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Abstract. The majority of research on community detection in at-
tributed networks follows an “early fusion” approach, in which the struc-
tural and attribute information about the network are integrated to-
gether as the guide to community detection. In this paper, we propose
an approach called late-fusion, which looks at this problem from a dif-
ferent perspective. We first exploit the network structure and node at-
tributes separately to produce two different partitionings. Later on, we
combine these two sets of communities via a fusion algorithm, where
we introduce a parameter for weighting the importance given to each
type of information: node connections and attribute values. Extensive
experiments on various real and synthetic networks show that our late-
fusion approach can improve detection accuracy from using only network
structure. Moreover, our approach runs significantly faster than other at-
tributed community detection algorithms including early fusion ones.

Keywords: Community detection · Attributed networks · Late fusion.

1 Introduction

In many modern applications, data is represented in the form of relationships
between nodes forming a network, or interchangeably a graph. A typical charac-
teristic of these real networks is the community structure, where network nodes
can be grouped into densely connected modules called communities. Community
identification is an important issue because it can help to understand the net-
work structure and leads to many substantial applications [6]. While traditional
community detection methods focus on the network topology where communities
can be defined as sets of nodes densely connected internally, recently, increasing
attention has been paid to the attributes associated with the nodes in order to
take into account homophily effects, and several works have been devoted to
community detection in attributed networks. The aim of such process is to ob-
tain a partitioning of the nodes where vertices belonging to the same subgroup
are densely connected and homogeneous in terms of attribute values.

In this paper, we propose a new method designed for community detection
in attributed networks, called late fusion. This is a two-step approach where
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we first identify two sets of communities based on the network topology and
node attributes respectively, then we merge them together to produce the fi-
nal partitioning of the network that exhibits the homophily effect, according to
which linked nodes are more likely to share the same attribute values. The com-
munities based upon the network topology are obtained by simply applying an
existing algorithm such like Louvain [2]. For graphs whose node attributes are
numeric, we utilize existing clustering algorithms to get the communities (i.e.,
clusters) based on node attributes. We extend to binary-attributed graphs by
generating a virtual graph from the attribute similarities between the nodes, and
performing traditional community detection on the virtual graph. Albeit being
simple, extensive experiments have shown that our late-fusion method can be
competitive in terms of both accuracy and efficiency when compared against
other algorithms. We summarize our main contributions in this work are:

1. A new late-fusion approach to community detection in attributed networks,
which allows the use of traditional methods as well as the integration of
personal preference or prior knowledge.

2. A novel method to identify communities that reflect attribute similarity for
networks with binary attributes.

3. Extensive experiments to validate the proposed method in terms of accuracy
and efficiency.

The rest of the paper is organized as follows: In Section 2, we provide a
brief review of community detection algorithms suited for attributed networks,
next we present our late fusion approach in Section 3. Experiments to illustrate
the effectiveness of the proposed method are detailed in Section 4. Finally, we
summarize our work and point out several future directions in Section 5.

2 Related Work

How to incorporate the node attribute information into the process of network
community detection has been studied for a long time. One of the early ideas
is to transform attribute similarities into edge weights. For example, [13] pro-
poses matching coefficient which is the count of shared attributes between two
connected nodes in a network; [15] extends the matching coefficient to networks
with numeric node attributes; [4] defines edge weights based on self-organizing
maps. A drawback of these methods is that new edge weights are only applica-
ble to edges already existed, hence the attribute information is not fully utilized.
To overcome this issue, a different approach is to augment the original graph
by adding virtual edges and/or nodes based on node attribute values. For in-
stance, [14] generates content edges based on the cosine similarity between node
attribute vectors, in graphs where nodes are textual documents and the corre-
sponding attribute vector is the TF-IDF vector describing their content. The
kNN-enhance algorithm [9] adds directed virtual edges from a node to one of its
k-nearest neighbors if their attributes are similar. The SA-Clustering [17] adds
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both virtual nodes and edges to the original graph, where the virtual nodes rep-
resent binary-valued attributes, and the virtual edges connect the real nodes to
the virtual nodes representing the attributes that the real nodes own.

