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Image Quality Assessment Guided Collaborative
Learning of Image Enhancement and

Classification for Diabetic Retinopathy Grading
Qingshan Hou , Peng Cao , Liyu Jia , Leqi Chen, Jinzhu Yang, and Osmar R. Zaiane

Abstract—Diabetic retinopathy (DR) is one of the most
serious complications of diabetes and is a prominent cause
of permanent blindness. However, the low-quality fundus
images increase the uncertainty of clinical diagnosis, re-
sulting in a significant decrease on the grading perfor-
mance of the fundus images. Therefore, enhancing the im-
age quality is essential for predicting the grade level in
DR diagnosis. In essence, we are faced with three chal-
lenges: (I) How to appropriately evaluate the quality of
fundus images; (II) How to effectively enhance low-quality
fundus images for providing reliable fundus images to oph-
thalmologists or automated analysis systems; (III) How to
jointly train the quality assessment and enhancement for
improving the DR grading performance. Considering the
importance of image quality assessment and enhancement
for DR grading, we propose a collaborative learning frame-
work to jointly train the subnetworks of the image qual-
ity assessment as well as enhancement, and DR disease
grading in a unified framework. The key contribution of the
proposed framework lies in modelling the potential corre-
lation of these tasks and the joint training of these sub-
networks, which significantly improves the fundus image
quality and DR grading performance. Our framework is a
general learning model, which may be useful in other med-
ical images with low-quality data. Extensive experimental
results have shown that our method outperforms state-
of-the-art DR grading methods by a considerable 73.6%
ACC/71.2% Kappa and 88.5% ACC/86.3% Kappa on Mes-
sidor and EyeQ benchmark datasets, respectively. In ad-
dition, our method significantly enhances the low-quality
fundus images while preserving fundus structure features
and lesion information. To make the framework more gen-
eral, we also evaluate the enhancement results in more
downstream tasks, such as vessel segmentation.

Index Terms—Diabetic retinopathy, grading, quality
assessment, image enhancement, joint learning.
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I. INTRODUCTION

D IABETIC retinopathy (DR) is one of the most serious complica-
tions of diabetes and is currently the leading cause of blindness in

adults [1], and has been identified by the World Health Organization as
the second most serious eye disease after cataract. Owing to the safety
and cost-effectiveness of acquiring fundus images, they are widely used
for early screening and diagnosis of DR [2], [3]. However, due to the
limitations of the acquisition equipment and the operation procedure,
the fundus images often present significant differences with respect to
the image quality as shown in Fig. 1. Automatic identification of lesions,
such as microaneurysms (MAs) and hard exudates (EXs) are crucial
to the diagnostic assessment of DR. The lower quality leads to the
failure of the identification of the suspicious lesions, which decreases
the diagnosis performance. Therefore, it is desirable to enhance the
image quality for accurately capturing the lesions related to the severity
grading.

Disease grading and image quality enhancement are two main fun-
damental tasks in this area. The image quality enhancement is required
to be guided by the image quality assessment (IQA), the aim of which
is to measure and control the quality of images. However, IQA is a
subjective task depending on the experience of the ophthalmologists.
The current solution turns it into learning, data-driven approaches
based on neural networks. Through the thorough analysis of disease
grading, image quality enhancement and quality assessment in Sec-
tion IV, we believe that a joint framework incorporating the image
quality assessment, image quality enhancement, and disease grading
is feasible and significant, but to the best of our knowledge, no such
work has been studied in this field. The challenges mainly lie in: (I)
how to appropriately evaluate the quality of fundus images; (II) how
to effectively enhance the low-quality fundus images, and (III) how to
develop an end-to-end collaborative learning framework by integrating
image quality enhancement subnetwork, image quality assessment
subnetwork and DR subnetwork.

To solve these issues, we propose an image Quality Assessment
guided Collaborative Learning framework for both image quality
Enhancing and DR grading, called CLEAQ-DR. The framework takes
into account the image quality assessment and image quality enhance-
ment during the DR grading. The underlying assumption is that under
the guidance and help of the quality assessment and enhancement,
the lesion’s identification capability and DR grading performance
can be improved. To better explore the potential relationships among
the components of the quality assessment, the quality enhancement
and the grading in the fundus images, we propose a collaborative
learning framework to explore the potential correlation among these
tasks and jointly train these subnetworks in a unified deep model for
improving the individual performance. To this end, our collaborative
learning framework incorporates three subnetworks: a DR disease
grading subnetwork for predicting the DR level, a two-branch im-
age quality enhancement (IQE) subnetwork for improving the image
quality while preserving the fundus structure, and a two-branch image
quality assessment (IQA) subnetwork for capturing the inherent low-
quality indicators and predicting the quality level. Specifically, the IQE
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Fig. 1. Some examples of retinal images with different quality levels.
(a) The fundus image of ‘Good’ level(high-quality) provides clear fundus
structures and lesions location. (b) The ‘usable’ level (usable-quality)
fundus images maintain the major fundus structures and lesions, but
some diagnostic interferences are present in the images. (c) The ’Reject’
level(low-quality) fundus images are influenced by the low-quality indica-
tors from uneven illumination, noticeable blurring and artifacts. The poor
quality images make the DR diagnostic assessment task challenging.
The examples are from the EyeQ dataset [14].

Fig. 2. The relationship among the IQA, IQE and DR Grading subnet-
works in our study. The aim of IQE is to improve the quality under the
guidance of the IQA and Grading subnetworks, while both DR Grading
and IQA provide different quality criteria to guide the image quality
enhancement process. By optimizing the three subnetworks jointly, we
can achieve DR prediction and image quality enhancement in a unified
deep model.

subnetwork consists of two encoder-decoder modules, where an image
quality enhancement (U-IQE) module aims to learn the mapping re-
lationship of low-quality images to high-quality images, and a retina
vessel structure segmentation (Seg-IQE) module that aims to model
the vessel structure to guarantee the preservation of the main fun-
dus structure during the enhancement procedure. Moreover, the IQA
subnetwork involves a classification (C-IQA) module for producing a
reliable quality level, and an encoder-decoder (LQI-IQA) module for
capturing the critical low-quality indicators by reconstructing the input
images into the low-quality images. The image quality assessment,
image quality enhancement and disease grading tasks are optimized in
an end-to-end manner.

There are three notable characteristics for the CLEAQ-DR on the
fundus retinal images.

