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Abstract. In this work, we are concerned with uncertain networks and
focus on the problem of link prediction with edge uncertainty. Networks
with edge uncertainty are networks where connections between nodes
are observed with some probability. We propose the uncertain version of
the popular neighbors-based metrics for link prediction. The metrics are
developed by considering all possible worlds generated by the uncertain
network. We state that by taking all possible worlds of the uncertain net-
work into account, the performance of link prediction can be improved.
Since uncertain edges result in a very large number of possible worlds, we
propose an efficient divide and conquer algorithm to reduce time com-
plexity and calculate these metrics. Finally, we evaluate our metrics using
existing ground truth to show the effectiveness of our proposed approach
against other popular link prediction methods.
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1 Introduction

Link prediction is the problem of determining future or missing associations
between entities in networks based on observed links. Because of its broad appli-
cations in different domains, link prediction has attracted increasing attention.

In the past decade, many works have been done about link prediction in de-
terministic graphs, graphs where the network structure is exactly and determin-
istically known. There are many metrics available for computing the similarity
of two nodes. Among all approaches, neighbor-based metrics [1–5] are effective
and the simplest way to predict missing links. The other metrics include path-
based metrics [6], random-walk-based metrics [7]. Furthermore, there are some
learning-based methods [8] and embedding-based methods [9] that have been
proposed in recent years.

Most previous studies on link prediction have focused on networks where
the structure is exactly known. With the increasing number of applications in
which the edges are constructed in the network through uncertain or statisti-
cal inference, the problem of link prediction with edge uncertainty has become
increasingly important. Examples of such networks include protein-protein in-
teraction networks with experimentally inferred links, sensor networks with un-
certain connectivity links, or social networks, which are augmented with inferred
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friendship, similarity, or trust links. However, only few studies take probabilities
into consideration. Ahmed et al. [10] proposed the uncertain version of the ran-
dom walk method for link prediction with edge uncertainty. Mallek et al. [11]
put forward an approach combined sampling techniques and information fusion
and obtained good results in real-life settings. Up to now, the uncertain ver-
sion of the popular neighbor-based metrics have not been studied. Murata and
Moriyasu [12] proposed weighted similarity indices, including variants of some
popular neighbor-based metrics. People may regard probabilities as weights and
apply weighted variants of those metrics; however, it may lead to some problems.
More details are presented in Section 4.

The uncertain scenario will make the problem of link prediction become more
complex, and the uncertain version of the most basic neighbor-based methods are
not yet studied. Therefore, in this work, we mainly focus on using neighbor-based
algorithms to solve the problem of link prediction in the context of uncertain
networks. We propose the uncertain version of the popular neighbors-based met-
rics and efficient algorithms to calculate them. The remainder of this paper is
organized as follows. In Section 2, we provide the problem definition. In Section
3, we review related work. In Section 4, we show the limitation of previous work,
propose the uncertain version of common-neighbors-based metrics and efficient
algorithms to produce them. In Section 5, we present the experiment results and
our evaluation metric. Finally, we conclude in Section 6.

2 Problem Definition

2.1 Uncertain Network

An uncertain graph G = (V, E ,P) is defined over a set of nodes V, a set of edges E ,
and a set of probabilities P of edge existence. Note the probability over the edge
between node Vi and node Vj can be represented as Pi,j or Pj,i. The multiple
links and self-connections are not allowed.

2.2 Link Prediction Problem Definition

The task of link prediction is to discover missing, hidden or future associations
between two nodes. Given a network and two unconnected nodes Vx and Vy ∈ V,
link prediction is to predict the probability of the existence of a link between the
node Vx and the node Vy. To do this, for each pair of nodes, Vx,Vy ∈ V, which
are not directly connected, we assign a score, sxy, according to a given similarity
measure. A higher score means nodes Vx and Vy are more likely to have an edge.
All the nonexistent links are sorted in a descending order according to their
scores, and the links at the top are most likely to exist.

Generally, we do not know which links are the missing or future links, other-
wise we do not need to do predictions. Therefore, to evaluate algorithms, we use
known networks, hide some links, use link prediction algorithms to predict those
hidden links and compare the prediction results. Based on the type of network,
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the observed edges E can be divided into training set ET and probe set EP

randomly or according to the timestamp. If the known network is time-varying
and we know the time each change happens, we can regard the network before a
certain time as the training set and the remaining as the probe set. Otherwise,
we can just divide the training set and the probe set randomly. To quantify the
accuracy of prediction algorithms, we use Precision as our evaluation metric.
More experiment details can be found in Section 5.