Another class of methods is inspired by the modularity measure. These meth-
ods incorporate attribute information into an optimization objective like the
modularity. [5] injects an attribute based similarity measure into the modular-
ity function; [1] combines the gain in the modularity with multiple common
users’ attributes as an integrated objective; I-Louvain algorithm [3] proposes
inertia-based modularity to describe the similarity between nodes with numeric
attributes, and adds the inertia-based modularity to the original modularity
formula to form the new optimization objective.

With the wide spreading of deep learning, network representation learning
and node embedding (e.g. [8]) motivated new solutions. [12] proposes an embed-
ding based community detection algorithm that applies representation learning
of graphs to learn a feature representation of a network structure, which is com-
bined with node attributes to form a cost function. Minimizing it, the optimal
community membership matrix is obtained.

Probabilistic models can be used to depict the relationship between node
connections, attributes, and community membership. The task of community
detection is thus converted to inferring the community assignment of the nodes.
A representative of this kind is the CESNA algorithm [16], which builds a gen-
erative graphical model for inferring the community memberships.

Whereas the majority of the previous methods exploit simultaneously both
types of information, we propose the late-fusion approach that combines two
sets of communities obtained separately and independently from the network
structure and node attributes via a fusion algorithms .

3 The Late-fusion Method

Given an attributed network G = (V,E,A), with V being the set of m nodes,
E the set of n edges, and A an m× r attribute matrix describing the attribute
values of the nodes with r attributes, the goal is to build a partitioning P =
{C1, ..., Ck} of V into k communities such that nodes in the same community
are densely connected and similar in terms of attributes, whereas nodes from
distinct communities are loosely connected and different in terms of attribute.

For networks with numeric attributes, we can directly apply a community
detection algorithm Fs on G to identify a set of communities based on node
connections Ps = {C1, C2, ..., Cks

}, and a clustering algorithms Fa on A to find
a set of clusters based on node attributes Pa = {C1, C2, ..., Cka}. When it comes
to binary attributed networks, traditional clustering algorithms become inacces-
sible, we instead build a virtual graph Ga that shares the same node set as G,
but there is an edge only when the two nodes are similar enough in terms of at-
tributes. Then we apply Fs on Ga and obtain Pa. Note that we omit categorical
attributes since categorical values can be easily converted to the binary case.

The second step is to combine the partitions Ps and Pa. We first derive the
adjacency matrices Ds and Da from Ps and Pa respectively, where dij = 1 when
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nodes i and j are in the same community in a partitioning P and dij = 0 other-
wise. Next, an integrated adjacency matrix D is given by D = αDs + (1−α)Da.
Here α is the weighting parameter that leverages the strength between network
topology and node attributes. In this way, the information about network topol-
ogy and node attributes of the original graph G is represented in D. Now Gint,
derived from the adjacency matrix D, is an integrated, virtual, weighted graph
whose edges embody the homophily effect of G. Algorithm 1 shows the steps of
our late-fusion approach applied to networks with binary attributes.

Algorithm 1: Late-fusion on networks with binary attributes

Input: G = (V,E,A), Fs, α
Output: P = {C1, C2, ..., Ck}

1 Ps = Fs(Gs)
2 Ga = build virtual graph (A)
3 Pa = Fs(Ga)
4 Ds = get adjacency matrix(Ps), Da = get adjacency matrix(Pa)
5 D = αDs + (1− α)Da

6 Gintegrated = from adjacency matrix (D)
7 P = Fs(Gintegrated)
8 return P

Here we address an important detail: how to build the virtual graph Ga from
the node-attribute matrix A? We compute the inner product as the similarity
measure between each node pair, and if the inner product exceeds a predeter-
mined threshold, we regard the nodes as similar and add a virtual edge between
them. The threshold can be determined heuristically based on the distribution of
the node similarities. However, the threshold should be chosen properly so that
the resulted Ga would be neither too dense nor too sparse, where both cases
could harm the quality of the final communities. Under this guidance, we put
forward two thresholding approaches:

1. Median thresholding (MT): Suppose S is the m ×m similarity matrix
of all nodes in V , we take all the off-diagonal, upper triangular (or lower
triangular) entries of S, find the median of these numbers and set it as the
threshold. This approach guarantees that we add virtual edges to half of all
node pairs who share a similarity value higher than the other half.

2. Equal-edge thresholding (EET):We compute q = 1 − d(G) where d(G)
is the density of G. Then the qth quantile of the similarity distribution is
the chosen threshold. In this approach, we let the original graph Gs be the
proxy that decides how we construct the virtual graph Ga

4 Experiments

Our proposed method has been evaluated through experiments on multiple syn-
thetic and real networks and results are presented in this section. For networks
with numeric attributes, we take advantage of existing clustering algorithms to
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Fig. 1: Node attribute distribution for three groups of experiments. (a) Strong
Attributes, (b) Medium Attributes, (c) Weak Attributes. Each color represents
a unique community

obtain communities based on attributes (i.e., clusters), and for networks with
binary attributes, we employ Algorithm 1 to perform community detection. We
have also released our code so that readers can reproduce the results 3.

4.1 Synthetic Networks with Numeric Attributes

Data We use an attributed graph generator [10] to create three attributed
graphs with ground-truth communities, denoted as Gstrong, Gmedium and Gweak,
indicating the corresponding ground-truth partitionings are strong, medium, and
weak in terms of modularity Q. To examine the effect of attributes on community
detection, for each of Gstrong, Gmedium and Gweak, we assign three different
attribute distributions as shown in Figure 1, where attributes in 1a and 1b are
generated from a Gaussian mixture model with a shared standard deviation, and
1c presents the original attributes generated by [10]. By this way, for each graph
having a specific community structure (Gstrong, Gmedium, Gweak) we have also
three types of attributes denoted strong attributes, medium attributes and weak
attributes leading in fact to 9 datasets

Table 1: Properties of synthetic net-
works

m n k r Q

Gstrong 2000 7430 10 2 0.81
Gmedium 2000 7445 10 2 0.65
Gweak 2000 6988 10 2 0.54

Table 2: Properties of Sina Weibo net-
work

m n k r Q I

3490 30282 10 10 0.05 0.04

Evaluation measures and baselines Normalized Mutual Information (NMI)
and Adjusted Rand Index (ARI) and running time are used to evaluate algo-
rithm accuracy and efficiency. Louvain [2] and SIWO [7] have been chosen as

3 https://github.com/changliu94/attributed-community-detection
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baseline algorithms that utilize only the links to identify network communities.
Note that since the attribute distribution does not affect Louvain and SIWO, the
results of Louvain and SIWO are only presented in Table 3. We choose Spectral
Clustering (SC) and DBSCAN as two representative clustering algorithms as
they both can handle non-flat geometry. We treat the number of clusters as a
known input parameter of SC, and the neighborhood size of DBSCAN is set to
the average node degree. We adopt default values of the remaining parameters
from the scikit-learn implementation of these two algorithms. Finally, we take
the implementation of the I-Louvain algorithm which exploits links and attribute
values as our contender. The code of I-Louvain is available online 4. Given Lou-
vain, SIWO, SC, and DBSCAN, correspondingly we can have four combinations
for our late-fusion method. In all experiments, the α parameter in Algorithm 1
is chosen to be 0.5, i.e., the same weight is allocated to structural and attribute
information.