1) Modeling task relationship: There exist inherent relationships
among image quality assessment, image quality enhancement and DR
grading tasks. Fig. 2 illustrates the inherent relationships among the
three subnetworks in our framework. Appropriately modeling the task
relationship allows to improve the performance of each task.

2) Exploiting the image quality from different aspects: To compre-
hensively guide IQE to improve the image quality, the DR and IQA
tasks focus on the image quality from the lesion level and the global
image level.

3) Collaborative Learning: To better reinforce each task, it is nec-
essary to jointly train the DR grading, IQA and IQE tasks within a
unified framework. With such an end-to-end trainable framework, our
study establishes the association among the tasks of image quality
assessment, enhancement and DR grading by collaborating the three
subnetworks for better recovering the image quality and facilitating the
precise localization of lesions.

In summary, our contributions can be summarized as follows.

� A major limitation of most current automatic DR grading models
is that they ignore the effect of the image quality on the grading
performance. To the best of our knowledge, our work is the first
attempt to simultaneously perform multiple tasks: image quality as-
sessment, image quality enhancement and disease diagnosis through
an end-to-end collaborative learning framework. Considering that
image quality assessment is essential for DR grading, our study
establishes the association among the quality assessment, the quality
enhancement and DR disease grading.

� We propose a two-branch encoder-decoder image enhancement sub-
network for improving low-quality images while preserving major
retinal structures for avoiding the distortion occurrence, which helps
to improve the DR diagnosis performance. Moreover, we propose a
two-branch image quality assessment subnetwork for assessing the
quality and guiding the enhancement process. The module can learn
the inherent low-quality indicators for enhancing the assessment
performance. Both subnetworks can be easily extended to other tasks
related to the low-quality medical images.

� Experiment results on two benchmark datasets (Messidor and EyeQ)
demonstrate that our approach leads to a significant performance
boost over existing networks for DR grading and quality enhance-
ment, notably on the EyeQ dataset that contains a large number of
low-quality images. Moreover, we thoroughly analyze the potential
correlation among the tasks of image quality assessment, image qual-
ity enhancement and DR grading through a series of experiments,
demonstrating that these three tasks can benefit from each other.
The proposed joint learning framework CLEAQ-DR can be broadly
applied to other tasks of medical images with low-quality in general.
To make the framework more general, we also further evaluate the
enhanced results of low-quality images in more downstream tasks,
such as vessel segmentation.

II. RELATED WORK

Our work relates to three research areas: (a) DR disease grading,
(b) image quality assessment, and (c) image quality enhancement. We
discuss closely related work for each part.

DR disease Grading: In recent years, deep learning approaches have
achieved immense success on DR diagnosis and screening [2], [3].
Compared to the shallow models such as kernel machines, deep neural
networks have the potential to learn hierarchical representations of the
fundus images. Existing deep learning-based DR grading methods can
be divided into two categories [19], [21], [25]. The first category is to
train a DR grading model for distinguishing the disease severity with
the image-level grading label. For example, Zhou et al. [22] proposed
the prediction of DR severity by both classification and regression
methods based on the relationship between multi-stage images. Wang
et al. [25] proposed a hierarchical multi-task learning framework,
which accomplished the high-level DR grading by the low-level task
of image super-resolution reconstruction and the middle-level task of
lesion segmentation. In contrast to the image-level grading approaches
that consider the entire fundus image as input, another category is to
determine DR grading by identifying the location information of the
DR-related lesions, e.g., microaneurysms, hemorrhage. For instance,
Wang et al. [21] designed Zoom-in-Net which mimics the magnification
process of ophthalmologists to examine fundus images, and generates
attention maps highlighting suspicious lesion regions for DR grading.
Huang et al. [23] suggested a contrastive learning approach based on
the lesion patches to learn highly discriminative representations for

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 08,2023 at 16:21:11 UTC from IEEE Xplore.  Restrictions apply. 



HOU et al.: IMAGE QUALITY ASSESSMENT GUIDED COLLABORATIVE LEARNING OF IMAGE ENHANCEMENT 1457

DR grading. In clinical conditions, there are unavoidably interference
indicators on many fundus images that affect DR grading, such as
uneven illumination, noticeable blur, and artifacts. However, none of the
above studies considered how to deal with the interference indicators
present in fundus images.

Image Quality Assessment: Image quality assessment (IQA) meth-
ods mainly include structure-based methods [4] and feature-based
methods [5], [6], [7]. The structure-based approaches utilize segmented
structures to determine the quality of fundus images. For example,
Köhler et al. [4] recognized the quality of fundus images by using
vascular structures. However, the performance of the structure-based
approaches is heavily dependent on the segmentation of the fundus
structures and cannot directly capture the potential visual features of
the fundus images. In contrast to the structure-based approaches, the
feature-based approaches evaluate the quality of fundus images by
extracting feature representations directly from the images.

Image Quality Enhancement: For image quality enhancement, it
mainly consists of traditional machine learning methods [32], [34],
[36], [38] and deep learning methods [26], [35]. As we know, the tradi-
tional approaches perform image enhancement based on image contrast
normalization and contrast limited adaptive histogram equalization
techniques [31], [37]. More recently, image reconstruction methods
based on deep learning have been soon developed, such as low-light
image enhancement [8], image derainting [9] and deblurring [10].
Eilertsen et al. [35] attempted to learn the mapping operator between
high-quality images and low-quality images in an end-to-end manner
based on the convolutional neural networks. However, these methods
focus on generating globally realistic images, but the loacal lesion
regions that are critical for clinical decisions are ignored.

From the above analysis and comparison of related work, further
exploration of fundus image quality evaluation and enhancement is
necessary and feasible for supporting the DR diagnostic grading, but
there is no method considering these aspects in the fundus disease
grading task.

III. METHODOLOGY

Our main goal is to develop a collaborative learning framework that
can provide more accurate disease grading performance and improve
the quality of retinal fundus images at the same time. In this section, we
first describe the formulation of our tasks and introduce an overview
of the proposed architecture. Then, we introduce the details of each
subnetwork. Finally, we provide the objective function of the CLEAQ-
DR framework.

