks 5 105 441 3 Polblogs [1] 1222 16717 2

Football [13] 115 613 12

divided into smaller components e.g. Montenegro network includes three com-
ponents: 1- Telecom and Engineering, 2- Faculties and 3- High Schools. Louvain
detects 13 communities whereas SIWO detects 16 communities in this network.
Louvain assigns all nodes in Montenegro network to one giant community. How-
ever, SIWO puts Faculties and High Schools in one community and Telecom
and Engineering web pages in another community. These two communities are
connected to each other with only 7 links. However, Louvain cannot separate
them due to its resolution limit.

Table 2. Comparison of 7 algorithms according to ARI and the ratio of the number
of detected communities over the true number of communities in the ground-truth on
real networks. Tables shows the average results and standard deviation computed on
10 iterations of the algorithms on each network.

Karate Polbooks Football Polblogs

SIWO
ARI 1± 0 0.67± 0 0.79± 0 0.77± 0

C/Cr 1± 0 1.3± 0 1± 0 1.5± 0

Fastgreedy
ARI 0.68± 0 0.63± 0 0.47± 0 0.78± 0

C/Cr 1.5± 0 1.3± 0 0.5± 0 5± 0

Infomap
ARI 0.7± 0 0.64± 0 0.84± 0 0.68± 0

C/Cr 1.5± 0 1.6± 0 0.9± 0 17.5± 0

Infomap+
ARI 0.70± 0 0.66± 0 0.84± 0 0.76± 0

C/Cr 1.5± 0 1.3± 0 0.9± 0 1.5± 0

Label prop
ARI 0.66± 0.3 0.66± 0 0.73± 0 0.8± 0

C/Cr 1.2± 0.35 1.1± 0.1 0.8± 0.1 2.1± 0

Louvain
ARI 0.46± 0 0.55± 0 0.8± 0 0.77± 0

C/Cr 2± 0 1.3± 0 0.8± 0 4.5± 0

Walktrap
ARI 0.32± 0 0.65± 0 0.81± 0 0.76± 0

C/Cr 3± 0 1.3± 0 0.8± 0 5.5± 0

Table 2 presents the comparison with respect to ARI and C/Cr, the ratio
of the number of detected communities over the true number of communities
(both ARI and C/Cr should be as close to 1 as possible) in the ground-truth,
on real networks with ground-truth communities. It shows that SIWO performs
better on Karate and Polbooks based on ARI. It also outperforms the others
methods on Karate, Football, and Polblogs networks according to C/Cr measure
(SIWO could detect the exact communities with respect to the ground-truth on
these networks). Infomap detects a considerably larger number of communities
in Polblogs network which indicates this algorithm is sensitive to the field of view
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limit [25]. However, Infomap+ is much less sensitive to this limit which implies
the third step of SIWO, added to Infomap+, is effective in resolving the field
of view limit. Considering results for all networks, SIWO is the top performer
among these algorithms on a variety of networks.

5.2 Synthetic networks

To analyze the effect of the resolution and field of view limit, it is important to
test how community detection algorithms perform on networks with small/large
communities. Therefore, in this work we generated two sets of networks using
LFR [16] to test the different algorithms: one with large communities and one
with small communities. The first set is in favor of algorithms that suffer from
resolution limit such as Louvain and the second set is in favor of algorithms with
field of view limit such as Infomap. Each set includes networks with a varying
number of nodes and mixing parameter. The mixing parameter controls the
fraction of edges that lie between communities. We do not generate networks
with mixing parameter ≥ 0.5 since beyond this point and including 0.5, the
communities in the ground truth no longer satisfy the definition of community.
The input parameters used to generate these two sets are presented in Table
3. Fig. 4 and 5 present respectively ARI or the ratio of the number of detected
communities over the true number of communities (C/Cr). Panels correspond to
networks with a specific number of nodes (1000 to 100000) and they are divided
into two parts; the lower (respectively upper) part illustrates the average ARI
(or C/Cr) (respectively standard deviation) computed over 20 graphs (10 small
and 10 large communities) as a function of the mixing parameter.