Table 3: Results of strong attributes, time is measured in seconds

Gstrong Gmedium Gweak

NMI ARI time NMI ARI time NMI ARI time

Louvain .795 .797 0.41 .695 .686 0.49 .665 .674 0.64
SIWO .836 .850 0.97 .702 .705 1.09 .504 .458 0.98

SC .802 .713 1.15 .777 .677 0.64 .768 .669 0.68
DBSCAN .469 .103 0.06 .434 .083 0.06 .465 .102 0.24

I-Louvain .515 .150 39.2 .718 .704 30.0 .608 .503 37.6

Louvain + SC .824 .704 7.34 .784 .618 5.74 .765 .597 7.14
Louvain + DBSCAN .818 .813 8.64 .730 .702 8.87 .704 .690 10.6
SIWO + SC .844 .738 10.3 .786 .636 7.33 .723 .508 6.46
SIWO + DBSCAN .818 .813 11.7 .730 .702 10.2 .704 .690 11.6

Table 4: Results of medium attributes, time is measured in seconds

Gstrong Gmedium Gweak

NMI ARI time NMI ARI time NMI ARI time

SC .529 .338 0.83 .522 .322 0.53 .538 .349 0.57
DBSCAN .096 .012 0.08 .066 .008 0.14 .065 .011 0.09

I-Louvain .517 .150 36.8 .707 .690 33.7 .614 .522 33.2

Louvain + SC .734 .450 5.62 .696 .390 5.96 .677 .392 5.66
Louvain + DBSCAN .755 .726 9.20 .670 .636 11.9 .641 .633 13.6
SIWO + SC .748 .469 12.7 .699 .402 7.12 .625 .335 7.44
SIWO + DBSCAN .744 .726 8.73 .670 .636 8.98 .641 .633 12.4

4 https://www.dropbox.com/sh/j4aqitujiaifgq4/AAAAH0L3uIPYNWKoLpcAh0TPa
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Results Table 3, corresponding to strong attributes, shows that late fusion is
the best-performing algorithm in terms of NMI on Gstrong and Gmedium, and
very close to SC on Gweak (0.765 against 0.768) whereas it is better in terms
of ARI on this last graph. On Tables 4 and 5, corresponding respectively to
medium and weak attributes, with the deterioration of the attribute quality, the
accuracy of late-fusion degrades, but late fusion still remains at a consistently
high level compared to I-Louvain and the clustering algorithms. Moreover, the
performance degradation of late-fusion methods is less susceptible to the dete-
rioration of community quality compared to the clustering algorithms, thanks
to the complementary structural information. As for the running time, it is ex-
pected that classic community detection algorithms Louvain and SIWO are the
fastest algorithms, as they do not consider node attributes, but the late-fusion
method still outperforms I-Louvain by a remarkable margin.

Table 5: Results of weak attributes, time is measured in seconds

Gstrong Gmedium Gweak

NMI ARI time NMI ARI time NMI ARI time

SC .483 .270 3.31 .514 .307 2.32 .489 .276 2.45
DBSCAN .000 .000 0.06 .000 .000 0.06 .000 .000 0.14

I-Louvain .517 .150 35.1 .707 .690 34.3 .614 .522 39.5

Louvain + SC .770 .670 11.8 .705 .613 10.2 .689 .564 9.33
Louvain + DBSCAN .795 .797 11.2 .695 .685 10.4 .667 .674 12.9
SIWO + SC .797 .703 13.2 .709 .635 12.3 .601 .467 11.0
SIWO + DBSCAN .795 .797 11.6 .695 .685 11.3 .667 .674 12.6

4.2 Real Network with Numeric Attributes

Data and baselines Sina Weibo 5 is the largest online Chinese micro-blog so-
cial networking website. Table 2 shows the corresponding properties of the Sina
Weibo network built by [9] 6. It includes within-inertia ratio I, a measure of at-
tribute homogeneity of data points that are assigned to the same subgroup. The
lower the within-inertia ratio, the more similar the nodes in the same community
are. As DBSCAN algorithm performs poorly on the Sina Weibo network and it
is costly to infer a good combination of the hyper-parameters of the algorithm,
it has been replaced by k-means as a supplement to spectral clustering. The
number of clusters required as an input by k-means and SC is inferred from the
‘elbow method’, which happens to be 10, the actual number of clusters. More-
over, since we have the prior knowledge that the ground truth communities are
based on the topics of the forums from which those users are gathered, we reckon
that the formation of communities depends more on the attribute values than
the structure and set the parameter α at 0.2.