A. Formulation

Conceptually, as shown in the Fig. 3, the input image set X com-
monly contains three quality levels, including a low-quality image set
XL, a usable-quality image set XU and a high-quality image set XH .
Given original fundus images X = {XH ,XU ,XL}, pseudo struc-
ture masksXP = {XH

P ,XU
P ,XL

P }, the associated DR grading labels

Y = {Y H ,Y U ,Y L} and quality labels Ỹ = {Ỹ H
, Ỹ

U
, Ỹ

L}, the
training procedure of the CLEAQ-DR framework in our study can be
formulated as follows.

At first, besides the original images X , the corresponding low-
quality images X̃ = {QTop2(X

H),QTop1(X
U),XL} are ob-

tained by the image quality transforming module QT (·). To pre-train
the IQE subnetwork QE(·) in stage1, a pre-trained learning strategy
is designed to achieve quality enhancement according to (1).

min
θE

NH∑
n=1

LIQE

(
QE

(
QT

(
xH
n

))
, xH

n , xH
pn

)
(1)

where xH
n ∈ XH , xH

pn ∈ XH
P , NH denote the total number of the

high-quality images, θE denotes the learnable parameters of the IQE
subnetwork, and LIQE(·, ·, ·) denotes the loss of IQE given the inputs
of enhanced images, the original high-quality images and the pseudo
fundus structure masks.

Fig. 3. The diagram of the collaborative learning framework.

Similarly, the pre-training of the IQA subnetwork QA(·) in stage2
can be formulated as:

min
θA

N∑
n=1

LIQA (QA (xn) , QT (xn) , ỹn) (2)

wherexn ∈ X , ỹn ∈ Ỹ denotes the IQA label, containing three classes
in total, θA denotes the learnable parameters of IQA, and LIQA(·, ·, ·)
denotes the loss of IQA given the inputs of the original images,
transformed low-quality images and quality labels.

The DR grading subnetwork DR(·) is defined as:

min
θDR

N∑
n=1

LDR (DR (QE (QT (xn))) , yn) (3)

where xn ∈ X , and yn ∈ Y is the DR grading label of image xn with
one of the five class labels. The input images are labeled as one of five
classes [DR-0,...,DR-4] depending on the severity of the disease. θDR

denotes the learnable parameters of DR(·), and LDR(·, ·) denotes
the loss of DR(·) given the inputs of the enhanced images and DR
grading labels. The objective function and the procedure of joint training
(Stage3) are described in Part F of this section.

B. Overview of the CLEAQ-DR Framework

To produce a more accurate DR diagnosis prediction, we propose a
collaborative learning framework, called CLEAQ-DR, which is capable
of transforming the low-quality fundus images into the usable-quality
or high-quality level fundus images, and generating more accurate
and reliable disease diagnosis predictions. The overall pipeline of the
CLEAQ-DR framework is illustrated in Fig. 4. The training scheme
for our CLEAQ-DR framework consists of three stages: the individual
pre-training of the IQA subnetwork and the IQE subnetwork, and the
joint learning of the three subnetworks.

In the pre-training phase of the IQA subnetwork, it is beneficial to
better simulate the disturbances suffered in clinical scenarios, which
facilitates the pre-training of the IQA subnetwork. There are three
types of common quality degradation interferences, including inade-
quate illumination, noticeable blur and artifact. Three corresponding
filters are defined in [26]. Following it, we design two different image
quality degradation operationsop1 andop2 for transforming the image
quality. The degradation operation of op1 is to randomly select one or
two types of degradation interferences to perform quality degradation
on the fundus images XU . The degradation operation of op2 is to
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Fig. 4. Illustration of the collaborative learning framework. Note that we need the IQA subnetwork for cooperating with IQE and DR Grading
subnetworks as guidance during the joint training. The input images are divided into three groups according to the image quality labels: XH , XU ,
and XL. All images except XL are first fed into the image quality transformation module to obtain the corresponding low-quality images. Stage 1:
With the low-quality fundus images X̃ by image quality transformation, we pre-train the IQA sub-network with the training data triplet (X, X̃, Ỹ ).
Stage 2: Following the same pre-training procedure as the IQA subnetwork, we pre-train the IQE subnetwork with the fundus structure pseudo mask

XH
P and the image pairs (the transformed low-quality images X̃

H→L
by the QTop2(·) and the corresponding high-quality images XH ). Stage

3: Once stage1 and stage2 are independently trained, we collaboratively train the entire framework in an end-to-end manner. When predicting the
severity level of the unseen samples, only the IQE and DR grading subnetworks are jointly utilized to enhance the image quality of the input images
and produce the DR severity prediction.

Fig. 5. Image quality transforming for end-to-end training CLEAQ-DR
framework.

perform quality degradation on the fundus imagesXH with three types
of degradation interferences.

Concretely, for both the transformed original high-quality images
XH and usable-quality XU , we perform the associated quality trans-
formation on them and generate the corresponding low-quality im-

ages X̃
H→L

and X̃
U→L

with different degrees of image degradation
operation as shown in Fig. 5. For low-quality fundus images, we
do not perform any image degradation operation. The image quality
transforming QT (·) can be formulated as:

QTop2

(
XH

)
= X̃

H→L
, QTop1

(
XU

)
= X̃

U→L
(4)

C. Fundus Images Quality Enhancement Subnetwork,
IQE

Medical fundus images acquired from different types of equipment
have significant variations in quality. The low-quality fundus images
with noticeable blur, low contrast and insufficient illumination lead
to the inaccurate diagnosis by ophthalmologists or automated clinical
diagnostic systems. In addition, the structure of the high-quality fun-
dus images transformed by the traditional natural image enhancement
algorithms is seriously distorted due to the fine-grained characteristics
in the fundus images. Therefore, it is crucial to improve the quality
of the fundus images while preserving the fundus structure for disease
diagnosis and analysis.

Specifically, we take the transformed low-quality fundus images X̃
as inputs to train IQE in a fully supervised manner. For the quality
enhancement module(U-IQE) in Fig. 6, the encoding phase is used to
encode input images X̃ in a lower dimensionality. For each encoder
layer, we use a residual block followed by a max pooling layer. Finally,
the symmetric decoding phase is designed to the inverse process of
encoding, which enables to generate the enhanced fundus image X̂

corresponding to the low-quality fundus images X̃ . In addition, it is also
used to integrate the structural information from the fundus structure
segmentation module (Seg-IQE) into the output feature maps of the first
three decoding blocks by concat operation. For each decoder layer, we
employ a transposed convolutional layer followed by a residual block
with a symmetric structure.

