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Abstract. Early diagnosis and screening of diabetic retinopathy are
critical in reducing the risk of vision loss in patients. However, in a real
clinical situation, manual annotation of lesion regions in fundus images is
time-consuming. Contrastive learning(CL) has recently shown its strong
ability for self-supervised representation learning due to its ability of
learning the invariant representation without any extra labelled data.
In this study, we aim to investigate how CL can be applied to extract
lesion features in medical images. However, can the direct introduction
of CL into the deep learning framework enhance the representation abil-
ity of lesion characteristics? We show that the answer is no. Due to
the lesion-specific regions being insignificant in medical images, directly
introducing CL would inevitably lead to the effects of false negatives,
limiting the ability of the discriminative representation learning. Essen-
tially, two key issues should be considered: (1) How to construct posi-
tives and negatives to avoid the problem of false negatives? (2) How to
exploit the hard negatives for promoting the representation quality of
lesions? In this work, we present a lesion-aware CL framework for DR
grading. Specifically, we design a new generating positives and negatives
strategy to overcome the false negatives problem in fundus images. Fur-
thermore, a dynamic hard negatives mining method based on knowledge
distillation is proposed in order to improve the quality of the learned
embeddings. Extensive experimental results show that our method sig-
nificantly advances state-of-the-art DR grading methods to a consider-
able 88.0%ACC/86.8% Kappa on the EyePACS benchmark dataset. Our
code is available at https://github.com/IntelliDAL/Image.
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1 Introduction

Diabetic retinopathy(DR) is a common long-term complication of diabetes that
can lead to impaired vision and even blindness as the disease worsen [13, 14].
Hence, conducting large-scale screening for early DR is an essential step to pre-
vent visual impairment in patients. Screening fundus images by the ophthalmol-
ogist alone is not sufficient to prevent DR on a large scale, and the diagnosis
of DR heavily relies on the experience of the ophthalmologist [1]. Therefore,
the automatic DR diagnosis on retinal fundus images is urgently needed [3, 25].
Recently, in light of the powerful feature extraction and representation capabil-
ities of convolutional neural networks, deep learning technology has developed
rapidly in medical image analysis [5,22]. However, leveraging only the image-level
grading annotation hinders deep learning algorithms from extracting features of
suspicious lesion regions, which further affects the diagnosis of diseases. For these
reasons, some previous work [17, 19] considers the introduction of pixel-level le-
sion annotation to improve the model’s feature extraction capability for lesion
regions. Despite the methods have achieved promising results, the large-scale
pixel-level annotation process is time-intensive and error-prone which imposes
a heavy burden on the ophthalmologist. To address this problem, contrastive
learning(CL) [10,11,23] has received a great deal of attention in medical images,
but how to harness the power of CL in the medical applications remains unclear.

The challenges mainly lie in: (I) The diagnosis of fundus diseases relies more
on local pathological features (haemorrhages, microaneurysms, etc.) than on
the global information. How can contrastive learning enable models to extract
features of lesion information more effectively on the large datasets with only
image-level annotation? (II) The false negatives tend to disrupt the feature ex-
traction of contrastive learning [26], resulting in the issue of inaccurate alignment
of feature distributions [18] (i.e. similar samples have dissimilar features). How
to address the issue of false negatives caused by introducing contrastive learning
into automatic disease diagnosis? (III) The performance of contrastive learning
benefits from the hard negatives [2,16]. How to effectively exploit hard negatives
for improving the quality of the learned feature embeddings?

To address the aforementioned issues, we propose the lesion-aware CL frame-
work for DR grading. Specifically, to eliminate false negatives during contrastive
learning introduced in automatic disease diagnosis and ensure that samples hav-
ing similar semantic information stay close in the joint embedding space, we first
capture lesion regions in fundus images using a pre-trained lesion detector. Based
on the detected regions, we construct a lesion patch set and a healthy patch
set, respectively. Then, we develop an encoder and a momentum encoder [6]
for extracting the features of positives (lesion patches) and negatives (healthy
patches). The introduced momentum encoder enables the contrastive learning to
maintain consistency in critical features while creating different perspectives for
the positive samples. Secondly, considering the critical role of hard negatives in
the contrastive learning, we formulate a two-stage scheme based on knowledge
distillation [8,21] to dynamically exploit hard negatives, which further enhances
the lesion-aware capability of the diagnosis models, and further improves the
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quality of the learned feature embeddings. Finally, we fine-tune the proposed
framework in the DR grading task to demonstrate its effectiveness.

