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Abstract. We propose an efficient model-based clustering approach for
creating Gaussian Mixture Models from finite datasets. Models are ex-
tracted from HDBSCAN* hierarchies using the Classification Likelihood
and the Expectation Maximization algorithm. Prior knowledge of the
number of components of the model, corresponding to the number of
clusters, is not necessary and can be determined dynamically. Due to rel-
atively small hierarchies created by HDBSCAN* compared to previous
approaches, this can be done efficiently. The lower the number of objects
in a dataset, the more difficult it is to accurately estimate the number of
parameters of a fully unrestricted Gaussian Mixture Model. Therefore,
more parsimonious models can be created by our algorithm, if necessary.
The user has a choice of two information criteria for model selection, as
well as a likelihood test using unseen data, in order to select the best-
fitting model. We compare our approach to two baselines and show its
superiority in two settings: recovering the original data-generating dis-
tribution and partitioning the data correctly. Furthermore, we show that
our approach is robust to its hyperparameter settings.1

Keywords: Hierarchical Clustering · Expectation Maximization · Model
Selection

1 Introduction

Model-based clustering is a popular tool for unsupervised data analysis due to its
powerful and compact representation of each group in a dataset. The Expectation
Maximization (EM) [9] algorithm uses Maximum Likelihood (ML) estimation
for fitting Multivariate Gaussian models to data quickly and accurately. These
models are also known as Gaussian Mixture Models (GMM).

However, there are a number of points to consider when using EM. First, the
number of clusters K (corresponding to the number of components in the final
model) has to be known in advance since EM tries to fit the parameters of a
GMM with K components to a dataset. Due to EM’s ML parameter estimation
based on a finite number of observations, setting this parameter correctly is

1 Data and code are publicly available at: https://github.com/mjstrobl/HCEM
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crucial as more components lead to a higher number of parameters and a higher
loglikelihood of the data given the model. This is also known as model overfitting
(i.e. high divergence to the original data-generating distribution). As a result,
the loglikelihood of the data given a GMM cannot be used to select a model
among a set of differently parameterized models with varied K. In addition,
the covariance matrix parametrization of each component can be either fully
open or partially restricted. This leads to more or less parsimonious models with
Gaussians of equal or variable volume, shape, or orientation. Specifically for
small datasets, it can be beneficial to choose a more restricted model. Second,
EM has to be initialized with K objects, e.g. from the dataset, as seeds for each
of the K initial clusters, in order to fit a model with K components. However,
EM is very sensitive to the choice of those K seed objects. Therefore, several
(typically non-deterministic) initialization strategies exist, e.g. choose K random
seed objects. Depending on the hyperparameter setting, they are run multiple
times in order to find the best initialization parameters.

Another popular clustering paradigm is density-based clustering, as intro-
duced by the DBSCAN [10] algorithm and more recently extended by its hier-
archical version HDBSCAN* [4]. DBSCAN’s clustering model is deterministic,
relatively fast to compute, and less strict than GMMs. It allows clusters of arbi-
trary shapes and the number of clusters does not have to be known in advance.
Noise in the data can be detected, whereas GMMs have to model noise sepa-
rately. However, if the assumption of Gaussian distributed clusters applies (even
approximately), different Gaussian clusters in a dataset may be merged into a
single cluster by DBSCAN, if they are overlapping, due to the difficulty of set-
ting an appropriate global density-threshold. HDBSCAN*, on the other hand,
uses a cluster stability measure to extract clusters from the cluster hierarchy.
Cluster Stability may also favor the selection of a cluster (node in the hierarchy)
that represents the result of merging child nodes representing two clusters that
are generated by different, possibly overlapping, Gaussian model components.
HDBSCAN* hierarchies, consisting of clusters with varying densities, often con-
tain all clusters corresponding to each component of a generating GMM (even
though these nodes may not be selected by Cluster Stability). Such hierarchies
can therefore be used to find a GMM that fits the data well, when a more suitable
cluster extraction strategy is used.

In this paper, we are proposing a clustering framework for model-based clus-
tering that is able to accurately recover the original data-generating distribution
for GMMs. Furthermore, it can automatically select the number of components
K of the model. It is based on the HDBSCAN* hierarchy, which provides a
compact tree of clusters from which models of different sizes can be extracted
and evaluated efficiently.

The remainder of this article is structured as follows: Section 2 introduces
GMMs and EM as well as HDBSCAN* in more detail. Our framework is in-
troduced in Section 3 with experiments in Section 4 to support its strengths
compared to two baselines. The article concludes in Section 5.
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2 Background and Related Work

In this section we provide some background and related work on the popular
model-based clustering paradigm, which our approach follows. Furthermore, we
describe the HDBSCAN* algorithm for hierarchical density-based clustering,
from which models can be extracted. For the rest of this article we assume our
model is a mixture of multi-dimensional Gaussians, referred to as GMM.

