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A B S T R A C T   

Lung cancer is one of the most common and deadly malignant cancers. Accurate lung tumor segmentation from 
CT is therefore very important for correct diagnosis and treatment planning. The automated lung tumor seg-
mentation is challenging due to the high variance in appearance and shape of the targeting tumors. To overcome 
the challenge, we present an effective 3D U-Net equipped with ResNet architecture and a two-pathway deep 
supervision mechanism to increase the network’s capacity for learning richer representations of lung tumors 
from global and local perspectives. 

Extensive experiments on two real medical datasets: the lung CT dataset from Liaoning Cancer Hospital in 
China with 220 cases and the public dataset of TCIA with 422 cases. Our experiments demonstrate that our model 
achieves an average dice score (0.675), sensitivity (0.731) and F1-score (0.682) on the dataset from Liaoning 
Cancer Hospital, and an average dice score (0.691), sensitivity (0.746) and F1-score (0.724) on the TCIA dataset, 
respectively. The results demonstrate that the proposed 3D MSDS-UNet outperforms the state-of-the-art seg-
mentation models for segmenting all scales of tumors, especially for small tumors. Moreover, we evaluated our 
proposed MSDS-UNet on another challenging volumetric medical image segmentation task: COVID-19 lung 
infection segmentation, which shows consistent improvement in the segmentation performance.   

1. Introduction 

Lung cancer is one of the major public health issues that seriously 
threatens the health of humans (Hoffman et al., 2000). Lung cancer has a 
high mortality rate, especially advanced lung cancer, which is difficult 
to cure and more likely to metastasize. Computed tomography (CT) is 
widely used for computer aided diagnosis of lung cancer. Fig. 1 shows 
some examples of lung tumors in CT. The segmentation of lung tumor is 
a topic of great interest in medical image analysis since it provides 
doctors with meaningful and reliable quantitative information in diag-
nosing and monitoring neurological diseases. 

For a better understanding of the pathophysiology of cancer, quan-
titative imaging can reveal clues about the disease characteristics and 
effects on particular anatomical structures. Segmentation and the sub-
sequent quantitative assessment of lung tumors in medical images pro-
vide valuable information for the analysis of pathologies and are 
important for planning of treatment strategies, monitoring of disease 
progression and prediction of patient outcome. However automated 

lung tumor segmentation is challenging due to the high variance in 
appearance and shape of the targeting tumors (Kamal et al., 2018; 
Hossain et al., 2019; Yang et al., 2018; Jiang et al., 2018b). The het-
erogeneous appearance of lesions including the large variability in 
location, size and shape between the patients make it difficult to devise 
effective segmentation rules. Moreover, there was a wide variation in 
distribution of tumors across populations and datasets. The variation of 
tumors are shown in Fig. 2. As observed in Fig. 2, the segmentation 
problem is quite challenging and the difficulties. The traditional seg-
mentation methods are based on hand-crafted or shallow-learning-based 
features with limited representation power, resulting in failing to pro-
vide strong representation capability to deal with the large variations of 
tumor appearance and shape. Recently, deep learning algorithms, 
especially U-Net (Çiçek et al., 2016), has shown their much stronger 
detection power in biomedical image segmentation applications (Jiang 
et al., 2018a; Long et al., 2015). Deep learning methods for segmenta-
tion can automatically learn hierarchies of relevant features directly 
from the training data in an end-to-end manner. The U-Net network 
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consists of an encoder performing feature extraction and a decoder 
performing information fusion (Li et al., 2018; Badrinarayanan et al., 
2017). U-Net adopts the skip connection for feature fusion to achieve 
multi-level resolution information utilization and avoid feature loss 
(Ronneberger et al., 2015; Chen and Qi, 2018). For the U-Net based deep 
learning methods, tumor segmentation can be regarded as a pixel-wise 
binary classification problem, in which each pixel is classified as a 
tumor pixel or non-tumor pixel (Chen and Qi, 2018; Guofeng et al., 
2018; Ibtehaz and Rahman, 2019). 

The U-Net based models have proven their effectiveness and supe-
riority over traditional medical image segmentation algorithms (Huang 
et al., 2018; Li et al., 2019). However, they are conceivably not optimal 
for volumetric medical image analysis as they cannot take full advantage 
of the special information encoded in the volumetric data. The 2D U-Net 
model for segmenting lung tumors only obtain a single tumor slice in CT 

images, while lung tumors are usually distributed in continuous CT 
slices. The volumetric medical image segmentation is a fundamental yet 
challenging problem in medical image analysis. Several 3D 
volume-to-volume segmentation networks have been proposed, 
including 3D U-Net (Çiçek et al., 2016), V-Net (Milletari et al., 2016) and 
3D CNN (Dou et al., 2017a). Although these 3D segmentation networks 
can improve the volumetric tumor segmentation by capturing repre-
sentative features across all three spatial dimensions, they still present 
limited capacity in effectively learning the feature information of the 
images in complicated tasks, such as the segmentation of heterogeneous 
lung tumors. The reasons that limits the learning performance of models 
are:  

1 The segmentation of lung tumor is typically a difficult task due to the 
large heterogeneity of cancer lesions. The different subtypes of cell 

Fig. 1. Some examples of lung tumors. The red part indicates the lung tumors.  

Fig. 2. The variation of lung tumors and the comparison between ground truth and binary masks predicted by our proposed methods. The 1–3 rows indicates the 
original lung image, ground truth and the predicted masks by our proposed method. Moreover, (a) is a large tumor, (b) is a small tumor and (c) is a tumor attached to 
the pleura, all of which are obtained from a local hospital in China. 
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carcinoma can bring diverse intensity attribution and scales in CT 
images. Fig. 3 shows lung CT images from three different patients. 
Because the location and scale of tumor vary considerable across 
patients, the segmentation of lung tumor is challenging. In partic-
ular, the largest tumor occupies over one million voxels, but the 
smallest one has only thousands. This motivates us to train multi- 
scale networks to deal with such a large variation in scale (Fan 
et al., 2020b; Xu et al., 2018; Ma et al., 2018; Kamnitsas et al., 2017). 
Therefore, a network should be robust enough to analyze objects at 
different scales. The previous work usually uses Atrous spatial pyr-
amid pooling (ASPP) to robustly segment objects at multiple scales 
(Chen et al., 2017), or captures the multi-scale information by 
stacking multi-scale images as inputs. The limitations are that they 
result in more parameters to be trained and the multi-scale repre-
sentation is learned independently with ignoring the correlation of 
multiple scale learning. Furthermore, most previous studies fail to 
segment small tumors, such as dilated convolution, does not work 
well with small tumor, which may have a significant impact on 
finding early-stage cancers.  

2 The standard U-Net architecture contains only a few layers and 
therefore it is not currently deep enough to gain improved perfor-
mance over other existing networks. To solve the problem, adding 
more layers directly to the network can enlarge the parameter space 
and make the network deeper, which may lead to gradient vanishing 
and redundant computation during training. Gradient vanishing 
means if the network contains too many hidden layers, the learning 
rate will decrease with forward propagation, which may decrease the 
overall network learning.  