3 Previous Work

As mentioned above, neighbor-based metrics are the simplest yet effective to
predict missing links. They assume that two nodes are more likely to be con-
nected if they have more common neighbors. Common neighbors (CN) is one of
the most widespread measure used in the link prediction problem mainly due to
its simplicity [1]. The Resource Allocation (RA) metric [5] is regarded as one of
the best neighbor-based metrics because of its performance. Therefore, in this
paper, we concentrate on CN and RA indexes, whose definitions are as follows.

Common Neighbors (CN): Two nodes, Vx and Vy, are more likely to
form a link if they have many common neighbors. Let Γ (x) denote the set of
neighbors of node Vx. The simplest measure of the neighborhood overlap is the
directed count:

sxy = |Γ (x) ∩ Γ (y)| (1)

Resource Allocation (RA): Considering a pair of nodes, Vx and Vy, which
are not directly connected. The node Vx can send some resource to Vy, with
their common neighbors playing the role of transmitters. In the simplest case,
we assume that each transmitter has a unit of resource, and will evenly distribute
to all its neighbors. As a results the amount of resource Vy received is defined
as the similarity between Vx and Vy, which is:

sxy =
∑

z∈Γ (x)∩Γ (y)

1

k(z)
(2)

where k(z) is the degree of node Vz, namely k(z) = |Γ (z)|
The above-mentioned similarity metrics, CN and RA, only consider the bi-

nary relations among nodes; however, in the real world, links are naturally
weighted, which may represent the amount of traffic load along connections in a
transportation network or the number of co-authorized papers in a co-authorship
network. Murata and Moriyasu [12] proposed weighted similarity metrics as vari-
ants of Common Neighbors and Resource Allocation:

Weighted Common Neighbors: sxy =
∑

z∈Γ (x)∩Γ (y)

w(x, z) + w(y, z) (3)

Weighted Resource Allocation: sxy =
∑

z∈Γ (x)∩Γ (y)

w(x, z) + w(y, z)

s(z)
(4)
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Here, w(x, y) = w(y, x) denotes the weight of the link between nodes Vx and
Vy, and s(x) =

∑
z∈Γ (x) w(x, z) is the strength of node Vx.

Besides the aforementioned metrics, we will also use the Local Näıve Bayes
model [8] and the Local Random Walk metric [7] to assess our metrics as they
are popular. The Local Näıve Bayes model is considered as the state-of-the-art
in neighbor-based link prediction algorithms. Due to limited space, we will not
cover them in details here.

4 Link Prediction for Uncertain Graphs

To solve the problem of link prediction for uncertain graphs, one very näıve/intuitive
way is to regard the probability as a weight and apply weighted similarity met-
rics. However, there exists some problems. Figure 1 is an example.

Nodes VA and VB are more likely to be connected than nodes VD and VE
based on Equation (3) for Weighted Common Neighbors.

sAB = 0.2 + 0.9 = 1.1 (5)

sDE = 0.5 + 0.5 = 1.0 < 1.1 (6)

Fig. 1. An example showing the problem when considering the probability as a weight.

However, because each edge may exist or not exist in the real world, both of
these two uncertain graphs have four possible worlds, as can be seen in Figure
2: both links may exist, both may be absent, or either one is present.

Fig. 2. Possible worlds for two uncertain links between three nodes

Only when both edges EAC and EBC exist, node VC is the common neighbor
of nodes VA and VB , as Figure 2(1), the probability for this case is 0.2×0.9 = 0.18
(we assume that the existence of edges are independent with each other). In this
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case, sAB = 1 based on Equation (1). If node VC is not the common neighbor of
nodes VA and VB , as Figure 2 (2, 3 and 4), then sAB = 0. The probability for
this case is 0.82. In comparison, the probability that sDE = 1 is 0.5×0.5 = 0.25,
while the probability of sDE = 0 is 0.75. Therefore, nodes VD and VE are more
likely to be connected than nodes VA and VB , because the probability of sDE = 1
is larger than the probability of sAB = 1.

From this example, we can find that each uncertain edge in an uncertain
graph may exist or not exist in a real world. If an uncertain graph has |E| un-
certain edges, there will be 2|E| possible worlds in total, since each edge provides
us with a binary sampling decision.