To the best of our knowledge, this is the first work to rethink the poten-
tial issues of contrastive learning for medical image analysis. In summary, our
contributions can be summarized as follows. (1) A new scheme of constructing
positives and negatives is proposed to prevent false negatives from disrupting the
extraction of lesion features. This design can be easily extended to other types of
medical images with less prominent physiological features to achieve better lesion
representation. (2) To enhance the capability of CL in extracting lesion features
for medical fundus image analysis and improve the quality of learned feature
embeddings, a lesion-aware CL framework is proposed for sufficiently exploit-
ing hard negatives. (3) We evaluate our framework on the large-scale EyePACS
dataset for DR grading. The experimental results indicate the proposed method
leads to a performance boost over the state-of-the-art DR grading methods.

Fig. 1. The overall architecture of the proposed framework. Stage 1: The construction
of positives and negatives based on the pre-trained lesion detector. Stage 2: Dynamic
hard negatives mining enhances contrastive learning. Stage 3: Fine-tuning our model
on the downstream diabetic retinopathy grading task.

2 Methodology

Figure 1 shows the illustration of the proposed framework. In stage 1, we con-
struct positives and negatives based on a pre-trained lesion detector pre-trained
on a auxiliary dataset (IDRiD [15]) with pixel lesion annotation, to avoid the
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effect of false negatives on the learned feature embeddings while aligning sam-
ples with similar semantic features. In stage 2, a dynamically sampling method
is developed based on knowledge distillation to effectively exploit hard negatives
and improve the quality of the learned feature embeddings. In the last stage,
we fine-tune our model on the downstream DR grading task. Remarkably, to
bridge the gap between local patches in the pretext task and global images in
the downstream task, we introduce an attention mechanism on the fragmented
patches to highlight the contributions of different patches on the grading results.

2.1 Constuction of Positives and Negatives

In this section, we provide a detailed description regarding the construction of
positives and negatives. As opposed to traditional CL working on the whole med-
ical images, it is essential to enable the model to focus more on the lesion regions
in the images. Our goal is to eliminate the effect of false negatives on contrastive
learning for obtaining a better representation of the lesion features. Specifically,
given a training dataset X with five labels (1-4 indicating the increasing severity
of DR, 0 indicating healthy). We first divide dataset X into lesion subset XL

and healthy subset XH based on the disease grade labels of X. Then, we apply
a pre-trained detector fdet(·) only on XL and obtain high-confidence detection
regions. Finally, the construction process of positives P = {p1, p2, . . . , pj} and
negatives N = {n1, n2, . . . , nk} can be represented as P = Ω(fdet(XL) > conf)
and N = Randcrop(XH), where conf denotes the confidence threshold of de-
tection results, Ω(·) indicates the operation of expanding the predicted boxes
of fdet(·) to 128*128 for guaranteeing that the lesions are included as much as
possible, and Randcrop(·) indicates randomly cropping images into patches with
128*128 from the healthy images.

2.2 Dynamic hard negatives mining Enhances Contrastive Learning

Given the constructed positives P and negatives N , a negatives sampling scheme
based on offline knowledge distillation is developed to enable contrastive learning
to dynamically exploit hard negatives, and we adjust the update mechanism of
the negatives queue(i.e. only enqueue and dequeue N to avoid confusion with
P ) to better adapt contrastive learning to the medical image analysis task.
Training the Teacher Network. With the positives P , we obtain two views
P̃ = {p̃1, p̃2, p̃3...p̃j} and P̃ ′ = {p̃′1, p̃′2, p̃′3...p̃′j} by data augmentation(i.e. color
distortion rotation, cropping followed by resize). Correspondingly, with the neg-
atives N , to increase the diversity of the negatives, we apply a similar data
augmentation strategy to obtain the augmented negatives Ñ = {ñ1, ñ2, ñ3...ñk}
(where k ≫ j). We feed P̃ and P̃ ′ + Ñ to the encoder En(·) and the momen-
tum encoder MoEn(·) to obtain their embeddings Z = {z1, ..., zj |zj = En(p̃j)},
Z ′ = {z′1, ..., z′j |z′j = MoEn(p̃′j)} and Z̃ = {z̃1, ..., z̃k|z̃k = MoEn(ñk)}. Then,
we calculate the positive and negative similarity matrix by the samples of Z,
Z ′ and Z̃. According to the similarity matrix, the contrastive loss Lcl-t of the
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teacher model training process can be defined as:
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, τ denotes a temperature parameter, At
p

and At
n represent the similarity matrix of positives and negatives, respectively.

