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Abstract. The functional connectivity (FC) between brain regions is
usually estimated through a statistical dependency method with func-
tional magnetic resonance imaging (fMRI) data. It inevitably yields re-
dundant and noise connections, limiting the performance of deep super-
vised models in brain disease diagnosis. Besides, the supervised signals of
fMRI data are insufficient due to the shortage of labeled data. To address
these issues, we propose an end-to-end unsupervised graph structure
learning method for sufficiently capturing the structure or characteristics
of the functional brain network itself without relying on manual labels.
More specifically, the proposed method incorporates a graph generation
module for automatically learning the discriminative graph structures
of functional brain networks and a topology-aware encoding module for
sufficiently capturing the structure information. Furthermore, we also de-
sign view consistency and correlation-guided contrastive regularizations.
We evaluated our model on two real medical clinical applications: the di-
agnosis of Bipolar Disorder (BD) and Major Depressive Disorder (MDD).
The results suggest that the proposed method outperforms state-of-the-
art methods. In addition, our model is capable of identifying associated
biomarkers and providing evidence of disease association. To the best of
our knowledge, our work attempts to construct learnable functional brain
networks with unsupervised graph structure learning. Our code is avail-
able at https://github.com/IntelliDAL/Graph/tree/main/BrainUSL

† Pengshuai Zhang and Guangqi Wen contribute equally to this work.
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1 Introduction

Recent studies have shown that rs-fMRI based analysis for brain functional con-
nectivity (FC) is effective in helping understand the pathology of brain dis-
eases [8, 17, 25]. The functional connectivity in the brain network can be mod-
eled as the graph where nodes denote the brain regions and the edges represent
the correlations between those regions [6]. Hence, the brain disease identification
can be seen as the graph classification with the refined graph structures [28].

The representation learning of brain network heavily relies on the graph
structure quality. The existing brain network construction methods [16, 23] are
often noisy or incomplete due to the inevitably error-prone data measurement
or collection. The noisy or incomplete graphs often lead to unsatisfactory repre-
sentations and prevent us from fully understanding the mechanism underlying
the disease. In pursuit of an optimal graph structure for graph classification, re-
cent studies have sparked an effort around the central theme of Graph Structure
Learning (GSL), which aims to learn an optimized graph structure and corre-
sponding graph representations. However, most works for GSL rely on the human
annotation, which plays an important role in providing supervision signals for
structure improvement. Since the fMRI data is expensive and limited, unsuper-
vised graph structure learning is urgently required [1, 4, 14]. Moreover, disease
interpretability is essential as it can help decision-making during diagnosis.

Considering the above issues, we aim to discover useful graph structures via
a learnable graph structure from the BOLD signals instead of measuring the
associations between brain regions by a similarity estimation. In this paper,
we propose an end-to-end unsupervised graph structure learning framework for
functional brain network analysis (BrainUSL) directly from the BOLD signals.
The unsupervised graph structure learning consists of a graph generation module
and the topology-aware encoder. We propose three loss functions to constrain
the graph structure learning, including the sparsity-inducing norm, the view con-
sistency regularization and the correlation-guided contrastive loss. Finally, the
generated graph structures are used for the graph classification. We evaluate
our model on two real medical clinical applications: Bipolar Disorder diagno-
sis and Major Depressive Disorder diagnosis. The results demonstrate that our
BrainUSL achieves remarkable improvements and outperforms state-of-the-art
methods. The main contributions of this paper are summarized below:

– We propose an end-to-end unsupervised graph structure learning method for
functional brain network analysis.

– We propose the correlation-guided contrastive loss to model the correlations
between graphs by defining the sample correlation estimation matrix.

– Our method provides a perspective for disease interpretable analysis and
association analysis between BD and MDD.
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Fig. 1: Illustration of the proposed BrainUSL. The unsupervised graph structure
learning module consists of a graph generation module for generating optimized
sparsity-induced graph structures, a topology-aware encoder for capturing the
essential topological representation and a correlation-guided contrastive learn-
ing for exploiting discriminative and sparse graph structures. Then, three loss
functions are proposed for guiding the procedure of graph structure learning.
Finally, the generated graph structure for each subject and the topology-aware
encoder are further used for the downstream classification.

