
Fastest Association Rule Mining Algorithm Predictor
(FARM-AP)

Metanat HooshSadat
Dept of Computing Science

University of Alberta
Edmonton, Alberta, Canada
hooshsad@ualberta.ca

Hamman W. Samuel
Dept of Computing Science

University of Alberta
Edmonton, Alberta, Canada

hwsamuel@cs.ualberta.ca

Sonal Patel
Dept of Electrical and
Computer Engineering
University of Alberta

Edmonton, Alberta, Canada
sonal1@ualberta.ca

Osmar R. Zaïane
Dept of Computing Science

University of Alberta
Edmonton, Alberta, Canada
zaiane@cs.ualberta.ca

ABSTRACT
Association rule mining is a particularly well studied field
in data mining given its importance as a building block in
many data analytics tasks. Many studies have focused on
efficiency because the data to be mined is typically very
large. However, while there are many approaches in litera-
ture, each approach claims to be the fastest for some given
dataset. In other words, there is no clear winner. On the
other hand, there is panoply of algorithms and implemen-
tations specifically designed for parallel computing. These
solutions are typically implementations of sequential algo-
rithms in a multi-processor configuration focusing on load
balancing and data partitioning, each processor running the
same implementation on it is own partition. The question
we ask in this paper is whether there is a means to select
the appropriate frequent itemset mining algorithm given a
dataset and if each processor in a parallel implementation
could select its own algorithm provided a given partition of
the data.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous; H.2.8 [Database

Applications]: Data Mining

General Terms
Algorithms

Keywords
data mining, association rules, classification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C3S2E-11 2011, May 16-18, Montreal [QC, CANADA]
Editors: Abran, Desai, Mudur
Copyright 2011 ACM 978-1-4503-0626-3/11/05 ...$10.00.

1. INTRODUCTION
Association Rule Mining (ARM) is one of the most im-

portant canonical tasks in data mining and probably one
of the most studied techniques for pattern discovery. As-
sociation rules express associations between observations in
transactional databases and the process of extracting them
consists of initially finding frequent itemsets. Consequently,
rules are extracted from these discovered frequent itemsets.
A plethora of frequent itemset mining algorithms have been
devised, such as Apriori [1], FP-Growth [21], and Eclat [19],
to mention a few. However, no one algorithm is a clear
winner in terms of speed because the characteristics of the
database being mined contribute significantly to the running
times [17, 14]. Given a transactional database to mine for
association rules, the best and most efficient association rule
mining algorithm varies based on the target dataset. Arbi-
trary or trial-and-error selection of which algorithm best fits
a given dataset is inefficient, especially when huge datasets
are involved, such as those in supermarkets, or web logs to
mention a few.

We claim that selecting the most appropriate algorithm
for frequent itemsets is also relevant to parallel computing.
Given the very large datasets to mine, many have supported
high performance and parallel computing. Yet, all parallel
algorithms that exist for mining frequent itemsets consist
of the same algorithm running on different processors either
sharing memory or not sharing memory, where the algorithm
focuses on partitioning the dataset to split among the pro-
cessors and managing and effective load balancing between
these processors. However, since all frequent itemset min-
ing algorithms theoretically should discover the same set of
patterns from an identical dataset and their only difference
is their efficiency, the idea that we advocate is to allow dif-
ferent algorithms running on different processors based on
the partition of data that is provided to them. To do so,
a processor needs to select the algorithm to execute based
on the characteristics of the data it is given. This is a task
of predicting the best algorithm (i.e. supervised classifica-
tion). Research into the area of predicting the best ARM
algorithm is new. In fact, we found very little previous work
directly suggesting the approach we present here. However,
there was relevant literature to guide our work.