In order to create a positive sample view different from that of En(·), it should
be noted that the parameters θq of En(·) are updated using gradient descent,
while MoEn(·) introduces an extra momentum coefficient m = 0.99 to update
its parameters θk ← mθk + (1−m)θq.
Training the Student Network. Previous works [2, 16] reveal that not all
negatives are useful for the contrastive learning. Moreover, the hard negatives
may exhibit more semantically similar to the positives than the normal nega-
tives, indicating that hard negatives provide more potentially useful information
for facilitating the following DR grading. Meanwhile, the number of hard neg-
atives significantly affects the difficulty of training the model, in other words,
the network should be capable of dynamically adjust the optimisation process
by controlling the number of hard negatives. In light of the above two points, we
formulate and introduce a well-balanced strategy of hard negatives during the
training phase of the student model. Specifically, based on the trained teacher
model, we first input P and N into both the teacher and student models to
generate similarity matrices At

p, A
t
n and As

p, A
s
n, respectively. According to the

negative similarity matrix At
n produced by the teacher model, we prioritise the

negatives that are likely to be confused with the positives in descending order
and only select the top δ samples for distillation learning during the student
model’s training phase. For each negative z̃k in At

n, the resampled negative set
At′

n can be defined as:

At′

n =
{
z̃k | z̃k ∈ Sort(At

n), sim (zj , z̃k) ≥ sim(zj , z̃γ
)
}, (2)

where γ = δ/(cos( πs2S ) + 1) represents the number of the current hard negatives,
s and S denotes the current and maximum training step, respectively. As s
increases during the training process, we dynamically adjust the number of hard
negatives such that the difficulty of distillation learning proceeds from easy to
hard. Based on the index in At′

n , the elements at the corresponding positions in
As

n are obtained and a resampled negatives similarity matrix As′

n is constructed.
Hence, the CL loss Lcl-s in training process of student can be formulated as:

Lcl-s = −
∑

log

(
exp

(
As

p/τ
)

exp(As
p/τ) +

∑
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n /τ)

)
, (3)

In addition, to improve the quality of embeddings learned by the student model,
we leverage the generated similarity matrices to facilitate the richer knowledge
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distilled from the teacher to the student. Formally, the KL-divergence loss Lkd

between At
p, At′

n and As
p, As′

n is represented as follows.

Lkd = −τ2
∑

C(At
p,At′

n ) log
(
C(As

p,As′

n )
)
, (4)

where C(·) denotes the matrix concatenation. The final loss of the student model
is L = Lcl-s+λ1Lkd, where the λ1 is a positive parameter controlling the weight
of the knowledge distillation loss Lkd.

2.3 DR Grading Task

To evaluate the effectiveness of the proposed method, we take the encoder of the
pre-trained student model as a backbone and fine-tune it for the downstream
DR grading task. Considering that the proposed contrastive learning framework
is trained with patches, whereas the downstream grading task relies on entire
fundus images, an additional attention mechanism is incorporated to break the
gap between the inputs of pretext and downstream tasks. Specifically, we first
fragment the entire fundus image into patches x = {xp1, . . . , xpi

}. Then, feature
embedding vi of xpi

is generated by the encoder. Meanwhile, an attention module
with two linear layers is utilized in the DR grading task to obtain the attention
weight αi of each patch xpi .

αi = softmax
(
WT

2 max
(
LayerNorm

(
W1v

T
i

)
, 0
))

, (5)

where W1, W2 are the parameters of the two linear layers , LayerNorm is the
layernorm function. Finally, αi is assigned to the corresponding patch’s embed-
ding vi to highlight the contribution of patch xpi, and the predicted results of

DR obtained by ŷ = WT
3 ·
∑N

i=1 αivi, and WT
3 is parameter of the grading layer.

3 Experiments

3.1 Datasets and Implementation Details

EyePACS [4]. EyePACS is the largest public fundus dataset which contains
35,126 training images and 53,576 testing images with only image-level DR grad-
ing labels. According to the severity of DR, images are classified into five grades:
0 (normal), 1 (mild), 2 (moderate), 3 (severe), and 4 (prolifera-tive).
Implementation Details. The proposed framework is implemented by Py-
torch on two Tesla T4 Tensor core GPUs. We employ the IDRiD dataset [15] for
the pre-training of the lesion detector fdet(·). During the sample construction
stage, considering the diversity of sizes of the original fundus images, all images
are resized to 768 × 768, and the data enhancement strategies include random
rotation, flipping and color distortion. During the phase of dynamically mining
hard negatives, the Adam optimizer with momentum 0.9 is applied to train and
update the parameters of the framework with 800 epochs, the initial learning
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rate of 1 × 10−3 and the batch size of 400. The designed hyper-parameter δ is
set to be 4,000 after extra experiments (please refer to the supplementary ma-
terials for more details). In the downstream DR grading task, we fine-tune the
encoder(i.e. ResNet50) for 25 epochs with an initial learning rate of 1 × 10−4

and a batch size of 32. In addition to the normal classification accuracy, we also
introduce the quadratic weighted kappa metric to reflect the performance of the
proposed method and a range of comparable methods.