– The experimental results demonstrate the advantage of the proposed method
in brain disorder diagnosis.

2 Method

The constructed graph structure of brain network in existing works are often
noisy or incomplete. To address this issue, we propose a novel unsupervised graph
structure learning method, including the graph generation module for generating
optimized sparsity-induced graphs and the topology-aware encoder for capturing
the topological information in graphs, as illustrated in Fig. 1. Then, we propose
a new objective function for unsupervised graph structure learning from the
perspectives of constraining structure sparisty as well as view consistency and
preserving discriminative patterns at the same time.

2.1 Graph Generation Module.

To exploit the information in fMRI signals for generating the optimized sparsity-
induced graph structure, we propose a graph generation module, which contain-
ing a graph generation module contains BOLD signal feature aggregation (Ef )
with a stack of convolutional layers [7] for learning the low-dimensional BOLD
signal features. The feature is learned as follows:

E
(l+1)
f (u) =

U−1∑
s=0

E
(l)
f (u− s) ∗ K(l)(s), (1)
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where K(l) is a convolutional kernel of l-th layer with a kernel size of U and u
denotes the BOLD signal element in a brain region of the input x. With the
feature learned by Ef , we generate the optimized graph AG by calculating the
correlation among the nodes.

2.2 Topology-aware encoder.

The graph topological information is crucial for graph embedding learning. Moti-
vated by BrainNetCNN [5], we propose a Topology-aware Encoder for exploiting
the spatial locality in the graph structure through a hierarchical local (edge)-to-
global (node) strategy by aggregating the embeddings of the connections asso-
ciated with the nodes at the two ends of each edge. The topology-aware encoder
involves an operator of edge aggregation (Eg) with multiple cross-shaped filters
for capturing the spatial locality in the graph and node aggregation (En) for
aggregating the associated edge. The cross-shaped filters in edge aggregation in-
volve a combination of 1×M and M×1 basis filters with horizontal and vertical
orientations, which are defined as:

Hg = Eg(A) =

M∑
i=0

M∑
j=0

A(i,·)wr +A(·,j)wh, (2)

where wr ∈ R1×M and wh ∈ RM×1 denote the learned vectors of the horizontal
and vertical convolution kernel, M denotes the number of ROIs, A and Hg denote
the adjacency matrix and the edge embeddings. With the learned edge embed-
dings, we further learn the node embeddings by aggregating the associated edges
with the nodes with a learnable layer. More specifically, the node aggregation
takes the edge embedding as the inputs and obtains the node embedding from a
node-wise view by a 1D convolutional filter. The node aggregation is defined as:

Hn = En(Hg) =

M∑
i=1

H(i,·)
g wn, (3)

where Hn ∈ RM×d is the node embedding, and wn ∈ R1×M is the learned vector
of the filter, and d is the dimensionality of the node embeddings.

2.3 Objective Functions.

To better exploit the graph structure, we design three loss functions including
a sparsity-inducing norm, a view consistency regularization and a correlation-
guided contrastive loss. We assume that the sparsity of the generated graphs
allows for the preservation of the important edges and removal of noise. To
achieve this, we utilize an l1 norm to remove the irrelevant connections and
preserve the sparsity of the generated graphs.

Furthermore, we introduce a view consistency regularization to ensure the
consistency of two views by maximizing the agreement between the node embed-
dings learned from the fixed graph structure AP and learnable graph structure
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AG. The view consistency regularization is defined as Lvc =
∑N

i=1 sim(ei, êi),
where sim(·, ·) is a cosine similarity measure, N denotes the number of samples,
êi and ei represent the i-th graph embeddings from AP and AG.

The motivation of contrastive learning is to capture the graph embeddings
by modeling the correlations between graphs [24]. However, it produces bias
depending on the simple data augmentations, which can degrade performance
on downstream tasks. Hence, we introduce the graph correlation estimation by
graph kernel [27] to construct the correlation matrix S ∈ N × N . Then, we
binarize the matrix by a simple thresholding with a threshold value θ. If Sij ≥ θ,
we set Sij to 1, which indicates that the i-th and j-th samples are regarded as
a positive sample pair. Otherwise, Sij is set to 0, indicating they are considered
as a negative sample pair. With the estimated positive and negative pairs, the
correlation-guided contrastive loss is defined as:

Lcc = −
N∑
i=1

log

∑
Sij=1 exp(sim(ei, ej)/τ)∑N

j=1 1i ̸=j exp(sim(ei, ej)/τ)
, (4)

where 1(·) = {0, 1} is an indicator function, and τ is a temperature factor to
control the desired attractiveness strength.