Table 3. Input parameters of LFR benchmark: Set 1 contains networks with large com-
munities and Set 2 contains networks with small communities. For each combination
of parameters we generated 10 networks.

Set 1 Set 2

#nodes (N) [1, 10, 50, 100]× 103 [1, 10, 50, 100]× 103

average and max degrees 20 - N/10 20 -
√
N

mixing parameter [1, . . . , 7]× 0.1 [1, . . . , 7]× 0.1

min and max community sizes N/20 - N/10 default - by default
√
N

Fig. 4 shows the performance of Fastgreedy decreases as the mixing parame-
ter increases. Louvain and Walktrap perform well on the smallest networks in the
set; however, its performance drops when we apply it to the networks with sizes
50000 and larger. Label propagation, Infomap and Infomap+ perform well up
to when the mixing parameter reaches 0.3. However, a larger mixing parameter
causes a rapid decrease in the ARI value when applying these algorithms to the
two largest networks in the set. These three algorithms have a large standard
deviation and their outputs are not stable on these networks. SIWO correctly
detects the communities when the mixing parameter is less than or equal to 0.3
(ARI ' 1) regardless of size of the network and has the best performance overall.
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Fig. 4. Evaluation according to ARI on
synthetic networks generated with LFR.

Fig. 5. Evaluation of SIWO, Label propa-
gation, Infomap+, Louvain and Fastgreedy
according to C/Cr on synthetic networks
generated with LFR.

Fig. 5 clearly shows the resolution limit of Louvain and Fastgreedy as they
underestimate the number of communities. SIWO is the best performer in terms
of the number of communities and it has a very small standard deviation whereas,
Infomap+ and Label propagation have a large standard deviation and fail to find
the correct number of communities when the mixing parameter exceeds 0.3.

6 Scalability

We analyze how the computational cost of SIWO varies with the size of the
network. The pre-processing step has two phases: removing dangling nodes which
requires a time of the order of n where n is the number of nodes, and calculating
the edge strength weights which requires a time of the order of nd2 = 2md where
m is the number of edges and d is the average degree. In many real networks d is
much smaller than n and it does not grow with n [10]. The second and third step
follows the same greedy process as Louvain does. Louvain is theoretically cubic
but was demonstrated experimentally to be quasi-linear [3] and has been applied
with success to handle large size networks having several million nodes, and 100
million links. The time complexity of the post-processing step depends on the
number of Lone communities and if all the nodes are in Lone communities, it
requires a time O(nd2). Overall, the time complexity of SIWO is O(n + md),
which is similar to Louvain due to the fact that d is small and n = 2m/d.
SIWO can detect communities in a networks with 100000 nodes and 1 million
edges, in about 1 minute on a commodity i7 and 8GB RAM laptop. The current
implementation of SIWO is in Python6, derived from python-louvain.

6 SIWO Code and datasets available at https://www.dropbox.com/sh/

eehjt5qblll0yvg/AACW2XjHJjHX2Q876Vbk0e4Ya?dl=0



7 Conclusion

This paper introduces SIWO, a novel objective function based on edge strength
for community detection, and a formal definition of community, that we use to
lead the community detection process after optimizing the objective function.
This framework can also be applied to other community detection methods to
remedy their inability that causes the resolution or the field of view limit. Our
extensive experiments using both small and large networks confirm that our algo-
rithm is consistent, effective and scalable for networks with either large or small
communities demonstrating less sensitivity to the resolution limit and field of
view limit that most community mining algorithms suffer from. As a future direc-
tion, we will generalize the proposed algorithm for weighted/directed networks.
Notably, SIWO algorithm can be easily generalized to handle weighted graphs. It
requires only to adjust the pre-processing step by combining the weights from the
input graph and the weights computed by SIWO to evaluate the edge strength.
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