3 The 3D medical images have much more complicated anatomical 
environments than 2D images, hence 3D variants of U-Net with much 
more parameters are usually required to capture more representative 
features. However, the extensive number of parameter weights and 
depth in 3D U-Net introduces various optimization difficulties, such 
as over-fitting and slow convergence speed.  

4 Training such a 3D networks often confronts various optimization 
difficulties, and the insufficiency of training samples (patients) hin-
ders the training of the segmentation model. It is more difficult for 
3D cases than 2D when only a small set of annotated data is 
available. 

To solve the issues, we extend the traditional 2D U-Net to a 3D 
version equipped with ResNet architecture to capture the inter-slice 
continuity of the tumor as a solid object in our work, and propose a 
multi-scale multi-level deep supervision U-Net (MSDS-UNet) that in-
tegrates the existing 3D U-Net model with a two-pathway deep super-
vision mechanism for more accurate segmentation performances. 
Moreover, the ResNet module (He et al., 2016) is adopted in each block 
to increase the network’s capacity for learning richer representations. 
Deep supervision was firstly introduced by Lee et al. (2015) as a way to 
deal with the problem of the vanishing gradient in training deeper CNN 
for image classification. In the literature, some segmentation methods 
with the scheme of deep supervision have been developed and studied. 
In the case of medical applications, it has been employed to prostate 
segmentation (Zhu et al., 2017), liver (Chung et al., 2020), and kidney 
tumor (Tureckova et al., 2020) segmentation in CT volumes, and to 
brain tumor segmentation from magnetic resonance imaging (Isensee 
et al., 2017). Moreover, the deep supervision is incorporated with 
multiple network models, such as CNN (Dou et al., 2017b) and U-Net 
(Zeng et al., 2017). These methods aim to improve the convergence rate 
and discrimination capability of deep learning models. We evaluated 
MSDS-UNet using three medical imaging datasets covering lung tumor 
segmentation and COVID-19 infection segmentation. The experimental 
results have indicated the effectiveness of the proposed improvements 
and suggest that our approach could acquire competitive performance as 
state-of-the-art multi-scale lung tumor or infected lesion segmentation 
methods. The contribution of our work is as follow: 

Fig. 3. Multi-scale lung tumors.  
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(1) We develop a volume-to-volume tumor segmentation network to 
automatically segment lung tumors from CT images. The frame-
work integrates the existing 3D U-Net model with a 3D deep su-
pervision mechanism to capture the inter-slice continuity of the 
tumor and achieve more accurate segmentation performances.  

(2) We further propose a 3D deep supervision mechanism by 
formulating an objective function that directly guides the training 
of the hidden layers in order to reinforce the propagation of 
gradient flows within the network and hence learn more powerful 
and representative features. The previous work does not take full 
advantage of the deep supervision mechanism. We propose a two- 
pathway deep supervision in U-Net, improving the segmentation 
performance from two aspects: (1) multiple predictions from 
multiple semantic layers are generated and averaged to produce 
an accurate segmentation with the help of deep supervision; (2) 
regularizing the weights of layers with local deep supervision for 
the learned features. Although the local deep supervision does 
not work in the inference stage, it further improves the segmen-
tation through the proper regularization of the network weights. 
Both of them improve the performance, as we show empirically in 
Section 4.1.2. 

(3) As pointed out in most previous works, a good tumor segmenta-
tion network should be deep enough such that multi-level fea-
tures can be learned. It should have multiple stages to learn more 
inherent features from different scales. In this paper, we focus on 
the deep supervision instead of simply fusing the multi-level 
features extracted from different scales. Different the popular 
methods with fusing low-level but high-resolution features and 
high-level low-resolution features together, our two-pathway 
deeply supervised U-Net can improve low-level features and 
mid-level features by assigning auxiliary supervisions directly to 
the early stages of the network. To generate discriminative out-
puts in the auxiliary branches, low-level and mid-level features 
are forced to encode more semantic concepts, which is expected 
to be helpful for the final segmentation. Moreover, different from 
previous deeply supervision architectures, our model is a two- 
pathway deep supervision involving supervisions for hard and 
soft fusion of the side-output predictions for the final prediction, 
and supervisions for the ensemble of multi-scale predictions of 
lower resolution segmentation map, to increase the network’s 
capacity for learning richer representations of lung tumors. In our 
work, we present a comprehensive analysis to better understand 
the representations learned with the help of deep supervision can 
derive better representations of lung tumor at different scales. 
Our experimental results yield a solid evidence that imposing a 
deeply supervised method during training the network is a viable 
method for improving U-Net’s segmentation performances for 

lesions that appear at multiple scales. In particular, the tradi-
tional U-Net does not work well on small tumors, but MSDS-UNet 
shows obvious improvement.  

(4) The performance of deep supervision is highly dependent on an 
appropriate choice of weights among all losses of all tasks. In 
other words, different tasks need to be properly balanced, so that 
the model can converge to the state which are useful across all 
tasks. Unlike the previous work, we consider it as a multi-task 
learning formulation and assign different weights for different 
tasks. In order to automatically achieve an optimal weights for 
multi-task learning and reduce the chance that negative transfer 
happens, we utilize GradNorm (Chen et al., 2018) to learn a 
balanced global task weight. The scheme is able to avoid certain 
group of related tasks dominates the training process and the 
tasks outside the dominant group cannot be optimized 
sufficiently.  

(5) Other than improving the state-of-the-art results, we conduct 
exhaustive analysis on the behavior of deep supervision for 3D U- 
Net on the multi-scale lung tumors systematically, especially on 
the small scale cancers. 

The rest of the paper is organized as follows. Section 2 introduce 2D U- 
Net. In Section 3 we describe the architecture of our network and the 
procedure of the proposed deep supervision. Section 4 presents and 
discuss the experimental results. Section 5 discusses the limitation and 
the future research. At last, this paper is concluded in Section 6. 

2. U-Net framework 

U-Net is an U-shaped convolutional neural network used for image 
segmentation (Norman et al., 2018). Fig. 4 shows the framework of the 
2D U-Net. The network architecture is symmetric, having an Encoder 
that extracts spatial features from the image, and a Decoder that con-
structs the segmentation map from the encoded features. The Encoder 
follows the typical formation of a convolutional network. 

The encoder involves a sequence of two 3 × 3 convolution opera-
tions, followed by a max-pooling operation with a pooling size of 2 × 2 
and stride of 2. This sequence is repeated four times, finally, a pro-
gression of two 3 × 3 convolution operations connects the Encoder to the 
Decoder. Similar to the encoding phase, the decoder replaces the pooling 
with the up-sampling using a 2 × 2 transposed convolution operation 
and connects the corresponding feature maps in the two stage to com-
plete the information fusion. Similar to the encoder, a series of up- 
sampling and two 3 × 3 convolution operations are repeated four 
times in the decoder part, halving the number of filters at each stage. 
Finally, a 1 × 1 convolution operation is performed to generate the final 
segmentation map. A Sigmoid is used as the activation function to 

Fig. 4. 2D U-Net framework.  
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normalize the output value between 0 and 1 which represents the 
probability that each pixel belongs to a tumor. In both parts, the batch 
normalization layer is involved to normalize the output features and the 
ReLu activation function is used to increase the network’s nonlinear 
expression ability. The smallest feature map size in the encoding stage is 
8 × 8 ×8. 