Zäıane et al. [26] develop a framework for comparatively
studying the performance of various data mining algorithms
against real and synthetic datasets. The framework allows
performance analysis of both new and established algorithms
by running them for each dataset and determining frequent
closed itemsets. Our study may seem similar in concept, but
our focus is on using machine learning to predict the optimal
performing algorithms for real and synthetic datasets. Our
approach to predicting the fastest algorithm is not based
on performance benchmarks or finding frequent closed item-
sets within a given dataset, but on the characteristics of the
dataset itself. In our case, the algorithm is predicted without
actually running it against any datasets.
Hipp et al. [12] compared various ARM algorithms based

on how the algorithms traverse the search space for the
dataset to find itemsets and how support for the itemsets
is determined. For traversal, either breath-first search or
depth-first search is used, while for determining support, ei-
ther counting or intersection via TIDs is used. These obser-
vations were very important for our work. Fundamentally,
one association mining algorithm is better than another be-
cause of the search method it uses and how the dataset is
organized in line with the search method. The counting
method also plays an equally important role. The paper
also presented experiments done to compare 4 algorithms
with varying supports. The graphs presented were impor-
tant for our research as they showed that changing support
can significantly affect the algorithm performances [12].
Veloso et al. [17] have performed an analysis of how to de-

termine which association rule mining algorithm is likely to
make a good match with a given database by a systematic
experimental evaluation. Characteristics between real and
synthetic datasets are compared. This work was directly
related to our research and gave us many insights into the
database characteristics that could serve as classifier fea-
tures [17].
In addition, research has been focused on using sampling

to estimate frequent itemsets [27, 28]. While these methods
can potentially reduce running time, there are 2 shortfalls:
1) estimations do not provide an exhaustive list of patterns,
and 2) the accuracy of estimators might fluctuate with the
nature of the dataset and the sampling strategies. Our pro-
posed approach allows the efficient use of traditional data
mining methods without having to rely on good sampling
estimations of frequent itemsets.
Various algorithms exist for association rule mining. Some

of these algorithms are more efficient than others in terms
of running time. Given some dataset, one algorithm gen-
erally outperforms the others. In fact, the time efficiency
of these algorithms is closely dependent on the nature of
dataset supplied, assuming memory is sufficient. Through
this study we have come up with a classifier which would
predict the fastest association rule mining algorithm, with a
high degree of accuracy and significantly low overhead.

2. APPROACH AND METHODOLOGY
We used the classification approach to predict which asso-

ciation rule mining algorithm is fastest. The particular algo-
rithms which we used were Apriori, Eclat and FP-Growth.
We used a variety of transactional datasets from different
domains as training data.
The main aim in classification is to build a prediction

mechanism which can map objects into pre-defined classes

depending upon the attributes of objects. In the classifica-
tion approach, we have the following main steps:

• Identification of candidate features

• Feature extraction

• Model training

• Model testing

First, we looked for candidate features that are relevant
to the ARM algorithms. This was followed by running the
selected algorithms on our datasets. Our classes mapped to
the selected algorithms based on the fastest running time
for a given dataset, also allowing for ties. We explain the
notion of a tie in Section 2.7. Next we used machine learning
techniques to determine which features give better accuracy
and which need to be pruned. This led to a model that would
be able to predict the fastest algorithm for a given dataset.
Ultimately, we appraise this model against a real dataset by
comparing our predicted results with actual results. Figure 1
summarizes our approach. We present the artifacts of the
classification approach in the following sections.

2.1 Datasets
We used two types of datasets: real and synthetic. This

was because the nature of the artificially generated transac-
tion databases is different from real-world datasets [17]. We
also wanted to diversify our datasets to build a better clas-
sifier. We used 23 synthetic datasets that have been used
in other related literature as well. These datasets have been
artificially generated with the IBM Generator [22]. Also, we
used a total of 13 real datasets, most of which were obtained
from the Frequent Itemset Mining Dataset Repository [22]
and other sources such as [23]. Table 1 shows a listing of
these real-world datasets and their sizes.

Name Size
chess 369KB
connect 9.70MB
gaz 1.63MB
mushroom 650KB
pumbsb 16.5MB
pumbsb star 11.4MB
BMS-POS 13.7MB
BMS-WebView 3.87MB
kosarak 30.5MB
retail 3.97MB
webdocs 1.37GB
Proteins 29.7MB
worldcup98 359.9MB

Table 1: List of Real Datasets used

2.2 Candidate Features
In a usual classifier building study, the features of the

dataset would be selected depending on the context of the
domain. For our work, our candidate features are meta fea-
tures, since they contain information about the dataset. We
chose 10 candidates related to a dataset’s properties. For
easier reference, we gave each feature a meaningful name.
Table 2 shows the features and their descriptions. As men-
tioned above, there are already various characteristics of

Figure 1: Overview of Classification Approach

datasets that are known to affect how ARM algorithms per-
form, and we leveraged this knowledge while selecting our
candidate features. In addition, we determined that Apriori
is sensitive to the Bucket feature.