Given an uncertain network G = (V, E ,P), we can sample each edge in G
according to the probability P(e) to generate the possible graph G = (VG, EG).
We have EG ∈ E and VG ∈ V. The probability Pr(G) of sampling the possible
graph is as follows:

Pr(G) =
∏
e∈EG

P(e)
∏

e∈E,e/∈EG

(1− P(e)) (7)

For each possible world, its corresponding similarity measure may differ.
When we calculate its similarity measures, we should take all possible worlds
and their possibilities into account. Therefore, Common Neighbor and Resource
Allocation in uncertain graphs can be represented as follows.

Uncertain Common Neighbors: sxy =
∑
G∈G

(Pr(G)× |ΓG(x) ∩ ΓG(y)|) (8)

Uncertain Resource Allocation: sxy =
∑
G∈G

(Pr(G)
∑

z∈ΓG(x)∩ΓG(y)

1

kG(z)
) (9)

Here, ΓG(x) denotes the set of neighbors of node Vx in the possible world G;
kG(x) is the degree of node Vx in the possible world G.

4.1 Time Complexity Analysis for the Calculation of Common
Neighbors in Uncertain Networks

We have a total of 2|E| possible worlds, and we can calculate CN value for
each possible world in O(k), where k is nodes’ average degree in the possible
world. Therefore, the time complexity of calculating the Common Neighbors
value based on Equation (8) is O(2|E|k).

Assume Γxy = Γ (x) ∩ Γ (y) is the common neighbors set of nodes Vx and
Vy in uncertain graph G. Whether a node Vz ∈ Γxy is a common neighbor of
nodes Vx and Vy in a possible world is independent of other nodes because
it is determined by the existence of edges Exz and Eyz in the possible world.
Therefore, each node in Γxy can be considered independently. If the existence
probability over uncertain edges Exz and Eyz are Px,z and Py,z respectively, only
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in Px,z × Py,z of all possible worlds, node Vz is the common neighbor of nodes
Vx and Vy. Therefore, Equation (8) can also be represented as:

sxy =
∑
G∈G

(Pr(G)× |ΓG(x) ∩ ΓG(y)|)

=
∑

z∈Γ (x)∩Γ (y)

∑
G∈G

Pr(G)× IΓG(x)∩ΓG(y)(z)

=
∑

z∈Γ (x)∩Γ (y)

Px,z × Py,z

When z ∈ ΓG(x)∩ΓG(y), IΓG(x)∩ΓG(y)(z) = 1, otherwise, IΓG(x)∩ΓG(y)(z) = 0.
By doing so, the time complexity for calculating sxy can be reduced to O(K),

where K is the nodes’ average degree in the uncertain network.

4.2 Time Complexity Analysis for the Calculation of Resource
Allocation in Uncertain Networks

We have a total of 2|E| possible worlds, and nodes’ average degree in the possible
world is k, then we can calculate RA value for each possible world in O(k), so
the time complexity of calculating Resource Allocation value based on Equation
(9) is O(2|E|k).

As mentioned in Section 4.1, whether a node Vz ∈ Γxy is a common neighbor
of nodes Vx and Vy in a possible world is independent of other nodes. Besides,
the number of edges each common neighbor has is also independent of other
nodes. Therefore, each common neighbor can also be considered independently
in this case. For the common neighbor node Vz, when we generate possible
worlds, we can consider only edges connecting to it, because the existence of
other edges will not have an impact on IΓG(x)∩ΓG(y)(z) and kG(z). The nodes’
average degree in the uncertain network is K, so we can consider 2K possible
worlds for the node Vz, and the time complexity can be reduced to O(2Kt),
where t = |ΓG(x) ∩ ΓG(y)|.

sxy =
∑
G∈G

(Pr(G)×
∑

z∈ΓG(x)∩ΓG(y)

1

kG(z)
)

=
∑

z∈Γ (x)∩Γ (y)

∑
Gz∈Gz

Pr(Gz)× IΓGz (x)∩ΓGz (y)(z)×
1

kGz
(z)

Gz here stands for the uncertain sub-graph formed by edges connecting to
node Vz, and Gz is the possible world based on the uncertain sub-graph Gz.