3. Methods 

3.1. The network architecture of 3D MSDS-UNet 

The scale and appearance of the tumor often vary obviously among 
patients, which is a great challenge when training deep models for lung 
tumor segmentation. Inspired by deeply-supervised networks applied to 
image classification and segmentation, we introduce a new deep su-
pervision mechanism into our 3D U-Net model to deal with the problems 
noted above. Different from previous deeply supervision architectures, a 
combination of direct multi-scale side prediction and multi-level seg-
mentation fusion are proposed, to increase the network’s capacity for 
learning richer representations of lung tumors. The Fig. 5 illustrates the 
original deep supervision and our proposed deeply-supervision path-
ways strategy. 

In order to achieve efficient end-to-end learning and inference, we 
first develop a 3D U-Net network for volumetric image segmentation. To 
improve the representation capacity of the segmentation network and to 
optimize the segmentation performance, we modify the 3D U-Net ar-
chitecture with a ResNet module (He et al., 2016), which has been 
experimentally proven to enhance the capturing of more visual infor-
mation. The ResNet module is adopted in each block to increase the 
network’s capacity for learning richer representations. The residual 

networks are easy to optimize can gain accuracy from considerably 
increased depth with avoiding the degradation problem. We further 
propose a 3D deep supervision mechanism by formulating a multi-level 
multi-scale objective function that directly guides the training of hidden 
layers, which can accelerate the convergence speed and improve the 
segmentation performance of the network. Fig. 6 illustrates the archi-
tecture of our proposed 3D MSDS-UNet network. Our network also 
consists of two parts: the encoder part focusing on the analysis and 
feature representation learning, and the decoder part generating seg-
mentation results relying on the learned features from the encoder. 

We employ parallel pathways for deep supervision in 3D UNet, a 
solution to effectively incorporate both local and global supervision 
information which greatly improves segmentation results. 

3.2. 3D convolution and pooling 

The 3D U-Net is accomplished by replacing the 2D layers with 3D 
layers, and we choose it as our base model to achieve the lung tumor 
segmentation accurately. 3D U-Net is formed by 3D convolution, 3D 
pooling, 3D batch normalization and activation function on the basis of 
the 2D U-Net, which can maximally take advantage of the spatial in-
formation (Christ et al., 2016; Kamal et al., 2018). These 3D operations 
are illustrated in Fig. 7. 

3.3. The multi-level multi-scale deep supervision 

In order to improve the extracting abilities of the 3D U-Net, we adopt 
deep supervision (Albarazanchi et al., 2016; Zeiler et al., 2010). In the 
deep supervised nets, the extra companion objectives are introduced to 
the individual hidden layers, in addition to the overall objective at the 
output layer. The segmentation performance of small tumors depend on 
the underlying features contained in the shallow hidden layer, while the 
identification of large tumor depends on the advanced features. There-
fore, the side outputs of each hidden layers are predicted in each stage of 
the 3D U-Net with ResNet. For the coarse layer, it generates segmenta-
tion results with the coarsest resolution, while the output at the middle 
and the fine scales generate segmentation results with the intermediate 
and the finest resolutions, respectively. In order to achieve a multi-scale 
tumors segmentation, the deep supervision mechanism is brought in by 
associating a companion local output with each hidden layer from local 
and global perspectives. 

Specifically, D =
{

xi, yi
}
, i = 1,…,N, xi is the input volumetric CT 

image, yi denotes the corresponding ground truth map for xi. Moreover, 
let W be the weights of the main network, w = {w0,w1,…,wM} and wp =
{

wp
0,w

p
1,…,wp

M
}

be the global fused weight and local weight parameters 
of side outputs at different scales, where wm and wp

m are the weights of 
the side models at scale of m, M is the number of sides and M = 4 in our 
study. 

The local side output is to predict the segmentation of lower scales 
prediction in each layer by directly connecting to a 3D convolution and a 
one-channel convolutional layer with the kernel size 1 × 1. It predict the 
multi-level segmentation results with the same scales as the corre-
sponding feature map. The ground truth is down-sampled to the same 
resolution as the feature map at first. It supervises the model to hierar-
chically learn the tumor segmentation with different scale of ground 
truth by taking advantages of multi-scale tumor context. These auxiliary 
losses of multi-scale local side prediction are proposed to hierarchically 
segment the lung tumors with multi-scale context. By making appro-
priate use of deeply supervising at each hidden layer of the network, we 
are able to directly influence the hidden layer weight update process to 
favor highly discriminative feature maps for segmentation. 

The dice loss function is chosen as the loss function for supervising 
each side output: 

Fig. 5. The illustration of original deep supervision and our proposed two- 
pathway deep supervision. 
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where ym is the down-scaled segmentation map of the ground truth, the 
resulting segmentation map with corresponding scale is z(W,wp

m)
m , 

⃒
⃒zm ∩ ym

⃒
⃒

represents the number of correctly classified tumor voxels. 
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⃒
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and 
⃒
⃒
⃒ym − z(W,wp

m)
m

⃒
⃒
⃒ represents the number of all misclassified voxels. i.e. 

false positive or false negative. 
Based on the dice loss function, the local loss for deep supervision at 

the hidden layers can be expressed as: 

Llocal(W,wp) =
∑M

m=1
αmfdice(ym, z(W,wp

m)
m ), (2)  

where αm is the weight of the mth side loss. 
Therefore, in addition to the prediction of the main network, seg-

mentation is performed at multiple output layers. The side at the coarse 

scale generates segmentation results with the coarsest resolution, while 
the models at the middle and the fine scales generate segmentation re-
sults with the intermediate and the finest resolutions, respectively. Then 
the abilities of feature representation are strengthened by minimizing 
the loss function between the local output segmentation map of each 
layer and the ground truth with corresponding scale. 

Other than a series of direct local side losses are added after each side 
output for predicting the different scale segmentation, the multiple side 
predictions are fused into our network to generate the segmentation 
result with the original scale by up-scaling the segmentation maps of 
lower scales from global perspective. Therefore, the other output of each 
hidden layer is directly connected to a one-channel convolutional layer 
with the kernel size 1 × 1 followed by an 3D deconvolutional layer. The 
deconvolutional blocks are injected into lower layers such that the low- 
level and middle-level features are up-scaled to generate segmentation 
predictions with the same resolution as the input data. 