Name Description
Width Average size of transactions
MaxWidth Largest size of transaction
MinWidth Smallest size of transaction
Height Number of transactions
Span Number of unique transaction items
MaxSpan Largest size of transaction with unique items
MinSpan Smallest size of transaction with unique items
Mass Number of items
Support Usual meaning of support
Bucket Largest number of items per rule

Table 2: Candidate Features

2.3 Feature Selection
In this section, we will discuss the features that proba-

bly influence our classifier’s accuracy [9]. To find whether
the features are correlated with the label used for predict-
ing the fastest algorithm, correlation based feature selection
was used. Correlation based feature selection defines the
measure of goodness of a feature to its correlation to the
label. The features are ranked based on this measure. We
used two different correlation based methods: Information
Gain Feature Ranking and CFS. Information Gain Feature
Ranking is derived from Shanon entropy as a measure of
correlation between the feature and the label to rank the
features. Information Gain is a famous method and used in
many papers [2]. The other method is CFS which uses the
standardized conditional Information Gain to find the most
correlated features to the label and eliminates those whose
correlation is less than a user defined threshold [10]. Addi-
tionally, using a subset search, it eliminates those that are
more correlated to the other features than the label (redun-
dant features). Thus it does both dependency and redun-
dancy filtering. Various tests showed that the algorithm is
successful in reducing the feature space without decreasing
the accuracy [10].

2.4 Classifiers
Our methodology suggests to use a classifier on a dataset

to determine the fastest algorithm. The choice of the classi-

fier is very important, both from time and accuracy point of
view. The accuracy should be obviously high. The time con-
sumed by the classifier in the testing phase will be counted
in the overhead of our system if it is to be used in a paral-
lel setting for each processor to determine the algorithm to
utilize. We used a broad set of different classifiers to choose
between.

• Bayes Net: This algorithm uses various search algo-
rithms and uses the Bayes Network data structure for
learning. The algorithm is very flexible and intuitive
and has been successfully used in many studies [6].

• C4.5: This algorithm which performs the learning by
building decision trees, is commonly used for both dis-
crete and continues features [18]. It is one of the most
influential algorithms selected by ICDM. It utilizes two
heuristics (information gain and gain ratio) to build
the decision tree. The training time of this algorithm
is high, but it has a relatively low test time.

• Decision Table: Decision Table uses a very simple set
of hypotheses to build a model. There is an underlying
algorithm in the decision table schema which finds the
best subset of features to put in the table. This algo-
rithm can be rather simple, like a wrapper using best
first search algorithm. Decision Tables are proven to
be successful in datasets with continuous features [13].
The algorithm has a high training time, but small test-
ing time.

• SVM: The functional classifier of SVM is one of the
most influential classification methods [18]. Not only
can it overrule other methods when data is linearly
separable, but it also has the well known ability of
being able to serve as a multivariate approximate of
any function to any degree of accuracy. SVM uses a
linear hyperplane to create a classification of maximal
margin. The other important point about SVM is that
it is basically known as a good comparison line for
other classifiers [16]. SVM can be used as a kernelized
version, but the test time will increase in that case.
Thus, we will only use linear SVM.

• KNN: KNN or the K-nearest-neighbor algorithm votes
between K geometrically close training points for ev-
ery test point. This algorithm assumes that points in
proximity to each other have the same class label. It
is often successful when each class has many possible
prototypes and the decision boundary is very irregu-
lar [16]. KNN belongs to the family of lazy classifiers,
meaning that it does not build a model, so the training
time is always 0. This feature is not desired, but as we
use only small number of neighbors in range of 1,...,9
along with Manhattan Distance, the runtime will not
be too high.