To preserve features of the fundus structure and guide the enhance-
ment procedure, extracting multi-scale fundus structural information
is essential for capturing complex scale variations in medical imaging
enhancement. Hence, we introduce the Seg-IQE module to assist the
U-IQE module. As illustrated in Fig. 6, we choose ResNet-34 as the
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Fig. 6. Structure of the fundus image quality enhancement subnetwork
in our collaborative learning framework.

feature encoder in the Seg-IQE module, and remove the average pooling
layer and fully connected layer. In the decoding stage, we adopt the
transposed convolution to restore the fundus structure features. More
specifically, the decoder mainly consists of a 1×1 convolution, a 3×3
transposed convolution and a 1×1 convolution. With a series of skip
connections and decoder blocks, the feature decoder blocks finally
produce the fundus structure mask of the same size as the original input.
In this way, we can obtain the multi-scale fundus structure information
from different depths of the Seg-IQE module, which enables to assist
the U-IQE module to enhance the quality of the low-quality fundus
images X̃ while maintaining the major fundus structures.

In medical application, the pixel-level fundus structure annotations
are usually not easily accessible in practical situations. To address this,
many existing work [22], [24] commonly obtain pseudo-labeling by
the pre-trained networks based on auxiliary datasets. To preserve the
fundus structure of the enhanced images, we obtain the pixel-level
pseudo structure mask XP of the original image X via the CE-Net of
a two-stage training scheme. More specifically, we first pre-train the
CE-Net based on the original DRIVE dataset [16]. Then, considering
the difference in quality between the low-quality datasets and the
DRIVE dataset, we perform the same quality transformation operations
on the DRIVE dataset to obtain the corresponding low-quality and
usable-quality fundus images. The pre-trained CE-Net is further
fine-tuned on the transformed DRIVE dataset to enhance the reliability
of the pseudo fundus structure masks. Finally, we apply the trained
CE-Net to obtain the pseudo fundus structure masks of as the
supervision of the IQE subnetwork. The segmentation loss of fundus
structure allows our model to focus on the regions of fundus structure
in the input images X . Hence, for the Seg-IQE module, we adopt the
Dice coefficient loss as our fundus structure segmentation loss LSeg .

LSeg = 1−
2
∥∥∥X̂P ◦XP

∥∥∥
1∥∥∥X̂P

∥∥∥
1
+ ‖XP ‖1

(5)

where X̂P is the fundus segmentation result of the Seg-IQE module,
XP indicates the obtained pseudo fundus structure masks by the
CE-Net of a two-stage training scheme, and ◦ denotes the hadamard
product.

For the U-IQE module of the IQE subnetwork, we adopt the widely-
used L2 loss as the lossLQE of the U-IQE module, and the loss function
can be formulated as:

LQE =
∥∥∥XH ⊗XMask −Ψ

(
X̃,WΨ

)
⊗XMask

∥∥∥2

2
(6)

where Ψ(·) represents the U-IQE module of the IQE subnetwork, WΨ

denotes the learnable parameters of the U-IQE module, X̃ and XH

denote the low-quality input images and the corresponding high-quality
reference images, XMask denotes the retinal mask of the input images
X̃ , and ⊗ indicates an element-wise multiplication.

Fig. 7. Structure of the two-branch IQA subnetwork.

Once the IQE subnetwork is trained, an enhanced fundus image
X̂(‘Usable’ or ‘Good’ level) and a fundus structure mask X̂P are
obtained.

D. Fundus Images Quality Assessment Subnetwork,
IQA

Artifacts and noticeable blur in the low-quality input images are
removed by the IQE subnetwork. To evaluate the enhancement per-
formance of the IQE subnetwork, we propose a fundus image quality
assessment subnetwork to evaluate the quality of enhanced images.
With the joint training of both the IQE and IQA subnetworks, the
assessment results of the enhanced images are fed back to the IQE
subnetwork forcing IQE to remove as many low-quality indicators as
possible from the low-quality input images.

A single quality classification in the IQA subnetwork can not well
capture the potential quality indicators of the images with different
quality levels during the training stage. Hence, we propose a clas-
sification module (C-IQA) for producing a reliable quality level and
an encoder-decoder module (LQI-IQA) for capturing the critical low-
quality indicators in a unified deep model as our IQA subnetwork.
The proposed subnetwork is illustrated in Fig. 7. Specifically, we take
the original fundus images X (pre-training stage) or enhanced fundus
images X̂ (joint learning stage) by the IQE subnetwork as inputs to
train the IQA subnetwork. We choose ResNet-50 as the classifier in
the C-IQA module. We adopt the multi-class cross-entropy, which is
expressed as:

LQA = − 1

NL

NL∑
i=0

Kq∑
kq=0

(
ỹi,kq ∗ log

(
ỹ′
i,kq

))
(7)

where NL and Kq denote the number of the inputs images and the
number of types of the image quality levels, ỹ′i,kq

and ỹi,kq indicate
the predicted image quality probability and true image quality label of
the kq-th quality level.

The structure of the LQI-IQA module is similar to the U-IQE module.
Specifically, the module first encodes the input images X or X̂ with 4
encoder blocks, and the decoder blocks map the latent representations
back to the input for producing the low-quality representations when
performing the image reconstruction task. The aim of the LQI-IQA is to
capture the low-quality indicators for introducing the prior knowledge
associated with the input image quality. The learned low-quality in-
dicator representations are added to the feature maps of the C-IQA
module. Through transmitting the multi-scale low-quality indicator
representations from LQI-IQA to assist C-IQA, IQA is capable of
appropriately evaluating the image quality.

This is formulated as:

Y� = TIQA

(
Concat

[
FC (X̂),FLQI (X̂)

])
(8)
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where TIQA represents a learnable non-linear transformation filter, FC

and FLQI indicate the feature extracted from the C-IQA module and
the LQI-module of the IQA subnetwork, respectively.

To be specific, when the input X or X̂ is the high-quality fundus
image, the decoder contains plenty of the potential low-quality feature
information due to the reconstructed image being low-quality. By
contrast, when the input X or X̂ is the low-quality fundus image,
the decoder contains little low-quality feature information. Therefore,
the decoder features containing potential low-quality indicators are
incorporated into the C-IQA module to improve the quality assessment
performance. Furthermore, the low-quality indicators naturally contain
patterns of different scales that may be unknown in advance, we
therefore propose a multi-scale strategy to sufficiently capture them.
Meanwhile, we develop a low-quality reconstruction LLQI to better
capture the low-quality indicators associated with the input image
quality in the pixel space. As shown in (9), the loss function LLQI is
applied to compute the mean squared error (MSE) between the output
of the LQI-IQA module and the low-quality images X̃ . By tightly
integrating the encoder-decoder structure and the classification module,
the potential low-quality factors aware features can be captured.