Hard fusion: The hard fusion loss at the fusion layer can be 
expressed as: 

Fig. 6. 3D MSDS-UNet network structure. We employ parallel pathways for deep supervision in 3D UNet, a solution to effectively incorporate both local and global 
supervision information which greatly improves segmentation results. For obtaining better representation of lower layers, supervision is directly fed into corre-
sponding layers. Besides, we add another convolutional layers or deconvolutional layers sizes in each side output. Such deep supervision learning strategy boosts the 
performance via: (1) directly constructing multi-level representations with multi-scale context; and (2) improving discrimination of intermediate layers, thus gaining 
improvement of overall performance. 
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Lhard(W,w) =
∑M

m=1
αmfdice(y, z(W,w(m))), (3)  

where αm is the weight of the mth side loss. 
Soft fusion: The soft fusion loss at the fusion layer can be expressed 

as: 

Lsoft(W,w) = fdice(y, g(
∑M

m=1
αmp(m))) (4)  

where p(m) is the activations of the mth side output, where each value 
indicates the probability prediction q(m)(zi|vi;W,w(m)) of each voxel vi, 
αm is the weight of the mth side loss, g(⋅) denotes the sigmoid function. 

Therefore, based on the multiple level supervisions in the hidden 
layers, a global loss is obtained by 

L = Lhard(W,w) + λ1Lsoft(W,w) + λ2Llocal(W,wp) + λ3(‖W‖
2
2+‖w‖2

2+‖wp‖
2
2)

(5)  

where λ1, λ2 and λ3 are all positive parameters which control contribu-
tions of hard fusion loss, soft fusion loss, local side loss and regulariza-
tion, respectively. To prevent overfitting during model training, the 
weights are constrained using L2 regularization. 

These auxiliary losses together with the loss from the last output 
layer are integrated to energize the back-propagation of gradients for 
more effective parameter updating in each iteration. At last, an 
ensemble mode is designed, where the segmentation results from all 
global segmentation branches (hard and soft fusion) are collected and 

then averaged. The multi-scale local side predictions only work in the 
training phrase to further help optimize the parameters in the main 
network. They work as regularization to the optimization of the network 
parameters. 

The performance of our model is highly dependent on an appropriate 
choice of weights α among all losses of all tasks. In other words, different 
tasks need to be properly balanced, so that the model can converge to 
the state which are useful across all tasks. The challenge is to find the 
best value for each task at each training step that balances the contri-
bution of each task for optimal model training. We incorporated 
gradient normalization (GradNorm) algorithm (Chen et al., 2018) into 
the optimization of our model, which enables automatically balance 
training in deep multi-task models by dynamically tuning gradient 
magnitudes. The gradient normalization can indicate whether the 
certain task is well trained or not, and decreases the relative weights of 
the well trained tasks. It increases the weight of a given task’s loss when 
learning on that task is slower than other tasks. It has been demonstrated 
that it is effective for reducing negative transfer (Liu et al., 2019). The 
learned parameters are divide into two parts: the shared parameters Ws 
(the common parameters among the multiple tasks) and the specific 
parameter Wm of each task involving the parameters in certain layers of 
the main network and the parameters w and wp in the corresponding 
layer. GradNorm is applied on the optimization of the shared parameters 
Ws. In additional, each task loss Lm involves the hard fusion loss and the 
local loss. The reason is that the soft fusion loss cannot explicitly 
decomposed into multiple separable tasks. The procedure of the network 
optimization with GradNorm is shown in Algorithm 1. 

Fig. 7. 3D convolution and pooling.  
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Algorithm 1. Training of MSDS-UNet with GradNorm.  

1: Initialize αm = 0 ∀ m 
2: Initialize network weights Ws and Wm ∀ m 
3: Pick value for α > 0 
4: for t = 0tomax _ t rain _ s teps do 
5: Compute G(m)

Ws
(t) = ‖∇Ws αm(t)Lm(t)‖2 and rm(t)∀m [Lm is the m-th loss of the 

corresponding the m-th layers, rm is the relative inverse training rate of task m 
which can be used to rate balance our gradients]  

6: Compute GWs (t) by averaging the G(m)

Ws
(t)

7: Compute Lgrad =
∑

m|G(m)

Ws (t)− GWs (t)×[rm (t) ]α |

8: Compute GradNorm gradients ∇αm Lgrad, keeping targets GWs (t) × [rm(t) ]α 

constant  
9: Compute standard gradients ∇Ws L(t)
10: Update αm(t)→αm(t + 1) using ∇αm Lgrad  

11: Update Ws(t)→Ws(t + 1) using ∇Ws L(t)[standard backward pass]  
12: Update Wm(t)→Wm(t + 1) using ∇Wm L(t)[standard backward pass]  
13: Renormalize αm(t + 1) so that 

∑
mαm(t + 1) = 1  

14: end for  

4. Experiment and results 

4.1. Experiment on a local dataset from the Liaoning Cancer Hospital in 
China 

4.1.1. Data and experimental setting 
All the 220 cases of 3-dimensional CT image data used in the 

experiment were real data obtained from the Liaoning Cancer Hospital 
in Shenyang, China. The number of each patient CT series varies from 31 

to 260. The height and width are both 512 in all data. The protocol of 
this retrospective study was approved by the Ethics of Committees of 
Liaoning Cancer Hospital. Informed consent was waived because of the 
respective nature of the study, and all the private information of patients 
was anonymized by the investigators after data collection. Images were 
obtained from a CT scanner of Philips (iCT256) with resolution of 
512 × 512 and slice thickness of 5 mm. The pixel spacing is 0.79. The 
scanning conditions are120 kV and 20–50 mA. Both training and testing 
processes use the data after lung segmentation and all CT data are re- 
sampled to 1 mm × 1 mm × 1 mm. During the training phase, the im-
ages and the ground truth are divided into multiple cubic parts with the 
size of 128 × 128 × 128. The batchsize is set to 1 because of GPU 
memory limitations and the initial learning rate is set to 0.001 which is 
multiplied by 0.1 for each iteration of 50 epochs for a total of 200. The 
optimization process uses the Adam optimizer. In each of 10 trials, a 3- 
fold nested cross validation procedure is employed to tune the regula-
rization parameters (λ1, λ2 and λ3). The range of each parameter varied 
from 10− 1 to 103. The reported results were the best results of each 
method with the optimal parameters. The weight of each side αm is set to 
{0.2,0.2, 0.2,0.4} from the shallow layer to the high layer. 

4.1.2. The comparison with the baseline methods 
Experiments were performed on the original 2D U-Net, 3D U-Net, 3D 

U-Net w2ith ResNet and our proposed 3D MSDS-UNet and 3D MSDS- 
UNet-GM using a 5-fold cross-validation method. Table 1 shows the 
segmentation results of the four models with respect to dice score, 
sensitivity and F1-score. 3D MSDS-UNet indicates the method where the 
weight of each side is manually set to {0.2,0.2, 0.2, 0.4}, and 3D MSDS- 
UNet-GM indicates the method with GradNorm as the optimization of 
the side weights. From Table 1, it can be seen that the tumor segmen-
tation results of both the 3D MSDS-UNet models with the decision 
branch is better than the 2D U-Net and 3D U-Net with respect to dice 
score, sensitivity and F1-score. The result proves that the deep super-
vision strategy can indeed help the 3D U-Net model to identify lung 
tumors with higher segmentation performance. Moreover, it was 
observed that introducing the ResNet blocks enhances the performance 
of the traditional 3D U-Net. Furthermore, the optimization mechanism 
with GradNorm can further improve the performance, which indicates 

Table 1 
The segmentation results of tumors with different U-Net based segmentation 
models. Superscript symbols * and † indicate that 3D MSDS-UNet or 3D MSDS- 
UNet-GM significantly outperformed the comparable methods. Student’s t-test 
at a level of 0.05 was used.   