2.1 Model-based clustering

Model-based clustering aims to estimate the parameters of a GMM using the
EM technique [9]. The goal of EM is to fit a GMM to a dataset using an iterative
procedure with the loglikelihood as the optimization goal.

The loglikelihood for a dataset X = (x1, ..., xn) with n observations (assumed
to be i.i.d.), xi ∈ Rd with 1 ≤ i ≤ n and d ∈ N+ is defined as

L(X, ΘK) =

n∑
i=1

log

[
K∑

k=1

pkf(xi|ak)

]
(1)

where K is the number of components (one corresponding to each cluster) and

ΘK = {p1, ..., pK−1, a1, ..., aK}, with 0 < pk < 1 and
∑K

k=1 pk = 1. Each com-
ponent has a mixing proportion pk and a parameter vector ak = (µk, Σk), with
µk as the mean and Σk as the covariance matrix. f(xi|ak) is the d-dimensional
Gaussian density of the component k for object xi.

For clustering, Equation 1 is usually maximized using the EM algorithm [16],
which estimates the conditional probabilities for all xi in the Expectation (E)
step and updates the model parameters in the Maximization (M) step iteratively.

Another variant of the EM algorithm for clustering is the Classification EM
algorithm (CEM) [6], which aims to optimize the Classification Likelihood (CL),
which is defined as

CL(X, ΘK) =

K∑
k=1

∑
xi∈Ck

log(pkf(xi|ak)) (2)

where Ck is the set of objects xi belonging to cluster k.
CEM does not compute a soft classification with every xi being a member of

each cluster to some extent, instead cluster labels are assigned. Therefore, the
contribution of each xi to CL(X, ΘK) is solely based on the parameter vector
ak = (µk, Σk) and the mixing proportion pk of the cluster Ck to which xi belongs.
Biernacki and Govaert [3] showed that the CL can be seen as a penalized version
of Equation 1, favouring models with well-separated mixture components.

Unrestricted GMMs can be highly over-parameterized or, especially in high
dimensional spaces, it may be difficult to estimate all parameters accurately.
Therefore Celeux and Govaert developed an approach [7] to restrict the number
of parameters in a GMM using the eigenvalue decomposition of Σk:
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Σk = λkDkAkD
′
k

where λk = |Σk|1/d, Dk is the matrix of eigenvectors and Ak is a diagonal
matrix with the normalized eigenvalues ofΣk in decreasing order on the diagonal.
Different combinations of these parameters result in 14 models with clusters of
variable or equal volumes, shapes and orientations.

Three models, resulting in independent parameter estimations for all com-
ponents, allow us to extract GMMs from clustering hierarchies efficiently3:

– VVV (Σk = λkDkAkD
′
k): Fully unrestricted; Volume, Shape and orientation

of all components are variable.
– VVI (Σk = λkAk): Clusters are aligned to coordinate axis.
– VII (Σk = λkI): Only volume is variable, components are spherical.

2.2 Traditional Initialization

The most common initialization strategy for EM is starting with K random
observations from the dataset and run EM until convergence. However, this
can result in a suboptimal partition, if these K random observations are too
different from the real cluster centers. In order to avoid this problem, EM can
be run multiple times with random initialization and the model converging to
the highest likelihood is selected. A similar approach is to run EM multiple times
with random initialization for only a few iterations and continue iterating with
the most promising model.

If models of different sizes (numbers of components K) should be created,
from which one of them can be later selected, they have to be created indepen-
dently. The procedure is simply repeated as many times as necessary, for each
K ∈ K = [Kl,Ku] with Kl and Ku as the lower and upper bound of K, typically
provided by the user.

2.3 Hierarchical Initialization

The main disadvantage of traditional initialization strategies is that if the num-
ber of clusters is unknown, multiple solutions (one for each K ∈ K) have to be
computed independently. Similarities between initializations of size K and K−1
are not taken into account. This can be prohibitively expensive if solutions for a
large |K| have to be evaluated. Extracting solutions from a clustering hierarchy
can be advantageous in this case, because new solutions with K − 1 clusters can
be computed through merging siblings in the hierarchy quickly, in the case of an
agglomerative approach. In order to determine which set of siblings should be
merged, for example, the sum-of-squares criterion can be used to select siblings
that would result in the lowest possible variance increase of the model, if merged.