The final objective function is formulated as:

L = Lvc + αLcc + β ∥AG∥1 , (5)

where α and β are the trade-off hyper-parameters. Finally, based on the gener-
ated graphs and pre-trained topology-aware encoder, we leverage the multi-layer
perceptron (MLP) with the cross-entropy loss for the graph classification.

3 Experiments and Results

3.1 Dataset and experimental details.

We evaluated our BrainUSL on a private dataset constructed from Nanjing Med-
ical University(NMU) for BD and MDD diagnosis by repeating the 5-fold cross-
validation 5 times with different random seeds. We deal with the original fMRI
data by dpabi [20] and divide the whole brain into 116 brain regions based on
Automated Anatomical Labeling (AAL) for analysis, which included spatial nor-
malization to Echo Planar Imaging (EPI) template of standard Montreal Neu-
rological Institute (MNI) space (spatial resolution 3mm×3mm×3mm), spatial
and temporal smoothing with a 6mm×6mm×6mm Gaussian kernel and filter
processing with adopting 0.01-0.08Hz low-frequency fluctuations to remove in-
terference signals. The dataset includes 172 health controls (104 females and 68
males, aged 24.89±7.14 years, range 18-43 years), 127 MDDs (90 females and
37 males, age range 17-34 years) and 102 BDs (76 females and 26 males, age
range 16-32 years), who were scanned at a single site with identical inclusion
and exclusion criteria.
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Table 1: Classification results on the diagnosis of BD and MDD. Lvc: view con-
sistency regularization; Lcc: correlation-guided contrastive loss.

Methods HC vs. BD HC vs. MDD
ACC(%) AUC(%) SEN(%) SPEC(%) ACC(%) AUC(%) SEN(%) SPEC(%)

FC + SVM [21] 73.2 70.8 65.3 72.9 68.1 67.5 66.5 75.4
FC + RF [21] 67.7 60.2 60.1 65.0 63.4 59.8 63.8 66.1
GroupINN [22] 67.9 63.3 62.8 67.1 66.8 65.3 63.1 65.8

ASD-DiagNet [2] 73.3 70.1 58.5 79.6 68.2 66.7 60.2 74.3
MVS-GCN [18] 66.9 64.2 62.1 73.5 68.3 68.2 63.8 61.2

ST-GCN [3] 67.1 57.5 56.6 73.5 58.1 52.3 53.3 55.1
BrainNetCNN [5] 73.3 71.7 64.1 79.3 69.4 68.4 61.5 75.2
BrainUSL -w/o l1 75.5 73.6 65.2 82.0 75.4 74.2 67.5 81.0

BrainUSL -w/o Lvc 75.6 72.7 62.8 82.7 73.8 73.1 69.5 76.7
BrainUSL -w/o Lcc 75.0 71.7 59.1 84.3 74.1 73.1 65.4 80.8
BrainUSL(Ours) 77.3 74.4 63.0 85.7 76.7 75.3 67.6 82.6
BrainUSL - BD - - - - 75.2 74.1 67.8 80.5

BrainUSL - MDD 76.4 73.7 63.2 84.2 - - - -

3.2 Classification results.

We compare our BrainUSL with state-of-the-art models in terms of Accuracy
(ACC), Area Under the Curve (AUC), Sensitive (SEN) and Specificity (SPEC).
The comparable methods can be grouped into two categories: traditional meth-
ods including FC+SVM/RF [21] and deep learning methods including GroupINN [22],
ASD-DiagNet [2], MVS-GCN [18], ST-GCN [3] and BrainNetCNN [5].