LLQI =
∥∥∥X̃ ⊗XMask−Φ

(
Ψ
(
X̃,WΨ

)
,WΦ

)
⊗XMask

∥∥∥2

2
(9)

where Φ(·) and WΦ represent the LQI-IQA module and its learnable
parameters. XMask denotes the retinal mask of the input images.

E. DR Disease Grading Subnetwork

The goal of DR grading is to predict the classification label for the
disease severity. ResNet-50 is chosen as the backbone in the DR disease
grading subnetwork. Given the enhanced low-quality fundus images
X̂ obtained by the IQE subnetwork as the inputs, the DR grading
subnetwork is trained to produce the severity level. We employ the
multi-class cross-entropy loss as the DR grading loss LDR, which is
formulated as:

LDR = − 1

N

N∑
i=0

Lg∑
lg=0

(
yi,lg ∗ log

(
y′
i,kg

))
(10)

where N and Lg denote the number of the fundus images and the
number of the DR levels, yi,lg and y′

i,lg
indicate the real label and the

predicted probability of the lg-th level.

F. The Overall Loss Function.

The learning objective of training our CLEAQ-DR consists of: a)

a reconstruction loss for encouraging the output X̂
H

of the IQE
subnetwork close to the high-quality reference imagesXH , b) a fundus
structures segmentation loss for restoring realistic fundus structure
textures, c) a DR grading loss for retaining the features of the lesion
areas in the enhanced fundus images and optimizing the DR grading
diagnosis subnetwork, d) the C-IQA module loss in the IQA subnetwork
for evaluating the performance of the IQE subnetwork as well as
constraining the IQE subnetwork for removing more low-quality indi-
cators, and e) the low-quality indicators reconstruction loss for further
enhancing the evaluation performance of the IQA subnetwork. Given
all the loss functions, the overall loss function for our collaborative
learning framework can be defined as:

LIQE = LQE + λSegLSeg

LIQA = LQA + λLQILLQI

LCLEAQ-DR = LDR + λIQELIQE + λIQALIQA (11)

where LIQE , LIQA and LDR denote the individual loss of the IQE
subnetwork, the IQA subnetwork and the DR subnetwork, and λSeg ,
λLQI , λIQE as well as λIQA are the regularization weights that balance
the losses of different components.

TABLE I
SUMMARY OF THE EYEQ AND MESSIDOR DATASETS

IV. EXPERIMENT RESULTS

A. Datasets and Performance Metrics

In our experiments, we evaluate the effectiveness of our method by
comparing it against existing works on the Messidor dataset and the
Eye-Quality (EyeQ) dataset. The information of DR both datasets are
shown in Table I.

Eye-Quality (EyeQ) dataset [14]: The EyeQ dataset from the Eye-
sPACs dataset [15] is a large-scale public benchmark for fundus image
quality assessment and DR grading, which consists of 28,792 fundus
images with their IQA labels and DR grading labels.

Messidor dataset [11]: The dataset collects 1200 fundus posterior
polar color digital images from three ophthalmology departments. For
each image in the dataset, medical experts provide its DR grading
annotation, which is used to measure the grade of diabetic retinopathy.
DR is divided into four levels based on the severity scale according to
different criterions. Similarly, considering the common quality metrics
such as blur, uneven illumination, low contrast and artifacts, we divided
the Messidor dataset into three quality levels based on image quality
transformation.

There are various performance evaluation metrics used with the
purpose of quantitatively evaluating the performance of the different
task subnetworks in the CLEAQ-DR framework. First, for the DR
diagnosis grading subnetwork as well as the IQA subnetwork, we
introduced the quadratic weighted Kappa metric [3] in addition to the
normal classification accuracy. Second, for the IQE subnetwork, the
structural similarity index (SSIM) [18] and the peak signal-to-noise
ratio (PSNR) are used as performance measures.

B. Implementation Details

Considering the diverse and large-sized fundus images in the EyeQ
and Messidor datasets, we normalize and resize them into 512 × 512
resolution to accelerate the model convergence. Besides, we detect the
retinal mask of each input image using the Hough Circle Transform,
and then crop the mask regions to reduce the effect of the black
background. On the other hand, we employ different data augmentation
strategies for each class to alleviate the class imbalance distribution
during training. That is, the number of data augmentation depends on
the sample number of each class. There are three stages for training
the CLEAQ-DR framework. During the first stage, the DR grading
subnetwork is pre-trained with DR severity labels, and a variety of data
augmentation strategies including random rotation, horizontal flipping
and vertical flipping are conducted on the input images. In the second
stage, the IQA subnetwork is pre-trained with the quality labels and
the transformed low-quality images. In stage3, the DR grading, IQA,
and IQE subnetworks are simultaneously fine-tuned in an end-to-end
manner.

In the joint training stage, the performance of the CLEAQ-DR
framework is highly dependent on the appropriate choice of weights
among the losses for all tasks. The different tasks need to be properly
balanced, so that the CLEAQ-DR framework can converge to the
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state which is optimal for all the tasks. For the loss regularization
weight values in (11), a naive approach is to assign each individual
task with an equal weight. It is not appropriate because the multiple
tasks to be optimized have different difficulty levels. The challenge
is to find the best regularization weight value for each task at each
training step that balances the contribution of each task. We consider
it as a multi-task learning paradigm and assign different weights for
different tasks. Based on the work of Liu et al. [12], we introduce a
dynamic task weighting scheme into the optimization process of the
CLEAQ-DR, which enables the entire framework to achieve balanced
training automatically for multiple tasks by dynamically tuning gradient
magnitudes. The weight of each task changes in every batch. Therefore,
for each task in a batch, the optimization considers the loss ratio between
the current loss and the initial loss, which measures how well the model
has trained for that task. Nevertheless, it is worth noting that the aim of
the IQE subnetwork is to maximize the loss LIQA, whereas the aim of
the IQA subnetwork is to minimize the loss LIQA. To fit this goal, the
IQE subnetwork performs the gradient reversal operation [13] given
the gradient from the IQA network and passes it to the preceding layer
during the backpropagation.

