
Visualizing Community Centric Network Layouts

Justin Fagnan, Osmar Zaı̈ane, Randy Goebel
Department of Computing Science

University of Alberta, Edmonton, Canada
{fagnan, zaiane, rgoebel}@ualberta.ca

Abstract
We present our COMmunity Boundary (COMB) and

COMmunity Circles (COMC) network layout algorithms
that focus on revealing the structure of discovered com-
munities and the relationships between these communi-
ties. We believe this information is vital when develop-
ing new community mining algorithms as it allows the
viewer to more quickly assess the quality of a mining result
without appealing to large tables of statistics. To imple-
ment our algorithms we have introduced numerous modifi-
cations to the existing Fruchterman-Reingold layout, in-
cluding support for multi-sized vertices, removal of the
bounding frame, introduction of circular bounding boxes,
and a novel slotting system. Our evaluation argues that
both COMB and COMC outperform existing alternatives
in their ability to reveal community structure and empha-
size inter-community relations.

Keywords—community mining, visualization, network lay-
out

1 Introduction
On a daily basis we participate in a number of infor-

mation networks that constrain everything from how pro-
teins interact within our bodies, to whom we communicate
with through the web. These networks can often be ex-
pressed as a collection of entities, represented as vertices,
and the relationships between these entities, represented as
edges. For example, we can build information networks
relating human proteins, where relationships are formed if
two proteins interact strongly with each other. Likewise,
we can generate information networks for mobile phone
companies, where each phone call forms an edge between
two customers in the network.

A key idea for analyzing these networks is known as
“community mining,” and algorithms to detect them have
received significant attention for a variety of possible appli-
cations, including the detection of protein interaction com-
munities in Biology, crime factions in Criminology, friend-
ship cliques in Sociology, and many more.

Despite significant community mining development,

there has been little evaluation of these algorithms and few
visualization methods that showcase either the structure of
the communities or the relationships between them. With-
out these visuals clues it can be difficult for researchers
to develop any intuition when evaluating their algorithms.
Furthermore, while visualizations are beneficial for non-
research users, the lack of evaluation methods means that
the selection of community mining methods relies more on
aethstestics than accuracy.

We address this issue by presenting two different lay-
out algorithms. Our algorithms aim to generate aestheti-
cally pleasing graph layouts which accurately highlight the
structure of each community and the relationships between
the communities. We believe our layouts allow a user to
more easily discern the difference between a good com-
munity mining algorithm and a poor one, when compared
to existing generalized layouts. In addition, our layouts
more accurately depict the relationships between the com-
munities, thus supporting more accurate inference by both
researchers and users.

To accomplish these goals, we first propose modifica-
tions to the existing Fruchterman-Reingold (FR) algorithm
[4], including support for vertices with a non-zero radius,
and the removal of visualization boundaries. We then intro-
duce our first community centric layout algorithm, called
Community Boundaries (COMB), which uses a two-stage
process to generate representative vertices, and exploits
circular bounding boxes to ensure the communities re-
main intact and isolated. Subsequently, we present our
second algorithm, named Community Circles (COMC),
which uses a slotting system to efficiently showcase the
relationships between each community.

Our contributions are as follows:

1. Adding support for non-zero radius vertices to the
existing FR algorithm, and removing the bounding
frame.

2. COMB, our two stage algorithm for generating an
efficient community-centric layout that highlights
the relationships between communities.

3. COMC, our algorithm which generates community
centric layouts using a highly efficient slotting sys-
tem to showcase the relationships between commu-
nities.

Below we briefly summarize related work in Section 2,
followed by the introduction of some minor enhancements
to the existing Fruchterman-Reingold algorithm in Section
3. In Sections 4 and 5 we describe our COMB and COMC
algorithms respectively. Section 6 provides a preliminary
evaluation of our algorithms, and Section 7 provides a sum-
mary.

2 Related Work
The basis of our research arises from the well-known

Fruchterman-Reingold (FR) layout algorithm, which aims
to produce layouts that are both aesthetically pleasing and
contain uniform edge lengths. To accomplish this, the FR
layout employs a force-directed model where each vertex
in the graph both attracts its neighbours and repels all other
vertices [4]. The strength of this attraction/repulsion is reg-
ulated by the current “temperature” of the system: high
temperatures produce strong attraction/repulsion forces,
and low temperatures produce weak forces. These forces
determine how far away a vertex should move if it is re-
pelled, or how close it should come if it is attracted.