4.3 An Efficient Algorithm for the Calculation of Resource
Allocation

Only when both edges Exz and Eyz exist, node Vz is the common neighbor of node
Vx and node Vy in the possible world G, which means IΓG(x)∩ΓG(y)(z) = 1. When
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node Vz is not the common neighbor of node Vx and node Vy, IΓG(x)∩ΓG(y)(z) =
0, it means those possible worlds will not have an impact on the value of sxy.
Edges Exz and Eyz belong to the edge set which connects to node Vz, so for those
possible worlds which have an impact on the value of sxy, node Vz at least has
two edges Exz and Eyz.

Assume node Vz has m extra edges in an uncertain graph except edges Exz
and Eyz. Although it will result in 2m possible worlds, the number of its edges
in possible worlds will only range from 0 to m (the number of edges node Vz
has in total ranges from 2 to m + 2), which means some of the possible worlds
share the same number of edges. To calculate sxy, one way is to iterate through
all possible worlds, calculate each possible world’s possibility based on Equation
(7) and its corresponding count of edges. The other way is to iterate through
all the possible number of edges and calculate their corresponding probability,
which can be seen as follows:

sxy =
∑

z∈Γ (x)∩Γ (y)

∑
Gz∈Gz

Pr(Gz)× IΓGz (x)∩ΓGz (y)(z)×
1

kGz
(z)

=
∑

z∈Γ (x)∩Γ (y)

Px,z × Py,z ×
m∑
n=0

(Pn1→m ×
1

n+ 2
)

For the common neighbor Vz, assume there are m edges connecting to it
except edges Exz and Eyz, so we can index them from 1 to m. Pn1→m here stands
for from edges e1 to em, the probability that exactly n among them exist in
possible worlds. For the node with m edges in the uncertain graph, the number
of its edges in possible worlds will range from 0 to m, and in other words, we
need to compute P 0

1→m, P
1
1→m, ..., P

m
1→m.

We propose an efficient way to compute them, which can be regarded as a
divide and conquer algorithm. Conceptually, it works as follows:

1) Divide the probability list into n sublists, each containing 1 element, and
compute the probability of having and not having this item respectively.

2) Repeatedly merge sublists to compute probabilities for sublists with more
than 1 element. Here is the equation for merging the left half sublist and the
right half sublist.

Pn1→m =

min(n,bm/2c)∑
i=max(0,n−dm/2e)

P i1→bm/2cP
n−i
bm/2c+1→m (10)

It can be implemented recursively. The result probability list has the length of
m+1 and P 0

1→m, P
1
1→m, ..., P

m
1→m are saved sequentially in the result probability

list. The full algorithm description can be found in Algorithm 1.
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Algorithm 1: kEdgeProbability

Data: Probability List uncertainEdgeList
Result: The probability list probList of existing n among m edges,

n ∈ [0,m]
1 uncertainEdgeListLength← len(uncertainEdgeList);
2 return kEdge(0, uncertainEdgeListLength− 1);
3 // Inner Function;
4 Function kEdge(i, j)
5 length← j − i+ 1;
6 if length = 1 then
7 return [1− uncertainEdgeList[i], uncertainEdgeList[i]]
8 else
9 leftLength← length//2;

10 rightLength← length− leftLength;
11 left← kEdge(i, i+ leftLength− 1);
12 right← kEdge(i+ leftLength, j);
13 probList← [0]× (length+ 1);
14 for each n ∈ [0, length] do
15 for each k ∈ [0, n] do
16 if k <= leftLength and n− k <= rightLength then
17 probList[n]← probList[n] + left[k]× right[n− k];
18 end

19 end

20 end
21 return probList;

22 end

Based on the description of Algorithm 1, we can find the time complexity
of Algorithm 1 is O(m2). After calculating the probability list, we can easily
calculate node Vz’s contribution for sxy. It is reasonable to calculate Vz’s contri-
bution for sxy in O(m2). However, because the node Vz has (m+2) neighbors in
total, then any two of these neighbors (except those that are already connected,
assume u of them are already connected) will regard the node Vz as a com-
mon neighbor when calculating their similarity measures. Then node Vz will be

calculated ( (m+2)(m+1)
2 − u) times, so the total time complexity will be O(m4).