2D U- 
Net 

3D U- 
Net 

3D U-Net with 
ResNet 

3D MSDS- 
UNet 

3D MSDS- 
UNet-GM 

Dice 0.578*† 0.643*† 0.649*† 0.664† 0.675 
Sensitivity 0.566*† 0.693*† 0.705*† 0.728† 0.731 
F1-score 0.586*† 0.639*† 0.641*† 0.667† 0.682  

Fig. 8. Lung tumors segmentation comparison among 2D U-Net, 3D U-Net, our 3D MSDS-UNet and 3D MSDS-UNet-GM. Each column represents a patient’s lung CT 
case and each row represents the lung tumor segmentation results of 2D U-Net, 3D U-Net, our 3D MSDS-UNet and 3D MSDS-UNet-GM respectively. The blue and red 
indicate the ground truth and predicted boundary, respectively. 
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that the weights of multi-task learning formulation are critical for our 3D 
MSDS-UNet model. 

Fig. 8 shows five segmentation examples generated by the four U-Net 
architecture methods on some test sets for comparison. We can observe 
that our models with deep supervision achieve better performance. 
Therefore, we hypothesize that the inclusion of more supervision scales 
are allowing the model to distinguish the tumor boundaries better. The 
multi-scale context information can be learned by our network which 
will then facilitates the tumor segmentation in the test stage. 

We empirically demonstrate state-of-the-art performance on 3D 
tumor segmentation in Table 2. The experimental results have indicated 
the effectiveness of the proposed deeply supervised 3D U-Net and sug-
gest that our approach could acquire competitive performance as the 
state-of-the-art lung tumor segmentation methods. To further validate 
the effectiveness of our method, we compared the proposed method with 
different deep supervision schemes. Table 3 shows the segmentation 
results of different objective functions in our MSDS-UNet. From the 
experimental results in Table 3, we observe that all the deep supervision 
formulations achieve improved performance over the baseline method 
with no deep supervision, and the further combination of three different 
deep supervision mechanism performs the best among all the competing 
methods. With the losses calculated by the predictions from side outputs 
of different layers, more effective gradients back propagation can be 
achieved by direct supervision on the hidden layers. This experiment 
further demonstrates that the model with more supervision scheme 
achieve a better performance. Exploiting the deep supervision may be 
advantageous for tumor representation learning, resulting in a better 
segmentation performance. The proposed two-pathway multi-level deep 
supervision can make use of the complementary multi-scale features for 
final prediction from local and global perspectives, thus is more 
effective. 

4.1.3. The influence of deep supervision mechanism 
To further validate the effectiveness of deeply supervision in our 

method, we also systematically analyze the impact of different setting of 
supervision on the segmentation performance. We run several ablation 
experiments to explore the best side output settings. 

(1) The influence of different amounts of deep supervision. 
From the experimental results in Table 4, it can be observed that 

(1234)-side model with all supervision working improved performance 
with the comparable methods. This means that multi-scale information 
is complementary and more supervision for side outputs can bring in 
additional performance gain. However, the exception is that the (34)- 
side one performs worse than the 4-th side with fewer supervision in 
terms of the dice score and F1-score. It indicates that the inappropriate 
combination can deteriorate the segmentation performance. 

(2) The influence of the deep supervision with different side 
outputs. 

We make a comparison among the supervisions with the same side 
number (3) but different positions. We found that the (124)-side model 
achieves a best performance from the segmentation shown in Table 5. 
The reason is that the outputs of branch with coarser layers are more 
important. The coarser side outputs capture rich spatial information. 
They are capable of successfully highlighting the boundaries of tumors, 
especially for the small tumors. To our surprise, the (124)-side model 
performs better than the (1234)-side one which tells us that the 3rd side 
negatively influences our model, and the more side outputs reduce the 
weights of the prediction of the appropriate layer side, resulting in lower 
segmentation performance. Both results demonstrate that the supervi-
sion with the appropriate number and side position is critical for the 
segmentation performance. 

4.1.4. The performance of 3D MSDS-UNet on the tumors at different scales 
Lung tumors have various scale and we quantitatively demonstrate 

Table 2 
The comparable segmentation results of tumors with the state-of-the-art 3D 
segmentation methods. Superscript symbols * and † indicate that 3D MSDS-UNet 
or 3D MSDS-UNet-GM significantly outperformed the comparable methods. 
Student’s t-test at a level of 0.05 was used.   

V-Net 3D CNN 3D MSDS-UNet 3D MSDS-UNet-GM 

Dice 0.633*† 0.651*† 0.664† 0.675 
Sensitive 0.687*† 0.724*† 0.728† 0.731 
F1-score 0.648*† 0.661*† 0.667† 0.682  

Table 3 
The segmentation results of different objective functions in our MSDS-UNet. 
Superscript symbols * indicates that 3D MSDS-UNet significantly out-
performed that method. Student’s t-test at a level of 0.05 was used. The value in 
brackets indicates the p-value.   

Dice Sensitivity F1-score 

No deep supervision 0.649* 
(0.066) 

0.705* 
(0.035) 

0.641* 
(0.031) 

Only hard-fusion 0.654* 
(0.015) 

0.711* 
(0.013) 

0.650* 
(0.008) 

Only soft-fusion 0.659* 
(0.020) 

0.715* 
(0.028) 

0.652* 
(0.017) 

Only side supervision 0.652* 
(0.019) 

0.694* 
(0.031) 

0.646* 
(0.026) 

Hard fusion + soft fusion 0.658 
(0.095) 

0.722(0.110) 0.659* 
(0.015) 

Hard fusion + soft fusion + side 
supervision 

0.664 0.728 0.667  

Table 4 
The average segmentation results of our 3D MSDS-UNet with different amounts 
of sides (α indicates the weight of corresponding sides). Superscript symbols * 
indicates that 3D MSDS-UNet significantly outperformed that method. Student’s 
t-test at a level of 0.05 was used. The value in brackets indicates the p-value.   

(4)-side (34)-side (234)-side (1234)-side 

α {1} {0.2,0.8} {0.2, 0.2,0.6} {0.2,0.2,0.2, 0.4}
Dice 0.653* 

(0.009) 
0.649* 
(0.024) 

0.654* 
(0.031) 

0.664 

Sensitivity 0.701* 
(0.022) 

0.713* 
(0.019) 

0.718* 
(0.013) 

0.728 

F1-score 0.649* 
(0.026) 

0.644* 
(0.017) 

0.650* 
(0.008) 

0.667  

Table 5 
The average segmentation results of our 3D MSDS-UNet with three different 
combination of sides. Superscript symbols * indicates that 3D MSDS-UNet 
significantly outperformed that method. Student’s t-test at a level of 0.05 was 
used. The value in brackets indicates the p-value.   