• NB: Naive Bayes classifier is a simple classifier which
assumes that the features are completely independent
and applies the Bayes rule based on this assumption.
Despite its unrealistic independence assumption, the
naive Bayes classifier is surprisingly effective in prac-
tice since its classification decision may often be correct
even if its probability estimates are inaccurate [15].
This classifier is also very fast in both training and
testing.

2.5 Feature Extraction
We use the term ‘feature extraction’ to describe getting

the values for the candidate features for a given dataset. For
instance, getting the value for the Span, Width, or Height
for the BMS-POS dataset, and so on. This step of feature
extraction is a key step because the data retrieved goes into
our classifier, as depicted in Figure 1. The efficiency of our
feature extractor is important because we want to keep over-
heads low.

2.6 Association Rule Mining Algorithms
Although there are various algorithms for ARM, we used

3 algorithms:

• Apriori: Generates candidate itemsets to be counted in
a pass by using only the itemsets with frequency more
than minimum support in the previous pass, because
any subset of a large itemset must be large itself [1]

• FP-Growth: Uses a prefix tree representation of the
given database (FP-tree). In a preprocessing step, all
the single items that are not frequent are eliminated,
then all the transactions that contain least frequent
items are selected from among those which are fre-
quent. The same steps are recursively applied, remem-
bering that the itemsets found in recursion share the
eliminated items [3]

• Eclat: Uses a bit matrix to represent the transactions,
and uses a prefix tree to search in depth-first order.
One main difference of Eclat from Apriori and FP-
Growth is that it uses TID intersections in counting
itemsets, which leads to very fast support counting [4,
19]

Our choice was guided by the popularity of these algo-
rithms and their relative efficiencies found in literature. We
used optimized C implementations of these algorithms pro-
vided by Borgelt [24]. These implementations provide run-
ning time information after execution that we used. We
ignored the time taken for read-writes of the datasets, and
used the time taken to generate frequent itemsets.
It should be noted that when execution is interrupted due

to out-of-memory conditions, the algorithms return a value
of -1 for the running time. For other unexpected situations,
the algorithms return other negative values. For our exper-
iments, when we encountered negative values other than -1,
we ignored the results because they were meaningless. An-
other notable point is that the Bucket feature is a parameter
in all the algorithms. It controls when the algorithms should
stop generating itemsets, depending on the size of the item-
sets. To get running times for the different datasets, these
algorithms were run on a cluster with 8 GB of memory. We
reserved 3 GB of memory and used 1 node to run all our
scripts to call the algorithms on different datasets in paral-
lel.

2.7 Training Set
The training set is created after feature extraction and

running the algorithms on each dataset. For each dataset,
the fastest algorithm determines the class. We allowed ties,
so that for a given dataset, two or more algorithms could be
relatively the same running time. However, not only running
times that are exactly the same are considered equivalent.

We also incorporated the notion of significance between run-
ning times. If the difference between algorithms is greater
than some significance delta, then we say that one is faster
than the other, otherwise they are the same. This follows
intuitively as well, since a difference of some milliseconds
does not necessarily mean that one algorithm is significantly
faster. More formally,

Let T1 and T2 be the running times for algorithms A1 and
A2 respectively

Let φ be the setting for the significance delta
Let ⊃ define fastness of one algorithm over the other, for

instance A1 ⊃ A2

If | T1 − T2 |> φ, then we say A1 ⊃ A2

Based on the notion of ties, we have 7 classes. Table 3
shows the class abbreviations and corresponding interpreta-
tions.

Class Description
A Apriori algorithm is fastest
F FP-Growth algorithm is fastest
E Eclat algorithm is fastest
AF Apriori and FP-Growth tied and either is fastest
AE Apriori and Eclat tied and either is fastest
FE FP-Growth and Eclat tied and either is fastest
AFE All algorithms tied

Table 3: Classes used in Training Set

We computed significance based on the range of times
recorded after our experiments. This is because a uniform
value of φ may not be suitable for all results. For instance,
if the running times for all algorithms are very small, such
that T1, T2 < φ, then the choice of algorithm would become
insignificant, which is not necessarily true. We use the fol-
lowing formula to compute φ, and introduce the notion of a
significance percentage, P : φ = MIN(T1, T2)× P .

Given a dataset, we vary the significance percentage, P
to get the optimal results for which algorithm was faster.
Figure 2 shows the distribution of classes for different values
of P.