5 http://www.weibo.com
6 This dataset is available online https://github.com/smileyan448/Sinanet
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Results Table 6 presents the results on Sina Weibo network. The two baseline
algorithms Louvain and SIWO and the contending algorithm I-Louvain perform
poorly on the Sina Weibo network, whereas the clustering algorithms show a
high accuracy. Especially, the k-means algorithm together with our four late-
fusion methods with the emphasis on attribute information produce results with
the best NMI and ARI. This is because modularity of Sina Weibo network is
low (0.05 as indicated in Table 2) and the within-inertia ratio is also low (0.04).
The results also validate our assumption that communities in this network are
mainly determined by the attributes. We will further explore the effect of α in
Section 4.4.

Table 6: Experimental results on Sina
Weibo network

NMI ARI time

Louvain .232 .197 1.98
SIWO .040 .000 3.26

SC .612 .520 3.16
k-means .649 .579 0.25

I-Louvain .204 .038 261.

Louvain+SC .611 .519 48.9
Louvain+k-means .649 .579 42.1
SIWO+SC .611 .519 37.9
SIWO+k-means .649 .579 50.4

Table 7: Properties of Facebook net-
works

Network ID m n k r Q

0 347 5038 24 224 0.179
107 1045 53498 9 576 0.218
348 227 6384 14 161 0.210
414 159 3386 7 105 0.468
686 170 3312 14 63 0.101
698 66 540 13 48 0.239
1684 792 28048 17 319 0.509
1912 755 60050 46 480 0.339
3437 547 9626 32 262 0.026
3980 59 292 17 42 0.242

4.3 Real Network with Binary Attributes

Data Facebook dataset [11] contains 10 egocentric networks with binary at-
tributes corresponding to anonymous information of the user about the name,
work, and education and ground-truth communities. This dataset is available
online 7 and Table 7 presents the properties of these networks.

We still treat Louvain and SIWO as our baselines. We use the CESNA al-
gorithm [16], able to handle binary attributes in addition to the links, as our
contender 8. To compare the two thresholding strategies proposed in Section 3,
we present experimental results of four late-fusion methods: Louvain + equal-
edge thresholding (denoted as Louvain-EET), Louvain + median thresholding
(denoted as Louvain-MT), SIWO + equal-edge thresholding (denoted as SIWO-
EET), and SIWO + median thresholding (denoted as SIWO-MT). We set α to
its default value 0.5.

7 http://snap.stanford.edu/data
8 The source code of CESNA is available online https://github.com/snap-

stanford/snap/tree/master/examples/cesna
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Table 8: NMI of different community detection results on Facebook network

Network ID 0 107 348 414 686 698 1684 1912 3437 3980 Average

Louvain .382 .332 .478 .609 .284 .281 .047 .565 .181 .729 .389
SIWO .390 .363 .375 .586 .215 .259 .053 .557 .174 .605 .358

CESNA .263 .249 .307 .586 .238 .564 .438 .450 .176 .552 .382

Louvain-EET .558 .355 .525 .538 .463 .669 .462 .511 .310 .704 .509
Louvain-MT .452 .341 .489 .556 .351 .479 .323 .491 .262 .696 .444
SIWO-EET .541 .364 .452 .531 .406 .630 .460 .509 .310 .648 .485
SIWO-MT .431 .353 .405 .538 .252 .406 .332 .491 .260 .588 .406