This kind of time complexity is still very large. We can use the similar idea
as we mentioned in Algorithm 1 to reduce the time complexity. In Algorithm
1, we use the probability lists of the left half sublist and the right half list to
compute the probability list of the full list. Actually, Equation (10) has a more
general form, which can be represented as follow:

Pn1→m =

min(n,k)∑
i=max(0,n+k−m)

P i1→kP
n−i
k+1→m (11)

In Equation (10), we choose k = bm/2c.
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When we consider different pairs of unconnected nodes, node Vz’s total edges
remain the same, what differs is the set of two edges which connects to the pair of
nodes we are considering, and it results in the difference of the remaining edges
list which will be used in Algorithm 1. To reduce the time complexity, the idea
is to calculate the full edges list’s corresponding probability list, which can be
represented asA = [P 0

1→m+2, P
1
1→m+2, ..., P

m+2
1→m+2]. For each pair of unconnected

nodes, we want to calculate the remaining edges list’s corresponding probability
list, which can be represented as B = [P 0

1→m, P
1
1→m, ..., P

m
1→m]. We can firstly

find the two edges connecting to the pair of unconnected nodes, and calculate
these two edges’ corresponding probability list, which can be represented as C =
[P 0
m+1→m+2, P

1
m+1→m+2, P

2
m+1→m+2]. Then we can use A and C to calculate B

based on the Equation (11). The full equations can be represented as follows:



P
2
m+1→m+2P

m
1→m = P

m+2
1→m+2

P
1
m+1→m+2P

m
1→m + P

2
m+1→m+2P

m−1
1→m = P

m+1
1→m+2

P
0
m+1→m+2P

m
1→m + P

1
m+1→m+2P

m−1
1→m + P

2
m+1→m+2P

m−2
1→m = P

m
1→m+2

P
0
m+1→m+2P

m−1
1→m + P

1
m+1→m+2P

m−2
1→m + P

2
m+1→m+2P

m−3
1→m = P

m−1
1→m+2

...

P
0
m+1→m+2P

3
1→m + P

1
m+1→m+2P

2
1→m + P

2
m+1→m+2P

1
1→m = P

3
1→m+2

P
0
m+1→m+2P

2
1→m + P

1
m+1→m+2P

1
1→m + P

2
m+1→m+2P

0
1→m = P

2
1→m+2

These equations are easy to solve. After we get A and C, we can calculate the
probability list [P 0

1→m, P
1
1→m, ..., P

m
1→m] in O(m). Though it takes O(m2) time

to calculate A, when we consider different pairs of unconnected nodes which have
common neighbor Vz, A only needs to be calculated once. To calculate different
pairs of unconnected nodes’ corresponding probability list B, we can calculate
their probability C in constant time, and then use A and C to calculate B in

O(m). Because we have ( (m+2)(m+1)
2 − u) pairs of unconnected nodes, the time

complexity of calculating A can be ignored. After we calculate nodes Vx and
Vy’s each common neighbor’s contribution for sxy, we can calculate sxy easily.

5 Experiments

5.1 Datasets

Protein-Protein Interaction Network: We used the protein-protein inter-
action network (PPI) created by Krogan [13]. Two proteins are linked if it is
likely that they interact. The core network consists of 2708 proteins and 7123
interactions labeled with probabilities.
Enron Network: The dataset is a subset of Enron employees, comprised of
emails sent between employees, resulting in a dataset with 50,572 emails among
151 employees. We used the same method as Pfeiffer and Neville in [14] to assign
each edge with a possibility of occurrence.
Synthetic Uncertain Network Based on Deterministic Network: Con-
sidering that there are not many publicly available uncertain network datasets
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on the web, we also generated an uncertain network based on deterministic net-
works. The dataset we used here is USAir. The US air transportation network
contains 332 airports and 2126 airlines. Based on this network, we use an un-
certain network generator to generate its corresponding uncertain network. The
uncertain network generator used here is adopted from [15]. The percentage of
non-existential edges we choose to add in this experiment is 20%.

5.2 Experiments

To test the prediction performance of an algorithm, the observed edges, E, are
divided into two separate sets: training set ET , is regarded as known information;
and probe set EP , is used for testing and no information therein is allowed to
be used for prediction. Clearly, we have ET ∪ EP = E and ET ∩ EP =ø.

For the protein-protein interaction network and the synthetic uncertain net-
work, we only know their connection information, so the training set ET and
the probe set EP can be randomly divided. In this paper, the training set ET

and the probe set EP are assumed to contain 90% and 10% of the links respec-
tively. To get more reliable result, each value is obtained by averaging over 100
independent runs of random divisions of the training set and probe set.