Figure 2: Distribution of Classes using different Sig-

nificance Percentages

There were a total of 996 data points in our training set,
generated from the datasets by varying support values to
1%, 5%, 10%, 30%, 50%, and 70%. In addition, the values
for the Bucket candidate feature are parameters to the al-
gorithms, and these were varied to 5, 10, 15, and default,
which effectively means no limit.

2.8 Weka Machine Learning Tool
Weka is a machine learning tool implemented in Java

which provides many classifiers and feature selection tech-
niques [11]. In this study, we used Weka for both classi-
fication and feature selection tasks, as well as resampling.
Even though there are other tools available for data mining
and machine learning, our choice of Weka is based on its
popularity within the research community.
In a dataset with discrete class labels, the majority class is

the one that has the most number of members. The classifier
which predicts the majority class for all of the test instances,
is called Zero-R and its accuracy is called baseline [11]. Re-
sampling produces a random subsample of a dataset using
either sampling with replacement or without replacement.
It is commonly used when a dataset is unbalanced, i.e. the
majority class is a lot more populated than the other classes,
thus the baseline is too high. In this case the prediction will
be deviated to the majority class, causing the decrease in
the accuracy of the test set. Resampling training data with
a bias toward uniform distribution balances the dataset [11].
As described in Section 2.7 and in Figure 2 our dataset is
unbalanced and needs resampling. Weka has all of the fea-
tures we need, but Weka’s accuracy calculation has a major
difference with the accuracy system we need to use in our
study. As mentioned in Section 2.7, the labels of the dataset
are one of the {A, E, F, AE, AF, EF, AFE}. The purpose of
the study is to predict a fast algorithm. Hence if algorithms
A1 and A2 are tied for running time, if the classifier predicts
only one of the A1 or A2 our goal is met and we can declare
it as an accurate prediction. Although we put the label as
A1A2 in the training set to enhance the training task, in the
testing part, a prediction of A1 or A2 should be counted as
accurate. Table 4 shows these cases. To implement this we
had to change some parts of the Weka source code [25].

Predicted Class Actual Class
A A, AF, AE, AFE
F F, AF, FE, AFE
E E, AE, FE, AFE
AF AF, AFE
AE AE, AFE
FE FE, AFE
AFE AFE

Table 4: Handling Ties in Weka

3. CLASSIFIER EVALUATION AND RESULTS
To evaluate the classifier, we measured the precision of

the classifier model. In the classifier approach, there are
two test phases: first for classification and feature extrac-
tion, and second for the new datasets. The first test phase
guided us in selecting the better approach, but the true ac-
curacy was found in the second phase. In addition, after
prediction by our classifier, we actually ran the algorithms
on the test datasets and compared the predictions with the
actual empirical results. For evaluating our sampling pre-
dictions, we compared actual results with predicted results.
In addition to evaluation based on accuracy, we also evalu-
ated the overhead in using the classifier model or in sampling
and frequent patterns mining. Given that prediction aims
to increase the overall time taken to run an association rule
mining algorithm, the overhead needed to be low enough.

3.1 Balancing
As mentioned in Section 2.8, using Weka, we applied a

biased resampling filter to remove 50% of the training data
and get to a lower baseline. To see the difference between
the balanced and the unbalanced baselines, look at Figure 3.
The numbers shown are the accuracies of the Zero-R clas-
sifier run under 10-fold cross validation for 10 times, when
applied to the training set with different significance values.

Figure 3: Baseline before and after balancing. The

red bars show the baseline in unbalanced training

sets, while the blue bars shows the baseline in bal-

anced training sets

3.2 Training Results
Changing the value of significance in a 10 fold-CV scheme,

we filtered the training set using Weka’s resampling, ran the
feature selection algorithms using rank search, and applied
the classifier. The feature selection algorithms are super-
vised, thus applied in-fold. For each significance value, the
maximum accuracy, the classifier which achieved that ac-
curacy, and the number of features are shown in Table 5.
Figure 4 shows the highest accuracy for each significance
value.