The whole training process involves 150 epochs in total. The learning
rates of all stages are initialized to 1×10−3 in the first 60 epochs, and
then automatically adjusted in the following epochs for each stage
according to the epoch number. The learning rate is multiplied by
(1− epochi

epochmax
)T with T =0.9. The Adam optimizer is used to update

the parameters for all stages, and the batch size is set to 32. The
CLEAQ-DR is trained using PyTorch with 4 NVIDIA Quadro RTX
6000 GPUs.

C. Comparisons With State-of-the-Art Methods

In this section, we conduct relevant experiments to evaluate the
proposed CLEAQ-DR framework on the EyeQ and Messidor datasets.
The purpose of our experiments is to investigate the following research
questions:

Q1. How does CLEAQ-DR’s disease grading and image enhance-
ment performance compare to the most advanced methods?

Q2. How does the proposed joint learning framework help with the
individual task?

Q3. Is the Seg-IQE module in the IQE subnetwork beneficial to the
improvement of low-quality fundus images?

Q4. Does the LQI-IQA module contribute to boosting the perfor-
mance of quality assessment of the fundus images?

1) The Comparison on the DR Grading: To make our method
more convincing, we empirically demonstrate CLEAQ-DR’s effective-
ness on two benchmark datasets and compare it with state-of-the-art
DR grading methods. We evaluate the DR grading performance of
our proposed CLEAQ-DR framework with three types of comparable
methods: covering the popular networks (e.g. ResNet-50, Inception-v3
and DenseNet-121), the top three places of Kaggle challenge (Min-
pooling [19], o_O [19] and Reformed Gamblers [19]) and the current
state-of-the-art DR grading models: MMCNN [22], Zoom-in-Net [21],
Lesion-base CL [23] and DeepMT-DR [25]. For the grading results of
the method [15], the implementation details and source codes are not
published. Therefore, the ACC value is absent in the Table. Experimen-
tal results are reported in Table II where the best results are boldfaced.

As shown in Table II, CLEAQ-DR consistently achieves the best
results across both datasets with respect to both the ACC and Kappa
metrics. The improvement demonstrates that CLEAQ-DR presents
a notably better DR grading performance than the state-of-the-art
methods due to the incorporation of the image quality assessment and
enhancement, which are beneficial for the DR grading subnetworks by
removing the artifacts, unbalanced illumination, and other diagnostic
interferences while preserving lesion characteristics for the low-/usable
quality images.

2) The Comparison on the Low-Quality Image Enhance-
ment: To make our method more convincing, we also empiri-
cally demonstrate the effectiveness of the CLEAQ-DR framework in
enhancing low-quality fundus images on two benchmark datasets and

TABLE II
THE COMPARISON BETWEEN OUR METHOD WITH THE STATE-OF-THE-ART

METHODS FOR DR GRADING ON EYEQ AND MESSIDOR DATASETS

TABLE III
THE COMPARISON BETWEEN OUR METHOD WITH THE SOTA METHODS

FOR LOW-QUALITY FUNDUS IMAGES ENHANCEMENT ON EYEQ DATASETS

compare it with the state-of-the-art image enhancement methods. The
comparison includes a series of deep learning methods: Eilertsen
et al. [35], cGAN [27], CutGAN [29], CycleGAN [28], I-SECRET [30],
and cofe-Net [26]. Moreover, we compared the traditional image
correction approaches: LIME [31], distribution fitting algorithm [32],
Tian et al. [33], variational frameworks [38], latent structure-driven
methods [34], [36], Fu et al. [37]. Experimental results are reported in
Table III where the best results are boldfaced.

From Table III, we can clearly observe that our method has a
remarkable advantage compared with the traditional image correction
approaches and deep learning methods in terms of PSNR metrics. By
collaborating with the IQA subnetwork, it is able to guide the IQE sub-
network to remove as many diagnostic interferences as possible from
the low-quality fundus images. In other words, the IQE subnetwork is
viewed as a generator for generating the enhanced images whereas the
IQA subnetwork can be considered as a discriminator which is used
to evaluate and guide the enhancement optimization of the low-quality
images to achieve a progressive refinement. Moreover, Fig. 8 shows
the results generated by our CLEAQ-DR and several compared deep
learning methods. It can be observed that our method remarkably
enhances the low-quality fundus images, while preserving the complete
fundus structure information.

To intuitively understand the enhancement effect of the CLEAQ-DR
framework on low-quality fundus images, we applied Grad-CAM to
visualize the vascular and pathological regions on the low-quality
images and the corresponding enhanced images. Fig. 9 shows the orig-
inal low-quality images and the corresponding higher-quality images
generated by our CLEAQ-DR. As shown in Fig. 9, our method achieves
image enhancement while preserving the major structural features in
the fundus. This result highlights that the quality is obviously improved
with the help of the IQA and DR grading subnetworks.

D. Ablation Study

To more comprehensively evaluate our model, we conduct ablation
studies to analyze the correlation between different subnetworks.

1) The Ablation Study on the Low-Quality Image Enhance-
ment: The CLEAQ-DR framework mainly involves three subnet-
works: IQE subnetwork, IQA subnetwork, DR Disease grading subnet-
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Fig. 8. Visual comparisons on the low-quality image enhancement between the CLEAQ-DR and other deep learning methods. In addition, we
also visualize the vessel segmentation results of the enhanced images obtained by the comparable methods. The proposed CLEAQ-DR framework
preserves more structural features of the fundus images, which can more effectively enhance the quality of low-quality fundus images.

Fig. 9. Visualization of retinal structures and lesion regions on low-quality images and corresponding enhanced images. The proposed method
can significantly improve the low-quality fundus images, and the enhanced low-quality fundus images can provide richer information hidden in the
retinal structures and lesions for DR grading.

work. To investigate the effectiveness of the components in the CLEAQ-
DR framework for the IQE subnetwork, we compare CLEAQ-DR with
its several variants, respectively.

IQE: The IQE sub-network is independently trained for enhancement
of the low-quality fundus images.

IQE w/o Seg-IQE module: The IQE subnetwork is trained indepen-
dently without the Seg-IQE module.

CLEAQ-DR w/o DR, called CLEAQ: The collaborative learning
framework without the DR grading subnetwork.

CLEAQ-DR w/o IQA, called CLEQ-DR: The collaborative learning
framework without the IQA subnetwork.