3.2 Comparison with the State-of-the-Art

In this section, we provide qualitative and quantitative comparisons with various
DR grading methods and demonstrate the effectiveness of the proposed method.
As shown in Table 1, we conduct a comprehensive comparison of the proposed
method with three types of comparable methods: covering the popular backbone
network [7], the top two places of Kaggle challenge [4] and the current SOTA
DR grading methods [9, 10,12,19,20,24].

Table 1. The comparison between our method and the SOTA methods in DR grading
task on EyePACS dataset

Model Kappa Accuracy Model Kappa Accuracy
Resnet50 [7] 0.823 0.845 AFN(2019) [12] 0.859 -

Min-pooling [4] 0.849 - DeepMT-DR(2021) [19] 0.839 0.857
o O [4] 0.844 - CL-DR(2021) [10] 0.832 0.848

Zoom-in-Net(2017) [20] 0.854 0.873 CLEAQ-DR(2022) [9] 0.863 -
MMCNN(2018) [24] 0.841 0.862 Lesion-aware CL (Ours) 0.868 0.880

From the Table 1, it can be observed that our method consistently achieves
the best results with respect to both the Kappa and Accuracy. The results show
that our framework presents a notably better DR grading performance than
the SOTA methods due to improve quality of the learned lesion embeddings by
eliminating the false negatives and dynamically mining hard negatives, and in
turn enhancing the lesion-awareness of CL, which is beneficial for DR grading.

3.3 Ablation Study

To more comprehensively evaluate the Lesion-aware CL, we conduct ablation
studies to analyze the correlation among DR grading, the construction of posi-
tives and negatives(CPN) and dynamic hard negatives mining(DHM). We com-
pare the proposed method with its several variants. (1) CL: the proposed model
is trained without CPN and DHM, it indicates a basic CL method. (2) Lesion-
aware CL w/o CPN: the model is trained without CPN. (3) Lesion-aware CL
w/o DHM: the model is trained without DHM.

The results of ablation study are reported in Table 2. We can draw conclu-
sions from several aspects: (1) CL shows the worst performance and the perfor-
mance of Lesion-aware CL w/o CPN is obviously degraded compared to Lesion-
aware CL (i.e. kappa reduces 1.5% ). The results suggest that CPN is critical
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Table 2. The ablation experiment results of the proposed framework on EyePACS

Method Kappa Accuracy
CL 0.844 0.858

Lesion-aware CL w/o CPN 0.853(+0.9%) 0.864(+0.6%)
Lesion-aware CL w/oDHM0.857 (+1.3%) 0.871(+1.3%)

Lesion-aware CL 0.868(+2.4%) 0.880(+2.2%)

for improving the performance when contrastive learning is introduced in fundus
images. Without false negatives disrupting the feature extraction procedure of
lesions, the model is able to extract a better representation for the regions of
lesions and thus achieve better DR grading performance. (2) Lesion-aware CL
w/o DHM performs worse than Lesion-aware CL. As opposed to the common
CL methods which uses all negative samples, our model takes into account the
difference of the negatives with difficulty level. The teacher network is able to
dynamically exploit the hard negatives and transfer the learned knowledge to the
student, thereby improving the quality of the feature embeddings in subsequent
contrastive learning. Figure 2 shows the visualization results from GradCAM

Fig. 2. Visualization results from GradCAM between the four representative methods

of four representative methods including Resnet50, the common CL methods
(MoCo, CL-DR), and the Lesion-aware CL. Two cases with proliferate DR(DR-
4) are visualized by four representative models. The intensity of the heatmap
indicates the importance of each pixel in the corresponding image for making
the prediction. In case 1, both Resnet and typical CL methods focus on the optic
disc where has obvious physiological characteristics, while our method focuses
more on the lesion regions and less on the structural aspects of the fundus image.
In case 2, our method provides a promising perception of the lesion regions than
other methods, suggesting that our approach allows the DR grading model to
learn better representation of lesion and thus be sensitive to the DR grading.
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4 Conclusion

In this paper, we propose a novel lesion-aware CL framework for DR grading. The
proposed method first overcomes the false negatives problem by reconstructing
positives and negatives. Then, to improve the quality of learned feature embed-
dings and enhance the awareness for lesion regions, we design the dynamic hard
negatives mining scheme based on knowledge distillation. The experimental re-
sults demonstrate that the proposed framework significantly improves the latest
results of DR grading on the benchmark dataset. Furthermore, our approaches
are migratable and can be easily applied to other medical image analysis tasks.
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