Figure 4: The best accuracy achieved for each sig-

nificance value, maximum between all classifiers

3.3 Discussion
The results of the classifications were presented in the

previous section. In choosing the classifier, two important

Significance Value Accuracy Classifier Parameters Number of Features

0.00 55.62(3.91) C4.5
Confidence factor = 0.25
Minimum instance per leaf = 0.2

10

0.05 52.81(5.51) C4.5
Confidence factor = 0.25
Minimum instance per leaf = 0.2

10

0.10 60.29(5.18) C4.5
Confidence factor = 0.25
Minimum instance per leaf = 0.2

10

0.15 65.61(3.75) C4.5
Confidence factor = 0.25
Minimum instance per leaf = 0.2

10

0.20 71.84(5.21) Decision Table
Evaluation measure: Accuracy and RMSE
Search: Best First

10

0.25 77.67(5.06) Decision Table
Evaluation measure: Accuracy and RMSE
Search: Best First

10

0.30 79.91(3.64) Decision Table
Evaluation measure: Accuracy and RMSE
Search: Best First

10

Table 5: The maximum accuracy reached with different significance values, the classifier reaching to the

accuracy, its parameters, and the number of features

factors are effective, the accuracy and the runtime, assuming
memory is sufficient. Fortunately, there was a clear winner
as the best accuracies belong to Decision tree and C4.5 which
also have a relatively small running time.
As shown in Figure 4 the significance measure is very im-

portant. As the significance grows higher, the accuracy of
the prediction model grows. This can be because of two
reasons: the dataset becomes more predictable because the
labels get closer to the reality (reliability growth), or all of
the class labels change into AFE (convergence).
Based on Figure 2, different classes still exist in the dataset

in all of the significance values, so it is more likely that relia-
bility growth causes the increase of the accuracy. Addition-
ally as mentioned before the run time is not very different
with C4.5. Based on these reasons, our model will use the
significance percentage of 30%, Decision Table classifier, and
10 features.

3.4 Model Testing
In this section, we talk about how we tested our classi-

fier against new datasets. This testing serves two purposes:
testing the model in an actual real-world scenario, and also
for evaluating overheads. Overall, tests performed on the
model are meant to quantify its efficiency.

3.4.1 Simulation
The following scenario was used to test our model. Sup-

pose we have a large dataset that needs to be mined. This
dataset requires deployment over a cluster so that it can be
processed efficiently in parallel. Normally the cluster would
be configured to run the same algorithm that is arbitrar-
ily selected, since there is no pre-knowledge of which algo-
rithm suits the dataset. In addition, since parallelization
is being used, the dataset will be broken down into smaller
chunks. However, even though a guessed algorithm may suit
the overall dataset, it may not be true for the sub-datasets
on each node. Figure 5 shows the general setup of the sce-
nario.
In our simulation, we first use a large dataset accidents

using the typical setup of running the same algorithm for
each node on a cluster. We then use our proposed solution
of using a classifier to predict the best algorithm and use
this classifier on each node. Finally, we make a comparative
analysis of these 2 runs. The accidents dataset we used was
for a region in Belgium and covers the period of 1991 to 2000.

Figure 5: Setup of Simulation

Police officers fill in a form for each traffic accident they were
covering. The dataset contains 340, 184 records of traffic
accidents. Also, the dataset contains 572 different attribute
values, but on average only 45 attributes have data [8].

3.4.2 Results
We split the accidents dataset and run an algorithm using

different values of the parameters mentioned in Section 2.7.
In one instance of our simulation, shown in Table 6, if an
algorithm is guessed (for example Apriori) the time taken
to complete the batch job on a cluster is 2966s. However,
when FARM-AP is used, the total time to complete the job
is 1.07s. This is because FARM-AP predicts that Eclat is
better. In this instance, FARM-AP drastically speeds up the
mining process. Also, in other instances of the simulation,
with different values of the bucket and support, FARM-AP
generally beats the guessing strategy when the best algo-
rithm is not guessed.