The FR algorithm is an iterative algorithm, based on
three main functions: the attraction function, the repul-
sion function, and the position calculation function. At
each iteration the attraction is computed between each end
point of an edge, and the repulsion between all pairs of
vertices. These forces are summed by the position cal-
culation function, and each vertex is moved so that it be-
comes closer to its neighbours and further away from its
non-neighbours. The temperature is then reduced, and the
next iteration starts; the algorithm completes when the tem-
perature reaches zero or the number of iterations reaches a
threshold. We note here that because FR operates on edge
end points, it can support multi-graphs by accumulating
the attraction for all of the shared edges. We also note that,
although the temperature system described is comparable
to simulated annealing algorithms, the layout itself does
not do any hill-climbing because of the time complexity to
reach the optimal solution. Instead, the authors assume that
the discrete iterative movement of vertices will be enough
to overcome any local optima.

Other force-directed layouts have also been proposed,
including the well-known Kamada-Kawai (KK) layout [7].
The KK algorithm treats edges between vertices as springs,
and uses Hooke’s law to compute the attractive forces be-
tween neighbouring vertices. Their algorithm attempts
to minimize the total tension in the system; while also
finding an “ideal” distance between non-neighbouring ver-

tices. We know of no conclusive evaluation that determines
which of FR or KK produces “better” layouts. But we have
chosen FR as a basis for our extensions because of its pop-
ularity.

Numerous other community or cluster based layout al-
gorithms have been proposed, including the energy model
proposed by Truong et al. [13], Frishman and Tal [3], and
Balzer and Deussen [1]. Our proposed methods differ from
previous approaches in that we do not require any user-
defined parameters to produce our community layouts, nor
do we focus on any specific aesthetic quality. Rather, we
attempt to maximize the distinctive aspects, such as the
inter-community qualities, intra-community qualities, and
the network as a whole. We argue that this generalized ap-
proach produces more meaningful visualizations and, con-
trary to previous methods, we provide an evaluation to
showcase this.

3 Fruchterman-Reingold Enhancements
3.1 Multi-Sized Vertices

Our layout algorithms first require us to introduce two
basic modifications to the existing FR algorithm. The first
modification addresses the practical need to visualize net-
works that contain vertices with heterogeneous sizes. Such
networks are common in real-life scenarios where vertex
size conveys some meaningful information to the viewer.
Unfortunately, the existing FR algorithm assumes that all
vertices are infinitesimally small points; thus the result-
ing layouts often conclude with large vertices overlapping
or completely obscuring smaller vertices. An example of
such a case is depicted in Figure 1(a). This overlap oc-
curs because the repulsion function in the existing FR al-
gorithm repels each pair of vertices by a force inversely
proportional to the distance, d, between their centers. As
d nears zero, the force becomes strong to prevent vertices
from clumping. Yet this repulsion is insufficient when each
vertex has a non-zero radius, because the vertices will be
overlapping long before the distance between their centers
nears zero. To address this, we apply an intuitive solu-
tion of measuring the distance, d, between the edges of the
vertices, instead of the centers. In this way the value d ac-
curately reflects the distance between vertices of any size,
and the extremely strong repulsive forces will occur before
the vertices begin to overlap. We should note that although
our solution is independently conceived, it has been previ-
ously proposed by Harel and Koren [6]. More formally, we
set the distance d equal to:

d = max(dist(u, v)− (radius(v) + radius(u)), ε)

Where dist(u, v) is the Euclidean distance between the
centers of vertex u and vertex v, and radius(x) is the ra-
dius of the vertex x. We include ε as a small positive con-

(a) Original FR algorithm. (b) FR with support for sized vertices.