(234)-side (134)-side (124)-side 

Dice 0.654* (0.014) 0.657* (0.012) 0.673 
Sensitivity 0.718* (0.022) 0.680* (0.022) 0.743 
F1-score 0.650* (0.019) 0.653* (0.034) 0.669  

Table 6 
The average segmentation results of large-scale tumors by different models. 
Superscript symbols * indicates that 3D MSDS-UNet significantly outperformed 
that method. Student’s t-test at a level of 0.05 was used.  

Method Dice Sensitivity F1-score 

2D U-Net 0.673* 0.645* 0.679* 
3D U-Net 0.735* 0.745* 0.730* 
3D MSDS-UNet with (34)-side 0.749 0.784 0.733 
3D MSDS-UNet with (234)-side 0.768 0.787 0.754 
3D MSDS-UNet with (134)-side 0.738 0.734* 0.733 
3D MSDS-UNet with (124)-side 0.758 0.790 0.753 
3D MSDS-UNet with (1234)-side 0.743 0.764 0.739  
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significant improvements on the different scale of tumors in this 
experiment. The results of 3D MSDS-UNet models with different 
amounts of side output, 2D U-Net and 3D U-Net are shown in Tables 6–8. 

As shown in Tables 6–8, 3D MSDS-UNet outperforms the base U-Net 
architecture in segmenting all scales of tumors, especially for small tu-
mors. The task of the segmentation on the small size tumor is the most 
difficult. The multi-scale context information is needed to be learned by 
our network which then facilitates the target segmentation in the test 
stage. For the large and medium scale tumors, the 3D MSDS-UNet with 
three sides is best. The 3D MSDS-UNet with four sides is even worse that 
the one with two sides in terms of dice score and sensitivity. The iden-
tification of large tumors depends on the advanced features of the top 
feature maps. The supervision of the shallow hidden layers is not 
necessary. The more sides output reduce the weights of the prediction of 
the higher layer side, resulting in lower segmentation performance. For 
the small scale one, the 3D MSDS-UNet with (1234)-side outperforms 
the other versions. Besides it, the 3D MSDS-UNet with (123)-side is the 
second best algorithm. The reason is that the recognition of small tumors 
depends on the underlying features contained in the shallow hidden 
layers. Therefore, achieving an effective feature representation with 
direct supervision in the lower layer is important. Moreover, the 
importance of the segmentation output of branches are different for the 
tumors with variable scales. However, in our current work, the weights 
for branches in the deep supervision are fixed. In the future, we will 
investigate an adaptive weighting scheme for different tumors. 

In order to investigated the contribution of the multi-level multi- 
scale supervision. We chose two small scale tumors as examples. From 
Figs. 9 and 10, we can find that the inclusion of more supervision scales 
allows the U-Net to distinguish the boundaries better. We observe that 
the dice score is zero on some slice images for only 4-side or only (34)- 
side. The result demonstrates that the deep supervision in our 3D MSDS- 
UNet can captures the features of different scale, thus sensitive in small 

Table 7 
The average segmentation results of medium-scale tumors by different models. 
Superscript symbols * indicates that 3D MSDS-UNet significantly outperformed 
that method. Student’s t-test at a level of 0.05 was used.  

Method Dice Sensitivity F1-score 

2D U-Net 0.621* 0.608* 0.612* 
3D U-Net 0.665* 0.709* 0.630* 
3D MSDS-UNet with (34)-side 0.676* 0.718 0.672 
3D MSDS-UNet with (234)-side 0.693 0.758 0.687 
3D MSDS-UNet with (134)-side 0.698 0.724* 0.694 
3D MSDS-UNet with (124)-side 0.695 0.759 0.691 
3D MSDS-UNet with (1234)-side 0.682 0.742 0.678  

Table 8 
The average segmentation results of small-scale tumors by different models. 
Superscript symbols * indicates that 3D MSDS-UNet significantly outperformed 
that method. Student’s t-test at a level of 0.05 was used.  

Method Dice Sensitivity F1-score 

2D U-Net 0.477* 0.502* 0.477* 
3D U-Net 0.519* 0.619* 0.515* 
3D MSDS-UNet with (34)-side 0.522* 0.644* 0.515* 
3D MSDS-UNet with (234)-side 0.499* 0.600* 0.532* 
3D MSDS-UNet with (134)-side 0.526* 0.573* 0.564* 
3D MSDS-UNet with (124)-side 0.556 0.676 0.568* 
3D MSDS-UNet with (1234)-side 0.558 0.651 0.585  

Fig. 9. The results of example 1. The each row indicates the results of different slices from the same case by different algorithms. (a) 4-side; (b) the combination of 
(34)-side; (c) the combination of (234)-side; (d) the combination of (1234)-side. The blue and red indicate the ground truth and predicted boundary, respectively. 
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tumors. Small tumors may have lost their response when the feature map 
has reached a certain depth, which undoubtedly makes it more difficult 
for these methods to detect small tumors accurately. Only the features 
from the top layers fail to achieve expected segmentation performance 
due to the loss of spatial details in the bottom sides. The direct deep 
supervision on the earlier layers can improve the segmentation of small 
objects. The deep subversion can promote the fusion of semantic 
meaningful information in the top sides and the complementary spatial 
details in the bottom sides, leading to break through the bottleneck of U- 
Net based deep learning segmentation model for multiple scale tumors, 
especially small tumors. This experiment further demonstrates that 
exploiting the multi-level multi-scale supervision resulted in better 
segmentation performance. 

4.2. Experiment on the public data from TCIA 

4.2.1. Data and experimental setting 
This collection contains images from 422 non-small cell lung cancer 

(NSCLC) patients. For these patients pretreatment CT scans, manual 
delineation by a radiation oncologist of the 3D volume of the gross 
tumor volume and clinical outcome data are available. We used the TCIA 
dataset (The Cancer Imaging Archive, http://cancerimagingarchive.net 
/) as the training cohort as it had the largest tumors and contained many 
difficult to detect tumors such as those attached to the mediastinum and 
the chest wall. This dataset, called Lung1, contains data of patients 
treated at the MAASTRO Clinic, Netherlands, previously identified by 
the Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/) and 

made publicly available for download. Table 9 details the characteristics 
of the datasets and the patient demographics for three-folds cross 
validation. 