The results are summarized in Table IV. We find that CLEAQ-DR
outperforms the contender methods in terms of PSNR and SSIM. These
results reveal several interesting points:

1) IQE w/o Seg-IQE shows the worst performance among
the methods for almost all datasets and metrics. Our
results suggest that imposing the fundus structural
segmentation module during the quality enhancement
training is crucial for improving quality enhancement.

2) CLEAQ performs worse than CLEAQ-DR. The reason is
that collaborated with DR grading subnetwork, and the

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 08,2023 at 16:21:11 UTC from IEEE Xplore.  Restrictions apply. 



HOU et al.: IMAGE QUALITY ASSESSMENT GUIDED COLLABORATIVE LEARNING OF IMAGE ENHANCEMENT 1463

Fig. 10. Quality enhancement results of our CLEAQ-DR and its variants. We crop and zoom-in the uneven illumination regions to compare the
performance of related methods. The proposed CLEAQ-DR framework enhances low-quality images containing more details.

TABLE IV
THE ABLATION EXPERIMENT RESULTS OF IQE SUBNETWORK

IQE subnetwork can be guided to discover low-quality
indicators. Lack of this collaboration hinders the iden-
tification of lesions. The DR grading subnetwork helps
the IQE subnetwork to focus on relevant class-specific
regions in the images. The performance also decreases
IQA guidance, which indicates that the image quality
assessment is an important task to provide quality criteria
for guiding the image quality enhancement process. In
addition, CLEAQ performs worse than CLEA-DR, which
demonstrates that the IQA subnetwork has a more signif-
icant contribution to the IQE subnetwork compared to the
DR grading subnetwork.

3) CLEAQ-DR achieves the best PSNR and SSIM, which
verifies the significance of the collaborative learning
again.

As shown Fig. 10, we also demonstrate the quality enhancement re-
sults of the CLEAQ-DR framework and its two main variants (CLEAQ
and CLEQ-DR) for low-quality fundus images. From Fig. 10, it can
be observed that the tasks of DR and IQA focus on improving image
quality from different aspects. The task of DR diagnosis aims to improve
the local image quality from the lesion level, e.g. EXs, under the DR
grading supervision, whereas the task of IQA aims to enable that
IQE generates higher quality images from the global image level,
e.g. uneven illumination, noticeable blurring and artifacts. The image
quality enhancement of the CLEAQ-DR can be greatly improved when
jointly training the different tasks.

2) The Ablation Study on the DR Disease Grading: In the
case of ablation experiments of the DR disease grading, we compare
the single DR grading subnetwork and CLEQ-DR on the EyeQ and
Messidor datasets.

As shown in Table V, it is obvious that our proposed method shows
improvements upon just the DR grading subnetwork, which further
confirms our hypothesis that the performance of automated diagnostic
systems is highly dependent on image quality. Furthermore, the DR
grading performance of CLEAQ-DR greatly degrades when the IQA
subnetwork is removed. These results verify the significance of quality
assessment in the DR grading on the dataset with a large number
of the low-quality images, even on the Messidor dataset where the

TABLE V
THE ABLATION EXPERIMENT RESULTS OF DR GRADING SUBNETWORK

majority of images are high-quality. The reason is that our collaborative
learning framework encourages to further improve the quality under the
guidance of the classification.

We further calculate the confusion matrices of CLEAQ-DR, CLEQ-
DR and DR grading. As can be seen from Fig. 11, CLEAQ-DR shows
the best DR grading performance among the methods. Compared with
the DR grading method, CLEAQ-DR and CLEQ-DR exhibit better
grading performance, which is probably attributed to the fact that
a large number of low-quality fundus images are enhanced by the
IQE subnetwork, thus improving the classification performance of the
DR grading subnetwork. Comparing the classification performance of
CLEAQ-DR and CLEQ-DR, we validate that the quality assessment
subnetwork plays an important role in guiding the quality enhancement,
which can further help CLEAQ-DR to improve on the DR classification
performance.

3) The DR Grading Ablation Study for Different Quality Fun-
dus Images: To evaluate the performance of the DR disease grad-
ing on the different quality fundus images, we compare the sin-
gle DR grading subnetwork and CLEQ-DR on high-quality, usable-
quality and low-quality fundus images, respectively. In addition,
we also compare it with the recently proposed multi-task learning
framework, DeepMT-DR. The comparisons on different quality fundus
images are illustrated in Fig. 12, which reveals the following several
conclusions:

1) All the comparable methods perform best on high-quality
fundus images, and show performance degradation on
both usable-quality images as well as low-quality images.
Especially on low-quality fundus images, all the methods
except our methods obviously suffer from the decreased
image quality and obtain the worse performance, which
implies that the quality of the fundus images significantly
influence the performance of DR grading.

2) Compared with other methods, the performance of the
CLEAQ-DR framework is not drastically affected by the
low-quality fundus images, which demonstrates the ad-
vantage of the proposed method. In comparison with the
high-quality fundus images, the Kappa metrics decrease
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Fig. 11. The classification confusion matrices of the proposed CLEAQ-DR, CLEQ-DR, and DR grading. The horizontal axis represents the
predicted categories and the vertical axis represents the true categories.

Fig. 12. The ablation experiment results of DR grading subnetwork
based on fundus images of different level qualities.

by only 0.031 and 0.049 for CLEAQ-DR on usable-/high-
quality fundus images, respectively.

3) When the inputs are high-quality images, the performance
of the DR grading subnetwork is the best, outperforming
our proposed CLEAQ-DR. The reason is that the aim
of the IQE subnetwork is to improve the image quality
for lower quality images, leading to inevitable negative
influence when the quality enhancement is attempted on
the high-quality fundus images.

4) Our proposed method performs better than DeepMT-DR
on the different quality levels, especially on low-quality
images. Although the DeepMT-DR leverages multi-task
learning with consideration of lesion segmentation for
improving DR diagnostic performance, it ignores the
influence of low quality on the classification task.

5) The proposed CLEAQ-DR framework focuses on the DR
grading performance improvement for low-quality and
usable-quality fundus images. Hence, the collaborative
learning architecture benefits the final results with a gain
of 0.106 and 0.134 for Kappa metrics compared with
baseline DR grading on the usable-quality images and
low-quality images, respectively.