Figure 1: An example of our modification to support sized vertices in the FR algorithm.

stant to ensure that overlapping vertices do not result in a
negative distance, d. The resulting layout is shown in Fig-
ure 1(b).
3.2 Boundary-Free Layout

Our second modification removers the FR algorithm’s
requirement for a user-defined frame or bounding box for
the resulting layout. The FR authors argued that a layout
is aesthetically pleasing when it conforms to a frame and
is distributed evenly throughout the frame [4]. We, how-
ever, feel that this requirement is largely unintuitive. We
do not often force a picture to fit a specific picture frame,
but rather seek a frame that is large enough to contain our
picture.

In removing this FR algorithm constraint, we redefine
two of the constants in the existing FR algorithm: the force
constant, k, and the starting temperature, temp. These con-
stants were previously based on the bounding box width
and height, and strongly influenced the distance a vertex is
able to move in a single iteration. We provide the following
alternative definitions:

k =
√

(|V |+ |E|)
temp = |V |+ |E|

where |V | is the number of vertices in the multigraph,
and |E| is the number of edges. Our choice is based on
our intuition about how much movement should occur rel-
ative to the size of the network. Large networks require
larger vertex movements in order to escape a local minima
and thus their k and temp values should be higher than
smaller networks. We have chosen a square root function
to ensure that very large networks do not result in extreme
movements that end up accomplishing little else other than
wasting an iteration.

4 Community Boundaries
Here we present our first layout algorithm, COMB,

which works in two stages. First, we compute the bound-
ary size for each community and then determine its final
position in the layout. In the second stage, we place each
vertex within its community boundary and attempt to min-
imize the inter-community edge lengths.

Our algorithm operates on a multigraphG = {V,E,C}
where V is the set of vertices, V = {v1, v2, v3...}, E is the
set of edges, E = {e1, e2, e3...}, and C encodes the com-
puted communities, C = {c1, c2, c3...}. We define each
community cx = {Vcx , Einx , Eoutx} where Vcx is the set
of vertices in the community, Einx is the set of edges be-
tween two vertices within the community, and Eoutx

is the
set of edges leading out of the community.
4.1 Representative Vertices

Initially, our algorithm identifies a single representative
vertex for each community in the network. These represen-
tative vertices will ultimately determine the position of the
communities in the final layout. Therefore each of these
representatives must be structurally equivalent to the com-
munity they represent, in terms of both visual size on the
screen and connections to other vertices.

To address connection equivalence, we generate a set of
representative vertices, R = {rc1, rc2, ..., rcn}, such that
the set of edges that each rcx participates in, Ercx , is ex-
actly equal to Eoutx

, which is the set of edges its repre-
sentative community participates in. Since it is likely that
each pair of representative vertices will be connected by
more than one edge, we need a multigraph structure.

To compute the on-screen size of a community we em-
ploy one of two techniques. The first technique is the obvi-
ous solution of generating a separate layout for each com-
munity using the FR algorithm, then computing the convex
hull of the layout [4]. This gives us a fairly accurate esti-

mate of how much visual space the community will con-
sume in the final layout. However, it is costly to run the
FR algorithm (O(|V 2| + |E|)) for each community in the
network. An alternative is to estimate the required visual
space using only the number of internal edges (|Einx

|),
vertices (|Vcx|) within each community. We have defined
our estimate function as:

radius = (max(10,
√
|Vcx|) + max(10,

√
|Einx |)) ∗ lm

Where lm is a constant derived from the average radius
of each vertex. We employ the max functions to ensure
that very small communities are allotted some meaningful
visual space. Note that any other estimate function could
also be used in our algorithm; we simply chose one that
makes some intuitive sense and has been satisfactory in our
experiments. By using either the estimate or the separate
layout technique, we can then set the radius of each repre-
sentative vertex, rcx, to be equal to the computed radius of
the bounding circle for community x. An example of gen-
erating representative vertices from a set of communities is
presented in Figure 2.
4.2 Initial Layout

After generating the representative vertices, we can pro-
duce an abstraction of the network, Gabstract = {R +
Vno−comm, E}, where R is our set of representatives and
Vno−comm is the set of vertices that do not belong to any
community and thus are not captured by the representatives
(an example of Gabstract can be seen in Figure 2(b)). We
then feed this abstract network into our FR algorithm that
has been modified to support vertex sizes.