Table 9: ARI of different community detection results on Facebook network

Network ID 0 107 348 414 686 698 1684 1912 3437 3980 Average

Louvain .143 .148 .303 .558 .110 .000 .000 .461 .000 .398 .209
SIWO .220 .177 .127 .519 .000 .009 .000 .419 .002 .209 .167

CESNA .073 .097 .156 .480 .001 .202 .310 .361 .014 .067 .176

Louvain-EET .024 .047 .103 .265 .006 .000 .043 .252 .000 .069 .008
Louvain-MT .061 .079 .129 .413 .063 .000 .048 .235 .000 .084 .110
SIWO-EET .043 .045 .124 .252 .003 .000 .057 .235 .000 .095 .009
SIWO-MT .108 .079 .141 .391 .040 .016 .060 .223 .000 .073 .113

Table 10: Running time of different community detection results on Facebook
network, measured in seconds

Network ID 0 107 348 414 686 698 1684 1912 3437 3980 Average

Louvain 0.15 1.83 0.12 0.06 0.09 0.02 0.80 1.28 0.31 0.01 0.47
SIWO 0.34 3.78 0.31 0.16 0.17 0.03 1.46 3.79 0.51 0.02 1.06

CESNA 9.76 103. 6.02 2.47 3.12 0.63 38.3 22.9 21.1 0.60 20.8

Louvain-EET 0.72 4.68 0.40 0.25 0.24 0.07 1.95 3.83 0.78 0.03 1.30
Louvain-MT 2.90 20.0 0.82 0.48 0.44 0.08 8.22 9.41 3.28 0.06 4.57
SIWO-EET 1.73 24.4 2.87 0.68 0.76 0.14 5.76 28.5 4.26 0.12 6.92
SIWO-MT 9.45 91.4 5.27 1.73 3.14 0.34 44.9 43.4 13.5 0.17 21.3

Results Results in terms of NMI, ARI, and running time are respectively pre-
sented in Tables 8, 9, and 10. In terms of NMI, results in Table 8 show again
that our late-fusion algorithms can significantly improve the community detec-
tion accuracy upon Louvain. On average, the late fusion method Louvain+EET
outperforms Louvain, SIWO, and CESNA by 30.8%, 42.2%, and 33.2% respec-
tively. The late fusion method Louvain+MT outperforms the three by 14.1%,
24.0%, and 16.2% respectively. However, all of the late-fusion methods perform
poorly when evaluated by ARI. This is resulted from the goal of our late-fusion
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approach. Remember that we aim to find the set of communities such that nodes
in the same subgroup are densely connected and similar in terms of attributes,
whereas nodes residing in different communities are loosely connected and dis-
similar in attributes. This purpose led the late-fusion approach to over-partition
communities that are formed by only one of the two sources of information. The
over-partitioning greatly hurts the results of ARI. A postprocessing model to
resolve the over-partitioning issue with late fusion is left as a future work. The
running time results shown in Table 10 again manifests the efficiency advantage
of our late-fusion methods over CESNA.

4.4 Effect of Parameter α

In the Sina Weibo experiment, we see the advantage of having a weighting pa-
rameter to accordingly leverage the strength of the two sources of information.
In this section, we dive deeper into the effect of α on the community detection
results. To do so, we devise an experiment where we use the Gstrong and Gweak

introduced in Table 1. In reverse, we assign weak attributes to Gstrong and
strong attributes to Gweak. Then we perform our late fusion algorithm on these
two graphs with varying α values. In our experiment, we choose SIWO as Fs

and k-means as Fa.

Table 11: Effect of α

α = 0.0 α = 0.2 α = 0.5 α = 0.8 α = 1.0

NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

Gstrong 0.530 0.359 0.530 0.359 0.756 0.513 0.836 0.850 0.836 0.850
Gweak 0.867 0.834 0.867 0.834 0.762 0.470 0.526 0.364 0.526 0.364

Table 11 presents the NMI and ARI of the late fusion with SIWO and k-
means when α varies. Gstrong has communities with a strong structure but weak
attributes, so the accuracy score for NMI and ARI goes up as we put more weight
on the structure; On the contrary, Gweak has weak structural communities but
strong attributes, hence the accuracy score decreases as α increases. One can also
notice that when α is sufficiently high or low, late fusion becomes equivalent to
using community detection or clustering only, which is in accordance with our
observation done on the Sina Weibo experiment.