4.2.2. The comparison with state-of-the-art methods 
We compare our proposed method with several state-of-the-art 

methods available in the literature for performing segmentation tasks. 
FRRN (Pohlen et al., 2017): It is a ResNet-like architecture unites 

strong recognition performance with precise localization capabilities by 
combining two distinct processing streams. One stream undergoes a 
sequence of pooling operations and is responsible for understanding 
large-scale relationships of image elements; the other stream carries 
feature maps at the full image resolution, resulting in precise boundary 

Fig. 10. The results of example 2.The each row indicates the results of different slices from the same case by different algorithms. (a) 4-side; (b) the combination of 
(34)-side; (c) the combination of (234)-side; (d) the combination of (1234)-side. The blue and red indicate the ground truth and predicted boundary, respectively. 

Table 9 
Number of patients and training patches for training, validation and test in the 
dataset.  

Fold ID Data Num of patients Tumor Without tumor 

Fold 1 Train 296 5126 30730  
Validation 60 1091 6414  
Test 66 1015 6129 

Fold 2 Train 297 5260 30972  
Validation 60 1071 6012  
Test 65 901 6289 

Fold 3 Train 296 5167 30343  
Validation 60 1034 6721  
Test 66 1031 6209  
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adherence. 
Incremental MRRN (In-MRRN) (Jiang et al., 2018a) is an extension 

of FRRN by residually combining features computed at multiple image 
resolutions, whereby a dense feature representation is computed by 
simultaneously combining feature maps at multiple image resolutions 
and feature levels. Such a dense feature representation increases the 
network capacity and ultimately enables the network to recover the 
input image spatial resolution better than the existing methods. The 
method was proposed for volumetrically segmenting lung tumors. 

Recurrent 3D-DenseUNet (RD-UNet) (Kamal et al., 2018): The 
proposed architecture consists of a 3D encoder block that learns to 
extract ne-grained spatial and coarse-grained temporal features, a 
recurrent block of multiple Convolutional Long Short-Term Memory 
(ConvLSTM) layers to extract ne-grained spatio-temporal information, 
and finally a 3D decoder block to reconstruct the desired volume seg-
mentation masks from the latent feature space. The author’s team ob-
tained first Runner-Up in the 2018 VIP Cup challenge of which the 
dataset is from TCIA dataset. 

Quantitative results from the methods of FRRN, incremental MRRN, 
recurrent 3D-DenseUNet and MSDS-UNet on the TCIA data are pre-
sented in Tables 10 and 11. From Tables 10 and 11, we can see that the 
proposed methods consistently achieves better segmentation perfor-
mance than the competing methods in terms of dice score, sensitivity 
and F1-score on both the only slices with containing tumors and all slices 
individually, which demonstrates the effectiveness of our MSDS-UNet 
method. With the student’s t-test at a level of 0.05, our proposed 
method significantly outperforms the contenders on the most cases. 
Moreover, our method obtains the least false positive instances. 
Compared with Incremental MRRN, our MSDS-UNet performs the tumor 
segmentation with considering the 3D tumor structure and deep su-
pervision mechanism to comprehensively address these challenges of 
volumetric medical image segmentation. Moreover, it can be observed 
that the performances of Incremental MRRN is poor when tested on the 
all slices, since the amount of false positive is large without taking full 
advantage of the special information encoded in the volumetric data. 
The high variations impose more difficulty in extracting potential fea-
tures. Only fusing the feature maps from multiple image resolutions is 
not beneficial. There are still potential issues in training a deep network 

with inadequate discriminative power towards learned features and 
exploding or vanishing gradients. Especially when the depth of the 
model increases, the multi-level features cannot be learned well before 
fusing due to lacking of the appropriate supervision. From the results, 
we can find that with two-pathway deeply supervision from both global 
and local perspectives, more inherent features from different scales can 
be achieved. Finally, we empirically validate the significance of our 
thresholding and morphological operation. From Table 12, we can see 
how the performance deteriorates without any thresholding or 
morphological operations. 

Examples of segmentation obtained with the comparable algorithms 
are shown in Fig. 11. MSDS-UNet behaves very well in preserving the 
hierarchical structure of the tumor, which highlighted that combining 
the 3D module with deep supervision in the U-Net architecture is a 
promising approach for semantic medical image segmentation. It is 
capable of precise segmentation for different scales and locations of le-
sions. The columns show the segmentation results in the following order: 
3D U-Net with ResNet, Incremental MRRN, Recurrent 3D-DenseUNet 
and 3D MSDS-UNet. Fig. 12 illustrates the convergence of 3D U-Net 
with ResNet and MSDS-UNet. When comparing the learning curves of 
the 3D MSDS-UNet and the 3D U-Net with ResNet, the 3D MSDS-UNet 
converges much faster than the original 3D U-Net. These results 
demonstrate the proposed 3D deep supervision mechanism can effec-
tively speed up the training procedure by overcoming optimization 
difficulties through managing the training of the lower layers in the 
network. 

From Table 12, it can be found that the deep supervision mechanism 
can effectively cope with the optimization problem of gradients van-
ishing or exploding when training a 3D deep model, accelerating the 
convergence speed. In addition, MSDS-UNet is measured for its 
computational requirements in layer number, parameter number and 
inference speed and compared with the comparable models (Table 13). 
From the results in Table 13, MSDS-UNet requires slightly more number 
of parameters compared with 3D U-Net with ResNet, FRRN and Incre-
mental MRRN since our model is a 3D model while both RRN and In-
cremental MRRN are 2D models. The computational complexity is an 
inherent disadvantage of 3D network model. However, a large margin 
improvement has been achieved in terms of segmentation performance 
in Tables 10 and 11. Compared with RD-UNet which is also a 3D model, 
MSDS-UNet has a lower computational complexity. Therefore our model 
achieves a good trade-off between effectiveness and efficiency. 

Table 10 
The segmentation results of tumors with the different segmentation models on the only slices with containing lung tumors. Superscript symbols * and † indicates that 
3D MSDS-UNet or 3D MSDS-UNet-GM significantly outperformed the comparable methods. Student’s t-test at a level of 0.05 was used.   

3D U-Net with ResNet RD-UNet FRRN In-MRRN MSDS-UNet MSDS-UNet-GM 

Dice 0.667*† 0.588*† 0.516*† 0.564*† 0.683† 0.691 
Sensitivity 0.728*† 0.60*† 0.703 0.665*† 0.738† 0.746 
Precision 0.706*† 0.691† 0.489*† 0.564*† 0.717† 0.719 
F1-score 0.688*† 0.606*† 0.537*† 0.582*† 0.709† 0.724 
False Positives 894 888 5164 4860 790 765 
False Negatives 134 231 58 93 175 141  

Table 11 
The segmentation results of tumors with different segmentation models on the 
all slices. Superscript symbols * and † indicates that 3D MSDS-UNet or 3D MSDS- 
UNet-GM significantly outperformed the comparable methods. Student’s t-test 
at a level of 0.05 was used.   

3D U-Net 
with 
ResNet 

RD- 
UNet 

FRRN In- 
MRRN 

MSDS- 
UNet 

MSDS- 
UNet- 
GM 

Dice 0.516*† 0.397*† 0.168*† 0.167*† 0.538 0.552 
Sensitivity 0.714*† 0.562*† 0.726 0.658*† 0.707 0.709 
Precision 0.472*† 0.368* 0.117*† 0.115*† 0.498 0.503 
F1-score 0.513 0.391*† 0.166*† 0.167*† 0.521 0.529  

Table 12 
Performance of our proposed method for different thresholds.  