The resulting layout contains representative vertices
placed at their desired positions, given the goal of uniform
edge length. These positions are recorded and will be used
to determine where each community should reside in the
final layout. Note that we do not record the position of
the vertices in Vno−comm. These vertices were only added
to the abstraction to ensure that their edges are considered
when finding an optimal position for the representatives.
4.3 Vertex Placement

In the second stage of COMB we focus on refining
our initial placement by setting the location of each vertex
in the network. We begin this stage with the initial lay-
out generated in stage 1, which contains the representative
vertices. We then replace each representative vertex with
a bounding circle, centered at the same location that the
vertex once occupied. These bounding circles will ensure
that the final layout has clearly defined boundaries for each
community. As such, each circle must have a radius equal
to that of the representative vertex it replaced.

Once the bounding circles are appropriately sized we
begin inserting the vertices from the original network.

Each vertex is placed at a uniformly selected random posi-
tion within the circle that represents its community. After
the placement is complete we have an initial layout where
all vertices belonging to the same community are contained
within the same bounding circle. When we feed this initial
placement into our modified FR algorithm we expect the
vertices to move around within their circle, but they can
not leave the circle. This limited freedom of movement
should allow those vertices with many connections to other
communities to migrate towards the perimeter of their re-
spective circle. In the following section we define these
bounding circles.
4.4 Implementing Bounding Circles

To enable bounding circles we have modified the FR
position calculation function so that each vertex is checked
against the perimeter of its bounding circle in each itera-
tion. We confirm whether the vertex is outside the perime-
ter by calculating the distance between the vertex and the
center of the circle. Any vertex with a distance greater than
the radius is outside of the perimeter, and needs to be relo-
cated inside the perimeter. Before doing so, we record the
vertex’s angle to the center of the circle. This angle should
point towards the “optimal” position (as determined by the
FR algorithm) that the vertex was trying to reach, and thus
it may be the optimal angle within the bounding circle as
well.

To achieve this, we first compute the angle between the
out-of-bounds vertex and the center of the circle:

angle(v, c) = atan2(c.y − v.y, v.x− c.x)

Where v is the vertex, c is the bounding circle that con-
tains the vertex, and x/y refers to the x and y coordinates of
a point. c.x, for example, would indicate the x coordinate
for the centre point of the circle c.

Once the angle is computed, we can move the vertex
within the circle, But how far inwards? Our early exper-
imentation showed that moving the vertex exactly to the
perimeter produced poor layouts, as the perimeters of the
circles became crowded and obscured the structure of the
community itself. To combat this problem, each offending
vertex is moved to a randomly selected position between
the perimeter and the center of the circle, while keeping
the same angle. Our choice of randomness follows a uni-
form distribution.

However, randomness alone is not satisfactory because
a vertex may be incorrectly moved to the center of the cir-
cle on the very last iteration, even though it just barely
slipped outside of the bounding circle. Therefore we also
take into account the temperature of the system: when the
temperature is near its maximum, the offending vertices
may be moved all the way to the center of the circle. As

(a) Three communities (b) The generated Representative Vertices

Figure 2: An example of generating Representative Vertices.

the temperature cools, the movements do not stray far from
the perimeter. We capture this intuition in the following
formulae:

mlen(c) = c.radius ∗
(

1−
(
rand() ∗ curTemp

maxTemp

))
length = mlen(c)

v.x = (cos(angle(v, c)) ∗ length) + c.x

v.y = (sin(angle(v, c)) ∗ length) + c.y

Where c is the bounding circle for the vertex v, angle()
is previously defined, rand() returns a uniformly random
number [0,1], curTemp is the current temperature, and
maxTemp is the initial temperature.

As the system cools, curTemp decreases, causing
length to increase, which places the vertices (on average)
further away from the center of the circle and closer to its
perimeter. This ensures that vertices which barely slip out
of the circle in the final iterations of the algorithm are still
able to remain near the perimeter.

4.5 Final Layout
Now that the bounding circles are defined we merely

provide the entire network, G, to our modified FR algo-
rithm. We then feed the initial placement of the vertices,
and the definitions of each bounding circle, into the algo-
rithm. The resulting layout contains all of the features of
the original FR algorithm along with a well-defined visual
boundary around each community. Visualizations are pro-
vided in the Evaluation section.