In practice, when network communities are mainly determined by the links,
α should be greater than 0.5; α < 0.5 is recommended if attributes play a
more important role in forming the communities; When prior knowledge about
network communities is unavailable or both sources of information contribute
equally, α should be 0.5.

4.5 Complexity of Late Fusion

It is a known drawback of attributed community detection algorithms that they
are very time-consuming due to the need to consider node attributes. Our late-
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fusion method tries to circumvent this problem by taking advantage of the exist-
ing community detection and clustering algorithms that are efficiently optimized,
and combining their results by a simple approach. To further show the computa-
tional efficiency of our late-fusion method, we compute the running time of the
late-fusion method and compare it with other methods.

We test the running time of four different community detection methods on
five graphs with the number of nodes varying from 2000, 4000, 6000, 8000, and
10000. These graphs are also generated by the attributed graph generator [10].
We control the modularity of each graph at the range of 0.64−0.66 and keep other
hyperparameters the same. For each size, we randomly sample 10 graphs from
the graph generator and plot the average running time of each method. As we
can see in Figure 2, it is expected that our late-fusion method is inevitably slower
than the two community detection methods that only utilize node connections.
However, our algorithm runs way faster than the I-Louvain algorithm, albeit
both being approximately linear in the growth of network sizes.

Fig. 2: Running time of Louvain, SIWO, Late Fusion and I-Louvain on networks
of different sizes

5 Conclusion and Future Direction

In this paper, we proposed a new approach to the problem of community de-
tection in attributed networks that follows a late-fusion strategy. We showed
with extensive experiments that most often, our late-fusion method is not only
able to improve the detection accuracy provided by traditional community de-
tection algorithms, but it can also outperform the chosen contenders in terms of
both accuracy and efficiency. We learned that combining node connections with
attributes to detect communities of a network is not always the best solution,
especially when one side of the network properties is strong while the other is
weak, using only the best information available can lead to better detection re-
sults. It is part of our future work to understand when and how we should use
the extra attribute information to help community detection. ARI suffers greatly
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from over-partitioning issue with our late fusion when applied to networks with
binary attributes. A postprocessing model to resolve this issue is desired. We also
hope to expand the late-fusion approach to networks with a hybrid of binary and
numeric attributes as well as networks with overlapping communities.
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networks with community structure generation. Knowl. Inf. Syst. 53(1), 109–151
(2017)

11. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In:
Advances in neural information processing systems. pp. 539–547 (2012)

12. Li, Y., Sha, C., Huang, X., Zhang, Y.: Community detection in attributed graphs:
An embedding approach. In: AAAI (2018)

13. Neville, J., Adler, M., Jensen, D.: Clustering relational data using attribute and link
information. In: Proceedings of the text mining and link analysis workshop, 18th
international joint conference on artificial intelligence. pp. 9–15. San Francisco,
CA: Morgan Kaufmann Publishers (2003)

14. Ruan, Y., Fuhry, D., Parthasarathy, S.: Efficient community detection in large net-
works using content and links. In: Proceedings of the 22nd international conference
on World Wide Web. pp. 1089–1098. ACM (2013)

15. Steinhaeuser, K., Chawla, N.V.: Community detection in a large real-world social
network. In: Social computing, behavioral modeling, and prediction, pp. 168–175.
Springer (2008)

16. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node
attributes. In: ICDM conference, 2013. pp. 1151–1156. IEEE (2013)

17. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute
similarities. Proceedings of the VLDB Endowment 2(1), 718–729 (2009)