3.5 Evaluation of FARM-AP
For evaluation of FARM-AP, we used 3 scenarios for best,

average and worst cases. It should be noted that in all of

Node# Apriori(sec) FPGrowth(sec) Eclat(sec) Prediction Feature Extraction Overhead(sec) Classification Overhead(sec) Total Overhead(sec)
1 1746 0.49 0.36 Eclat 0.607 0.01 0.617
2 1938 0.48 0.39 Eclat 0.668 0.01 0.678
3 2369 0.58 0.35 Eclat 0.587 0.01 0.597
4 2966 0.48 0.36 Eclat 0.670 0.01 0.680

Table 6: Results of the simulation for one case with support of 5 and no limit bucket. The model predicts

the best algorithm which is Eclat

the instances of our simulation, FARM-AP predicted either
FP-Growth or Eclat, which had running times much shorter
than Apriori. This showed that FARM-AP was able to pre-
dict the better algorithm, but was limited by the overhead
in feature exaction and classification. For classification over-
head we recorded Elapsed time testing in Weka.
Best Case: For the best case in the simulation, i.e if

the algorithm guessed is one with the longest running time
(Apriori), FARM-AP guarantees that it will predict a bet-
ter algorithm. The overhead is significantly low compared
to the running time of the slower algorithm. The running
time of the guessing scenario will be the same as the slowest
algorithm.
Average Case: In the average case, the probability of

guessing any algorithm is the same. The running time of
the guessing scenario will be the mean of the algorithms.
FARM-AP still outperforms guessing in this scenario.
Worst Case: Obviously in the worst case, if the fastest

algorithm is guessed, then FARM-AP is beaten because of
the overheads. This is because the running time of this
guessing scenario will be the same as the fastest algorithm.
From the simulation, FARM-AP can predict the fastest al-

gorithm with 83% accuracy. More generally, if the difference
between the slowest and fastest algorithms is significantly
high, and more than FARM-APs overhead (around 1s in the
simulation), then FARM-AP beats the guessing strategy in
the best and average scenarios. Even though Apriori was
faster than FP-Growth and Eclat for some datasets during
training, in our model testing simulation, Apriori was the
slowest on all nodes. However, there may be special cases
where an algorithm is fast on some nodes, and slow on other
nodes due to the way the dataset is split, and the characteris-
tics of the sub-datasets. In other words, different algorithms
are optimal for different dataset partitions. Consequently,
a different algorithm will be predicted for each sub-dataset,
with a different overhead value for the sub-dataset. In this
special case as well, if the difference between the running
times of the fastest and slowest algorithm on each node is
more than the largest overhead, FARM-AP will outperform
arbitrary guessing, based on our high accuracy on predict-
ing the best algorithm. This would be investigated in future
research.

4. CONCLUSION AND FUTURE WORK
We have successfully presented a new technique using a

classifier which can predict the fastest ARM algorithm with
a high degree of accuracy of 80%, and very low overhead.
Generally, FARM-AP outperforms arbitrary selection of an
algorithm for a given dataset. We can make this claim based
on the results of our simulation on the accidents dataset. For
future work, the accuracy of FARM-AP can be increased,
and the overhead can be decreased. Also, we suggest train-
ing FARM-AP with more features such as average maximal
pattern length of the datasets.

5. REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast
Algorithms for Mining Association Rules in Large
Databases. In International Conference on Very Large
Data Bases, pages 487–499, 1994.

[2] Jacek Biesiada, Wlodzislaw Duch, and Google Duch.
Feature Selection for High-Dimensional Data: A
Kolmogorov-Smirnov Correlation-Based Filter. In
Proceedings of the International Conference on
Computer Recognition Systems, 2005.

[3] Christian Borgelt. An Implementation of the
FP-growth Algorithm. In International Workshop on
Open Source Data Mining, pages 1–5, 2005.

[4] Christian Borgelt. Efficient Implementations of
Apriori and Eclat. In Proceedings of the IEEE ICDM
Workshop on Frequent Itemset Mining
Implementations, 2003.

[5] Doug Burdick, Manuel Calimlim, and Johannes
Gehrke. MAFIA: A Maximal Frequent Itemset
Algorithm for Transactional Databases. In
International Conference on Data Engineering, pages
443–452, 2001.

[6] Luis M. de Campos, Juan M. Fernandez-Luna, and
Juan F. Huete. Bayesian Networks and Information
Retrieval: An Introduction to the Special Issue.
Information Processing and Management,
40(5):727–733, 2004.