Link prediction algorithms should be capable of detecting the dynamic re-
lationships between members in a temporal social network. Because the Enron
dataset is time-evolving, the relations among social members change continu-
ously over time. Using link prediction algorithms, we should be able to predict
newly added links in future networks. In the experiment, we predict new com-
munications between two employees in Enron Corporation after Jan. 16, 2001,
based on historical data. The idea is that, if two employees have email records
before Jan. 16, 2001, we generate a potential edge between them. Then we assign
these edges with a probability following the method described in [14]. The re-
sulting probabilistic graph consists of 113 nodes and 419 edges, and this graph is
regarded as the training set. The testing set is formed by taking in all the edges
formed after Jan. 16, 2001. After discarding employees that have not appeared
in the list of the 113 employees, as well as the edges that have appeared both
before and after Jan. 16, 2001, we obtained 578 ground-truth edges with 113
distinct employees.

To evaluate the performance of prediction algorithms, we apply Precision
metric to quantify the accuracy of the prediction, which focuses on top-ranked
latent links. It is defined as Lr/L, where among top-L candidate links, Lr is the
number of accurate predicted links actually appearing in the testing period.

5.3 Results and Evaluation

As the literature suggested [8], the top L is set to 100 in our experiments. In this
section, we compare our metrics (UCN and URA) and other metrics/algorithms
using existing ground truth. To evaluate our metrics, we mainly focus on the
comparison between the uncertain version of graph proximity measures with
weighted and unweighted ones. We also compare our metrics with LNB and
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SRW. LNB is a local Näıve Bayes model which is based on neighbor-based met-
rics, and SRW is a local-random-walk based algorithm (we choose t = 2 and
t = 3 in our experiments because they are the optimal choices based on Liu and
Lü’s experiments in [7]). Since LNB and SRW algorithms are for deterministic
networks, in our experiments we ignore the edge probabilities and consider un-
certain networks as normal deterministic networks. The prediction accuracies on
the three networks are shown in Table 1.

Algorithm Name Description
CN/RA Pay no attention to probabilities and use the original metrics.

WCN/WRA Regard probability as weight and use weighted metrics.
UCN/URA Use our uncertain version of graph proximity measures.

SRW2 Ignore probabilities and run local random walk algorithm [7], choose t = 2
SRW3 Ignore probabilities and run local random walk algorithm [7], choose t = 3

LNB-CN Ignore probabilities and use Local Näıve Bayes form of Common Neighbors [8]
LNB-RA Ignore probabilities and use Local Näıve Bayes form of Resource Allocation [8]

Table 1. Comparative Results for Different Algorithms

Datasets
Common Neighbor Resource Allocation

SRW2 SRW3 LNB-CN LNB-RA
CN WCN UCN RA WRA URA

PPI 0.472 0.5045 0.5288 0.4123 0.45 0.5728 0.4136 0.5284 0.4856 0.4992
Enron 0.49 0.52 0.61 0.51 0.47 0.52 0.43 0.45 0.55 0.46

Synthetic Network 0.5812 0.5954 0.6043 0.6075 0.6124 0.6233 0.5852 0.5992 0.5962 0.5885

From Table 1, we can observe that our uncertain version of the Common
Neighbor and Resource Allocation metrics can significantly outperform their
original and weighted ones when dealing with uncertain networks. This shows
that in the task of link prediction with edge uncertainty, it is worthwhile to take
every possible worlds into account.

From Table 1, we can also observe that our metrics (UCN and URA) can
outperform the other four baseline methods on PPI and Synthetic datasets. The
Enron dataset allows the following observation: the Common Neighbor-based
metrics seems to outperform the Resource Allocation-based counterparts on this
dataset. It seems that the Resource Allocation metrics are not good choices for
Enron dataset.

For run time, based on our experiments, we find UCN to be just a little bit
slower than CN, but it has almost the same run time as WCN; and URA is
around 2 to 3 times slower than RA and WRA.

6 Conclusion

In this paper, we propose an uncertain version of graph proximity measures for
the link prediction problem in uncertain networks. We propose a new algorithm
to reduce the time complexity of computing the uncertain version of graph prox-
imity measures. By taking all possible worlds into consideration, the performance
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of link predictions are improved. In this work, we only focus on the neighbor-
based algorithms because they are simple, effective but not yet have been stud-
ied, and we have shown the effectiveness of considering all possible worlds when
using neighbor-based metrics to do link prediction. When proposing the uncer-
tain version of other link prediction metrics, such as path-based, learning-based
metrics and embedding-based algorithms, all possible worlds should also be con-
sidered, which would also be very time-consuming. To reduce time complexity,
some variants of our algorithm may then be considered.
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