5 Community Circles
The layouts produced by COMB contain clearly defined

boundaries and reveal both the internal structure and re-
lationships of the communities. Highlighting this inter-
nal structure, however, has an efficiency cost as the lay-
out algorithm needs to retain all of the functions from the
original FR algorithm, resulting in an O(|V |2 + |E|) time
complexity. This is comparable with existing layout algo-
rithms, but it is not fast enough to be considered a truly in-
teractive visualization. Thus we propose our COMmunity
Circles (COMC) algorithm, which maximizes efficiency
by using circular layouts to showcase only the community
relationships. Our goal with COMC is to represent each
community as a circle and place the vertices on the perime-
ters of each circle such that inter-community edge length is
minimized. This algorithm is similar to COMB, in that it is
based on FR, and shares many of the same steps, including
the generation of representative vertices and the resulting
vertex replacement.
5.1 Sizing Representative Vertices

Unlike in COMB, we do not need to scale the size of the
representative vertices according to the number of edges
within the community, as these edges are essentially ig-
nored by the COMC layout. Instead, we need to ensure
that the perimeter of each representative is large enough so
that we can place each vertex on it without overlap. Thus
we modify the radius function:

circumference = (avgsize(Vcx) + padding) ∗ |Vcx|

radius =
circumference

2π

where avgsize() is the average radius of all the ver-

tices in Vcx, and padding is a user-defined constant that
describes how much space there is between each vertex on
the circle. Our preferred setting padding = 15.
5.2 Perimeter Slots

Once the representatives are generated and placed using
COMB, we can record the perimeter and location of each
representative and use this information to define a new data
structure. This structure contains both the center and radius
of the circle along with an array of “slots,” one for each
vertex in the community. During the course of the COMC
algorithm, each vertex is assigned to the closest slot on its
respective community circle, according to the Euclidean
distance between the circle and the current position of the
vertex. If the closest slot is already occupied by another
vertex, we compute the total length of all inter-community
edges for both vertices. The vertex with the smallest total
edge length gets the slot, and the other vertex must move
to the second closest slot. If that slot is also occupied, then
the procedure repeats itself until there is a suitable unoc-
cupied slot. We can guarantee that this process terminates
because the set of inter-community edge lengths has a total
order.

Before assigning the slots, we determine the position
of each vertex by leveraging the attraction and repulsion
functions of the FR algorithm. In particular, we only com-
pute the attraction between two vertices if they belong to
different communities. This is because we do not need to
consider the attraction between members of the same com-
munity; they are all tied to the perimeter of the circle and
cannot move closer to each other. In addition, we do not
need to compute the repulsion function for any vertex that
belongs to a community. We can avoid this step because
a pair of vertices within a community cannot possibly get
further away than the diameter of circle and we not inter-
ested in showcasing the internal structure of each commu-
nity.

The attraction function sets the position of each vertex
by drawing it closer to its neighbours in other communi-
ties. Once this position is set, each vertex is assigned to the
nearest slot on its community circle as described above. At
the end of each iteration, the vertices are moved to the po-
sition dictated by their respective slot, and then the slots
are cleared for the next iteration. The algorithm continues
until the system has cooled according to a cooling function
specified in the FR algorithm [4].
5.3 Efficiency Gains

By removing the repulsion function and limiting the at-
traction function, we have greatly reduced the time com-
plexity of the algorithm. In each iteration, we need only
loop over the set of inter-community edges to compute the
attraction function and then assign the slots. This reduces
the worst-case time complexity from O(|V 2|+ |E|) down

to O(|Eout| + |V | ∗ avg(|C|)), where avg(|C|) is the av-
erage number of vertices in each community. In practice,
the slot assignments tend to stabilize after the first few it-
erations of the algorithm, and thus the time complexity is
dominated by |Eout|. A sample visualization of COMC is
provided in the Evaluation section.

6 Evaluation
6.1 Visual Juxtaposition

Research in visualization evaluation (e.g., [12, 11]) sug-
gest an evolution towards the design of cognitive experi-
ments to establish measures of visualization effectiveness.
But a useful precursor to such formal evaluation is to pro-
vide informal arguments of visualization method prefer-
ences by comparing alternative renderings of the same kind
of base data. In this way we at least begin the development
of intuitive measures that provide the basis for visualiza-
tion method preference. We have adopted this approach.