[7] Manoranjan Dash and Huan Liu. Feature Selection for
Classification. Intelligent Data Analysis, pages
131–156, 1997.

[8] Karolien Geurts, Geert Wets, Tom Brijs, and Koen
Vanhoof. Profiling High Frequency Accident Locations
Using Association Rules. In Proceedings of the 82nd
Annual Transportation Research Board, page 18, 2003.

[9] Isabelle Guyon and Andre Elisseeff. An Introduction
to Variable and Feature Selection. Journal of Machine
Learning Research, pages 1157–1182, 2003.

[10] Mark A. Hall. Correlation-based Feature Selection for
Discrete and Numeric Class Machine Learning. In
Proceedings of the Seventeenth International
Conference on Machine Learning, pages 359–366,
2000.

[11] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. The
Weka Data Mining Software: An Update. SIGKDD
Explorations, 11(1).

[12] Jochen Hipp, Ulrich Guntzer, and Gholamreza
Nakhaeizadeh. Algorithms for Association Rule
Mining - A General Survey and Comparison. SIGKDD
Explorations, pages 58–64, 2000.

[13] Ron Kohavi. The Power of Decision Tables. In
Proceedings of the European Conference on Machine
Learning, pages 174–189, 1995.

[14] Kevin Leyton-Brown, Eugene Nudelman, Galen
Andrew, Jim McFadden, and Yoav Shoham. A
Portfolio Approach to Algorithm Selection. In
International Joint Conferences on Artificial
Intelligence, pages 1542–1542, 2003.

[15] Irina Rish. An Empirical Study of the Naive Bayes
Classifier. In Workshop on Empirical Methods in
Artificial Intelligence, 2001.

[16] Robert Tibshirani Trevor Hastie and Jerome
Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, corrected
edition edition, August 2003.

[17] Adriano Veloso, Bruno Gusmao Rocha, Marcio
de Carvalho, and Wagner Meira Jr. Real World
Association Rule Mining. In Proceedings of the British
National Conference on Databases, pages 77–89, 2002.

[18] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep
Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J.
McLachlan, Angus Ng, Bing Liu, Philip S. Yu,
Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and
Dan Steinberg. Top 10 Algorithms in Data Mining.
Knowledge and Information Systems, 14(1):1–37, 2008.

[19] Mohammed J. Zaki, Srinivasan Parthasarathy,
Mitsunori Ogihara, and Wei Li. New Algorithms for
Fast Discovery of Association Rules. In Proceedings of
the International Conference on Knowledge Discovery
and Data Mining (KDD), 1997.

[20] Zijian Zheng, Ron Kohavi, and Llew Mason. Real
World Performance of Association Rule Algorithms. In
SIGKDD, pages 401–406, 2001.

[21] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao.
Mining Frequent Patterns without Candidate
Generation. In Data Mining and Knowledge
Discovery, 8:53–87, 2004.

[22] Frequent Itemset Mining Dataset Repository.
Available at http://fimi.cs.helsinki.fi/data/,
2010.

[23] Mohammed J. Zaki. Real and Synthetic Datasets.
Available at http://www.cs.rpi.edu/~zaki/
www-new/pmwiki.php/Software/Software#toc32,
2010.

[24] Christian Borgelt. Software for Frequent Pattern
Mining. Available at
http://www.borgelt.net/fpm.html, 2010.

[25] The Weka Source Code. Available at http://www.cs.
waikato.ac.nz/~ml/weka/index_downloading.html,
2010.

[26] Osmar R. Zaiane, Mohammad El-Hajj, Yi Li, Stella
Luk. Scrutinizing Frequent Pattern Discovery
Performance. In IEEE ICDE, pages 1109–1110, 2005.

[27] Ruoming Jin, Scott McCallen, Yuri Breitbart, Dave
Fuhry, and Dong Wang. Estimating the Number of
Frequent Itemsets in a Large Database. In Proceedings
of the 12th International Conference on Extending
Database Technology: Advances in Database
Technology, 2009.

[28] Congnan Luo and Soon M. Chung. A Scalable
Algorithm for Mining Maximal Frequent Sequences
using a Sample. In Knowledge Information Systems,
15(2):149–179, 2008.