Model Mean Dice Median Dice False Positives False Negatives 

0.5 threshold 0.688 0.767 756 169 
0.6 threshold 0.694 0.769 661 191 
0.7 threshold 0.682 0.755 545 222 
0.8 threshold 0.659 0.759 489 243 
0.9 threshold 0.631 0.736 429 281 
No threshold 0.621 0.659 4185 3  
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4.3. Experiment on a local dataset of COVID-19 patients from China 

Accurate and rapid diagnosis of COVID-19 suspected cases plays a 
crucial role in timely quarantine and medical treatment, which is also of 
great importance for patients’ prognosis. In this work, we evaluated our 
MSDS-UNet for automatic segmentation of pathologic COVID-19 

associated tissue areas from clinical CT images available from a dataset 
with 108 cases in China. 

In our experiments, 108 cases of 3-dimensional lung CT image data 
from different COVID-19 patients that treated in different hospitals were 
used for model training and testing. 58 patients from Harbin (Hei-
longjiang Province) were scanned using a 256-slice CT scanner (Philips 

Fig. 11. Lung tumors segmentation comparison among 3D U-Net with ResNet, incremental MRRN, recurrent 3D-DenseUNet, our 3D MSDS-UNet and 3D MSDS-UNet- 
GM. Each column represents a patient’s lung CT case and each row represents the lung tumor segmentation result of 3D U-Net with ResNet, incremental MRRN, 
recurrent 3D-DenseUNet, our 3D MSDS-UNet and 3D MSDS-UNet-GM, respectively. The blue and red indicate the ground truth and predicted boundary, respectively. 

Fig. 12. The learning curves of two methods.  
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Healthcare, Cleveland, OH, US), 24 patients from Shuangyashan (Hei-
longjiang Province)were scanned with Somatom Balance CT (Siemens 
Healthcare, Forchheim, Germany), 16 patients from Uygur autonomous 
region (Xinjiang Province) were examined with LightSpeed Plus (GE, 
Medical System, Milwaukee, USA), 10 patients from Chengdu (Sichuan 
Province) were examined with 128-slice DSCT (Siemens Healthcare, 
Forchheim, Germany). All these CT images were reconstructed into a 
slice thickness of 1.0–2.0 mm. Scan were performed in the supine posi-
tion during end-inspiration. All CT images were de-identified before 
sending for analysis. This study is in compliance with the Institutional 
Review Board of each participating institutes. Informed consent was 
exempted by the IRB because of the retrospective nature of this study. 

Anam-Net (Paluru et al., 2021): is a network architecture utilized for 
segmenting abnormalities in COVID-19 chest CT images. Fully con-
volutional anamorphic depth blocks (AD-blocks) with depthwise 
squeezing and stretching have been incorporated after downsampling 
operation in the encoder and decoder. 

Inf-Net (Fan et al., 2020a) is a COVID-19 lung CT infection seg-
mentation network, which utilizes an implicit reverse attention and 
explicit edge-attention to improve the identification of infected regions. 

Table 14 and Fig. 13 report our results and the comparisons with the 
other state-of-art networks quantitatively and qualitatively. Both MSDS- 
UNet methods achieve consistent improvement in terms of Dice, sensi-
tivity and precision. This is because lesions appear at varying scales in 
CT slices; and thus, a multi-scale approach using all segmentation 
branches with deep supervision is essential for accurate segmentation. 

Table 13 
The network parameters of MSDS-UNet and the comparable methods.   

3D U-Net 
with 
ResNet 

RD- 
UNet 

FRRN Incremental 
MRRN 

MSDS- 
UNet 

Layer 
number 

59 20 49 56 62 

Parameters 
number 

26.38 M 29.10 M 24.83 M 28.66 M 26.45 M 

Inference 
time 

16.1 s 18.93 s 11.7 s 13.5 s 16.3 s  

Table 14 
The segmentation results of COVID-19 lung infection with different U-Net based 
segmentation models. Superscript symbols * and † indicates that 3D MSDS-UNet 
or 3D MSDS-UNet-GM significantly outperformed the comparable methods. 
Student’s t-test at a level of 0.05 was used.   

U-Net U-Net 
with 
ResNet 

COVID- 
CT-Mask- 
Net 

Inf- 
Net 

MSDS- 
UNet 

MSDS- 
UNet- 
GM 

Dice 0.630*† 0.667*† 0.628*† 0.658† 0.671 0.674 
Sensitivity 0.727*† 0.733*† 0.644*† 0.704† 0.710† 0.733 
Precision 0.646*† 0.700*† 0.688*† 0.713† 0.714† 0.727  

Fig. 13. Lung tumors segmentation comparison among COVID-CT-Mask-Net, Inf-Net and our 3D MSDS-UNet. Each column represents a patient’s lung CT case and 
each row represents the lung tumor segmentation results of COVID-CT-Mask-Net, Inf-Net and 3D MSDS-UNet respectively. The blue and red indicate the ground truth 
and predicted boundary, respectively. 
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5. Limitation and the future research 

To further strengthen MSDS-UNet, the current work presents several 
extensions to our previous work: 

1. Through some inaccurately segmented cases (Fig. 14), we can 
observe that our current model ignores the learning of the contour re-
gions. To derive the essential contour, which acts as a complementary 
feature with the global shape feature. During lung tumor or infection 
detection, clinicians first roughly locate an infected region and then 
accurately extract its contour according to the local appearances. We 
therefore argue that the area and boundary are two key characteristics 
that distinguish normal tissue and abnormal one. In the next research, 
we guide our segmentation network model to learn complementary 
contour region that can aid the accurate delineation of the target object. 

2. We will investigate the extensibility of MSDS-UNet to multiple 
advanced encoder backbones, such as HRNet (Sun et al., 2019) or 
UNet++ (Zhou et al., 2019). 

6. Conclusion 

The volumetric segmentation of lung tumor is a challenging problem 
since multi-scale of target tumors limit the traditional U-Net. In this 
paper, we presented a 3D deeply supervised network for lung tumor 
segmentation. We propose a 3D deep supervision mechanism by 
formulating an objective function that directly guides the training of the 
hidden layers in order to reinforce the propagation of gradients flows 
within the network and hence learn more powerful and representative 
features. Different from previous deeply supervision architectures, a 
combination of the side-output fused predictions for the final prediction 
with the ensemble of multi-scale predictions of multi-resolution seg-
mentation map, to increase the network’s capacity for learning richer 
representations of lung tumors from global and local perspectives. We 
evaluated MSDS-UNet using three medical imaging datasets covering 
lung tumor segmentation and COVID-19 infection segmentation. Our 
experiments demonstrate that the mechanism results in more accurate 
segmentation for multi-scale lung tumors, especially on the small scale 
cancer, which further verifies the merit of the proposed deep supervision 
mechanism. 
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