4) The Ablation Study on the Image Quality Assessment: In
the ablation experiments for the image quality assessment, we compared
our CLEAQ-DR with only the IQA subnetwork, the IQA subnetwork

TABLE VI
THE ABLATION EXPERIMENT RESULTS OF IQA SUBNETWORK

w/o LQI-IQA, and CLEAQ on the EyeQ and Messidor datasets. The
quality assessment results of the ablation experiments are shown in
Table VI. We can draw the following conclusions:

1) CLEAQ-DR expectedly shows the worst performance
among the methods, which indicates that the IQE and
DR subnetworks have no positive influence on the
image quality assessment task. The main reason for
the performance drop is due to the fact that the IQE
subnetwork improves the quality of Low-/Usable-quality
fundus images, which leads the IQA subnetwork to
incorrectly classify Low-/Usable-quality images as
high-quality images. Although quality label of training
data is not changed, the potential quality of training data
becomes higher as IQE subnetwork training. That is,
the input of the IQA subnetwork is the enhanced fundus
images, which do not reflect the inherent quality level
of the original images. Therefore, the fine-tuning of the
IQA becomes difficult due to inconsistency between the
original label and the potential label. In other words,
the IQA and IQE subnetworks act as discriminators and
generators in adversarial learning, respectively.

2) Comparing the results of IQA and IQA w/o LQI-IQA,
an important conclusion is that the low-quality indica-
tors reconstruction can provide more potential critical
information associated with the input image quality and
help the network to focus on relevant low-quality-specific
regions in the image.

5) Collaborative Learning Analysis With Different Epochs:
In this part, we thoroughly analyze the correlation among disease
diagnostic grading, quality assessment and quality enhancement with
different epochs. From Fig. 13, we can draw the following conclusions:

1) It can be observed that the different tasks can mutually
reinforce each other by the collaborative learning manner,
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Fig. 13. Task correlation analysis in the procedure of joint learning. (a) The image quality enhancement performance through joint learning of
the multiple sub-networks with epoch increasing in terms of PSNR. (b) The image quality enhancement performance through jointly training the
multiple sub-networks with epoch increasing in terms of SSIM. (c) The DR grading performance through jointly training the multiple sub-networks
with epoch increasing in terms of accuracy.

producing better performance for image enhancement and
DR grading.

2) As can be seen in Fig. 13(a) and (b), training the tasks of
DR grading and IQA with more epochs enables the IQE
to obtain better image quality. Moreover, in comparison
with its two variants, CLEAQ-DR is able to obtain higher
quality with more guidance.

3) Fig. 13(c) shows that higher image quality leads to more
accurate grading diagnostic performance in terms of ac-
curacy. The image quality is enhanced through IQE under
the collaboration with the tasks of DR diagnosis and
IQA, thereby DR grading becomes easier to be trained,
producing better performance.

4) These tasks are required to be jointly optimized in a uni-
fied framework. Once DR or IQA is learnt and fixed, there
is no feedback from DR or IQA to boost the performance
of IQE. One-trial learning for DR grading obtains limited
improvement on the non-optimal quality images.

5) The performance of CLEAQ-DR tends to become stable
around the 85-th epoch, and starts to gradually and slightly
decrease after training further.

V. DISCUSSION

We show some failure cases of low-/usable-quality fundus image
enhancement in Fig. 14. In case 1, some low-quality regions (as
shown by the green boxes of case 1) with sharp boundaries, appear
as vascular-like structures (as shown by the yellow boxes of case 1)
after image quality enhancement. It may mislead the ophthalmologists
to diagnose it as neovascularisation. This inspire us to incorporate
more constraints to distinguish between the real fundus structure and
the low-quality regional boundaries. In case 2, although the proposed
method is able to remove artifacts (as shown by the blue boxes of case 2)
from low-quality fundus images, the fundus structures in the enhanced
low-quality images are not sufficiently prominent. Such enhanced
images may be detrimental to the ophthalmologist’s diagnosis. We need
to further improve the IQE subnetwork to enable to capture future of
lesions and fundus structures while enhancing image quality. In the last
case, the optic disc and part of the blood vessels are lost (as shown by
the purple box of case 3) in the enhanced image. The main reasons are
1) extremely uneven illumination (as shown by the red box of case 3) in
the usable-quality image, and 2) some of the pseudo-fundus structure
masks generated by CE-Net are incomplete, which are required by
IQE. Therefore, we will consider introducing structural consistency
constraints to alleviate the problem of the partial absence of fundus
structures.

Fig. 14. Some negative cases of low-quality fundus image enhance-
ment. The low-/usable-quality fundus images (top row) and the cor-
responding enhanced results (bottom row). Case1: the boundaries of
low-quality regions appear as vascular-like structures after image quality
enhancement. Case2: the fundus structures are not prominent in the
enhanced low-quality image. Case3: the fundus structures are partially
missing in the enhanced usable-quality image.

We also further discuss some limitations of the proposed method
and the future research directions, which mainly include the following
aspects:

1) A large fundus image dataset usually comes from multiple
institutions. Therefore, it often involves multiple image
styles, resulting in performance degradation of the DR
grading task. Therefore, how to unify the image styles in
the dataset and reduce the inter-domain differences will
be the focus of future research.

2) In our CLEAQ-DR framework, the IQE subnetwork is
guided by both the IQA and the DR subnetworks from
different aspects. The relationship between IQA and DR
is implicit through collaboratively guiding IQE, and an
explicit relationship needs to be further exploited. How
to directly establish the correlations among IQA, DR, and
IQE tasks in a unified framework is also a future research
direction.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 08,2023 at 16:21:11 UTC from IEEE Xplore.  Restrictions apply. 



1466 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 3, MARCH 2023

3) The fundus structure annotation is required in our frame-
work. Although the pseudo annotation is obtained by
the trained CE-Net, the annotation requirement allows
our model to be dependent on the external resource.
Therefore, how to collaboratively learn the multiple tasks
without any local annotations (fundus structures or le-
sions) is another future research.

VI. CONCLUSION

The quality of fundus images is crucial for ensuring the diagnostic
reliability of the ophthalmologist or automated medical system. To
enhance the DR grading performance on the low-quality fundus images,
we propose an end-to-end quality assessment guided collaborative
learning framework that (1) improves the disease grading performance
given a large number of low-quality images, (2) achieves fundus image
quality enhancement, and (3) trains an image quality assessment model.
The experimental results demonstrate that our method significantly
improves the latest results of DR grading on benchmark fundus datasets,
and the low-quality fundus images also gain remarkable enhancement.
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