In our comparison of alternative methods for commu-
nity clustering visualization, we are unable to include any
of the related work algorithms because we could not find
implementations and the examples provided in the respec-
tive papers were trivial at best.

In Figures 3, 4, and 5 we present visualizations for a va-
riety of well-known social networks, including the NCAA
Football network [5], Zachary’s Karate Club [14], and the
Political Books network[8]. For each network we have
run an existing Community Mining algorithm, such as Fast
Modularity [2], and generate a visualization using COMB,
COMC, the Kamada Kawai (KK) algorithm [7], and the
general Fruchterman-Reingold algorithm [4]. We note
that, although the KK and FR algorithms are not specif-
ically tailored for communities, they are nonetheless the
most popular methods used to visualize community min-
ing results. To generate the visualizations we have used
the FR and KK implementations provided by the JUNG
framework [9]. Note that the color of a vertex specifies the
community it belongs to.

For the rather trivial Karate Club network depicted in
Figure 3 we can already see a clear distinction between our
proposed algorithms and the generalized layouts. In both
the COMB and COMC layouts we can easily see the re-
lationships between the communities and, in the case of
COMB, the structure of each community. This insight
would allow the viewer to recommend that perhaps the
yellow and teal communities should be merged. Similar
observations are much harder to make in the generalized
layouts because it is difficult to tell how each community
is related. So in this case, an informal notion of evalua-
tion notes that there are emergent inferential properties of
alternatives, even without formal evaluation.

For the Political Books network shown in Figure 4 we
can see that both the COMB and COMC layouts highlight

(a) COMB (b) COMC

(c) Fruchterman-Reingold (d) Kamada-Kawai

Figure 3: Zachary’s Karate Club Network.

the tight coupling between the orange, pink, and purple
communities, whereas one can only assume such a cou-
pling exists in the FR and KK based layouts.

Finally, in the NCAA Football network, shown in Fig-
ure 5, we can see clear community boundaries and the in-
teraction between these communities in both the COMB
and COMC layouts. Furthermore, both the FR and COMC
layouts reveal that each of the communities contain numer-
ous outliers (the single edge vertices), indicating that per-
haps a community mining algorithm with support for out-
liers should be used instead. Unfortunately, the FR layout
provides no other information as the communities seem to
be completely overlapping each other, making it difficult to

determine the structure of any community. The same can
be said for the KK layout.
6.2 Efficiency

In addition to these informal visual evaluation distinc-
tions, we also present a comparison on the efficiency of the
algorithms. The COMB, FR, and KK algorithms employ a
force-based approach that requires computing a force be-
tween every pair of vertices, and the end points of each
edge, in each iteration. Thus the time complexity of each
iteration can be thought of as Θ(|V |2 + |E|); our modifi-
cations to the FR algorithm do not add any significant time
complexity.

Computing the final time complexity requires bound-

(a) COMB (b) COMC

(c) Fruchterman-Reingold (d) Kamada-Kawai

Figure 4: Political Books Network.

ing the possible number iterations; yet this is a notori-
ously difficult question in systems with cooling sched-
ules. To avoid this issue, previous authors have simply
set a limit to the number of iterations, say 100. We have
adopted this approach and determined that the final time
complexity of COMB, FR, and KK is O(|V 2| + |E|).
The COMC algorithm does not need to compute the pair-
wise forces and thus its worse case time complexity is
O(|Eout|+ |V | ∗ avg(|C|)) .

A list of the running times for each algorithm, computed
on an Intel i7-2540m with 8GB of RAM, is shown in Ta-
ble 1. We can see that COMB is equivalent to the exist-
ing FR algorithm in terms of efficiency, and that COMC

is significantly faster than the other layouts. We believe
this efficiency allows one to use the layout in an interactive
setting, such as displaying the evolution of communities
in dynamic networks. We should note that the Kamada-
Kawai algorithm appears to be much slower because it
spends considerable time making minor adjustments to the
layout.

7 Summary and Future Work
We have presented two novel layout algorithms, COMB

and COMC, that aim to generate aesthetically pleasing net-
work layouts while highlighting both the structure of each
community and the relationships between the communi-

(a) COMB (b) COMC

(c) Fruchterman-Reingold (d) Kamada-Kawai

Figure 5: NCAA Football Network.