Comparison with SOTA. Compared with state-of-the-art methods, the pro-
posed BrainUSL generally achieves the best performance on MDD and BD iden-
tification, the results are shown in Table 1. Specifically, the results show that
our BrainUSL yields the best ACC and AUC results on MDD (ACC=76.7% and
AUC=75.3%) and BD (ACC=77.3% and AUC=74.4%), compared to the exist-
ing brain disease diagnosis approaches. Moreover, Fig 2 illustrates the influence
of the pre-training epochs of BrainUSL on the classification performance. It can
be found that the performance improves with the pre-training epochs increasing
until 40/60 epochs for BD/MDD, which demonstrates that more pre-training
epochs help capture accurate structural representation. In addition, the similar
sparisty patterns are observed for both the diagnosis of two disorders. The re-
sults demonstrate that our generated graphs are more discriminative than the
graphs constructed by pearson correlation coefficient, which confirms that the
quality of the graph structure is critical for functional brain network represen-
tation learning, and noisy or redundant connections in brain network impede
understanding of disease mechanisms.

Ablation Study. There are three parts in our final objective funciton. Next,
we perform a sequence of ablation studies on the three parts of our model. As
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Fig. 2: The impact of unsupervised training epochs.

(a) Top-10 connections of BD (b) Top-10 connections of MDD

Fig. 3: Illustration of discriminative connections for brain disease diagnosis.

shown the third part in Table 1, all the proposed loss functions obviously improve
the classification performance, showing the crucial role of the each component
and the complementary one another. Therefore, our results demonstrate that the
graph structure constructed in an unsupervised manner can provide the potential
correlations and discriminative information between brain regions precisely.

3.3 Functional Connectivity Analysis.

We use BrainNetViewer [19] to illustrate the discriminative top-10 connections
identified by our method for brain disease diagnosis in Fig. 3. Neuroimaging stud-
ies have demonstrated that the subnetworks of SN, CEM, and DMN are often
co-activated or deactivated during emotional expression task. We find that some
identified connections in MDD and BD such as Frontal-Mid-R between Frontal-
Sup-Medial-L and Angular-L between Thalamus-L are the key connections in
DMN, CEN and SN, which demonstrates that our model can generate the dis-
criminative brain structure and facilitate the identification of biomarkers [11,
12, 10]. Furthermore, as shown in Fig 4, by comparing the graphs constructed
by PCC and BrainUSL, it can be observed that our method produces a sparser
structure for the brain network, indicating that only a small portion of the func-
tional connections are relevant to the outcome. The results indicate that the
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Fig. 4: Differences in connectivity patterns constructed by PCC (Top) and Brai-
nUSL (Bottom). The 1st and 3rd columns indicate two examples of the generated
graph structures. The 2nd and 4th columns indicate the histograms of connec-
tion strengths excluding the diagonal elements for all the subjects by PCC and
our learnable manner.

generated graph structures via unsupervised learning can effectively reflect the
intrinsic connections between brain regions caused by brain disorders.

3.4 Association of Brain Diseases.

A number of studies [9, 15] have demonstrated there exists associations between
different psychiatric disorders [13], patients with one psychiatric disorder are
more susceptible to other psychiatric disorders. We evaluate the association be-
tween the disorders and the transfer learning ability of our model. Specifically,
We pre-train our model on one dataset, then fine-tune and evaluate it on the
other dataset. The results are illustrated in the last part of Table 1. We ob-
served that the transfer learning between two different brain disorder disease
also achieve a better results compared with other methods. The result indi-
cates that the two diseases are correlated, which is consistent with the existing
study results [26]. Moreover, the results also indicate that our model learns more
transferable representations and provides a perspective for the study of disease
associations through transfer learning on the functional brain network analysis.

4 Conclusion

Due to the inevitably error-prone data measurement or collection, the functional
brain networks constructed by existing works are often noisy and incomplete.
To address this issue, we propose the unsupervised graph structure learning
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framework for functional brain network analysis (BrainUSL), which generates
the sparse and discriminative graph structures according to the characteris-
tics of the graph data itself. We conducted extensive experiments on the NMU
dataset which indicate that our BrainUSL achieves promising performance with
the SOTA methods. In addition, we discuss the interpretability of our model and
find discriminative correlations in functional brain networks for diagnosis.
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