Network V E COMB COMC FR KK
Karate Club 34 77 143 ms 85 ms 130 ms 110 ms

Politcal Books 105 441 7567 ms 375 ms 7181 ms 19752 ms
NCAA Football 180 787 13585 ms 411 ms 14258 ms 22530 ms

Table 1: Runtimes of each layout algorithm, averaged over 10 runs.

ties. To accomplish this goal we modified the existing
FR algorithm by removing the need for bounding borders,
adding support for vertices with non-zero size, and either
enabling the definition of bounding circles within the lay-
out or perimeter slotting[4].

Together, these modifications allowed us to create dis-

tinctive visual borders around each community (COMB),
and greatly improve the efficiency of current visualization
methods (COMC) while still generating an aesthetically
pleasing layout. Our evaluation argues that both COMB
and COMC offer more insight into the structural compo-
nents of each community and the relationships between the

communities when compared to the existing techniques.
We hope that our visualizations allow researchers and ana-
lysts to more quickly identify communities of interest with-
out needing to inspect tables of statistics.

In our future work, we intend to extend COMB to
support other popular layout algorithms, including the
Kamada-Kawai [7] and ISOM [10] layouts. We may
also investigate the inclusion of polygonal bounding boxes
which should allow for a more natural layout of each com-
munity. Unfortunately, the operation to determine if a ver-
tex is outside of a polygon is considerably more expen-
sive than for a circle. A naive implementation of polygon
bounding boxes may make the algorithm prohibitively ex-
pensive for larger networks.

We are also unsatisfied with the current methods of eval-
uating visualization algorithms; it is clear that more objec-
tive metrics or survey methods are required to determine
how a “good” community layout would differ from a “bad”
one. It is a daunting task to present a new layout algorithm
without further development of a methodology to compare
visualization results.

References
[1] M Balzer and O Deussen. Level-of-detail visualiza-

tion of clustered graph layouts. In APVIS’07, pages
133–140, 2007.

[2] A Clauset, M.E.J. Newman, and C. Moore. Finding
community structure in very large networks. Phys.
Rev. E, 70, 2004.

[3] Y Frishman and A Tal. Dynamic drawing of clus-
tered graphs. In Proceedings of the IEEE Symposium
on Information Visualization, pages 191–198, 2004.

[4] T. M. J. Fruchterman and E. M. Reingold. Graph
drawing by force-directed placement. Software:
Practice and Experience, 21:1129–1164, 1991.

[5] M Girvan and M. E. J. Newman. Proc. Natl. Acad.
Sci., 99:7821–7826, 2002.

[6] D Harel and Y Koren. Drawing graphs with non-
uniform vertices. In Proceedings of the Working
Conference on Advanced Visual Interfaces, AVI ’02,
pages 157–166, 2002.

[7] T Kamada and Si Kawai. An algorithm for drawing
general undirected graphs. Information Processing
Letters, 31(1):7–15, 1989.

[8] V. Krebs. http://www.orgnet.com, January 2012.

[9] J. Madadhain, D. Fisher, P. Smyth, S. White, and Y.B.
Boey. Analysis and visualization of network data us-
ing jung. Journal of Statistical Software, 10:1–35,
2005.

[10] B Meyer. Self-organizing graphs a neural network
perspective of graph layout. In Graph Drawing, vol-
ume 1547 of Lecture Notes in Computer Science,
pages 246–262. 1998.

[11] Chris North. Toward measuring visualization insight.
IEEE Comput. Graph. Appl., 26(3):6–9, 2006.

[12] Catherine Plaisant. The challenge of information vi-
sualization evaluation. In Proceedings of the working
conference on Advanced visual interfaces, AVI ’04,
pages 109–116. ACM, 2004.

[13] Q.D Truong, T. Dkaki, and P.J. Charrel. An energy
model for the drawing of clustered graphs. In Pro-
ceedings of Veme colloque international VSST, 2007.

[14] W. W. Zachary. An information flow model for con-
flict and fission in small groups. Journal of Anthro-
pological Research, 33:452–473, 1977.