3 All other models contain parameters that are equal among all components and there-
fore have to be jointly re-estimated if components of child nodes are replaced with
parent node components. More information on this is explained below in Section 3.2.
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Fraley [11] describes an agglomerative hierarchical clustering algorithm based
on GMMs. It starts with each observation representing its own cluster. As crite-
rion for merging clusters, the CL is used at each stage, i.e. all pairs of clusters at
the current stage are considered, but only one pair, that results in a model with
the highest CL among all possible merges, is actually merged. For the models
VVV, VVI and VII, it is not necessary to recompute all model parameters at
each stage since each xi contributes to the model’s CL only through the param-
eters of the model component it belongs to. Therefore, only the new parent’s
parameters have to be computed. For models other than these, some parameters
have to be recomputed for all components, e.g. if the volume of all components
must be equal according to the chosen parametrization.

Since agglomerative hierarchical clustering algorithms start from singleton
clusters, the hierarchy can take up a large amount of memory space. If it is
not possible to compute all ML parameters (especially at the beginning with
singleton clusters), the sum-of-squares criterion is used until clusters are large
enough. While the hierarchy is built up, models of different sizes can be extracted.
In order to extract only a limited number of models, a range of clustering sizes
K can be provided (see [12]). Once there are max(K) clusters at the top of
the hierarchy (while building it), a model of size max(K) is extracted. Clusters
are continuously merged and a new model is extracted after each merge. Those
models can be re-parameterized with EM and evaluated using a model selection
method.

2.4 Model Selection

There are two main problems that model selection methods aim to solve: How
many components the final model should have and how the covariance matrix
Σk should be parameterized. In model-based clustering, information criteria are
used to solve these problems. Their main goal is to find a trade-off between the
best model-fit (high loglikelihood) and the least number of parameters in the
model. The following are commonly used criteria, e.g. used in [2]:

– Bayesian Information Criterion (BIC) [19]:

BIC = L(X|Θ̂K)− νK
2

log n

νK corresponds to the number of free parameters in the model, which de-
pends on the number of components in the model and its parametrization.

– Integrated Complete Likelihood (ICL) [1]:

ICL = CL(X|Θ̂K)− νK
2

log n

ICL penalizes models with less well-separated components more than BIC.
– Normalized Entropy Criterion (NEC) [8]:
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NEC =
E(X|Θ̂K)

L(X|Θ̂K)− L(X|Θ̂1)
, E(X, Θ̂K) = −

K∑
k=1

n∑
i=1

t̂ik log t̂ik ≥ 0

where t̂ik is the conditional probability that xi belongs to Ck.
The NEC favours low entropy models with well-separated components over
models with more components and worse separation.

All information criteria have in common that they make models with different
parametrizations and numbers of components comparable.

2.5 HDBSCAN*

HDBSCAN* [4] is a hierarchical clustering algorithm based on DBSCAN*, a
revised version of DBSCAN [10], which is a well-known density-based cluster-
ing algorithm. DBSCAN* receives two input values set by the user: a density-
threshold ε and the value mpts, which acts as a smoothing factor for the density-
estimates of each object. The original DBSCAN introduced the notion of core
objects, which are objects with at least mpts neighbours within the distance
ε. These neighbours form an object’s ε-neighbourhood Nε. A cluster C is de-
fined as a non-empty maximal subset of the input dataset, such that every pair
of objects in C is density-connected. Two core objects xp and xq are density-
connected if they are directly or transitively ε-reachable; directly ε-reachable
means xp ∈ Nε(xq) and xq ∈ Nε(xp).

In case of DBSCAN*, the global density-threshold ε is difficult to set if there
are clusters of varying densities, because each cluster must exceed density-level
ε. HDBSCAN* solves this problem by creating a hierarchy of clusters of different
densities. In order to restrict the hierarchy’s depth, the optional parameter mcl

was introduced as a minimum number of objects within a cluster. In [4], it is
suggested to set mcl = mpts and leave mpts as the only user-defined parameter,
which is assumed in the remainder of this article.

The HDBSCAN* hierarchy is created by the following steps:

1. Building the Minimum Spanning Tree (MST) of the Mutual Reachability
Graph, which consists of all objects as vertices and the mutual reachability
distances for each pair of objects as edge weight. The mutual reachability
distance is defined as
dmreach(xp, xq) = max{dcore(xp), dcore(xq), d(xp, xq)}
where dcore(x) is the distance of object x to its mpts nearest neighbours and
d(xp, xq) is the distance between xp and xq.

2. The whole dataset is contained in the cluster which forms the root of the
hierarchy. Subsequent clusters and noise are created by removing edges from
the MST in decreasing order of weight. Removing an edge results in either
two new clusters with more than mcl objects each, a shrank cluster with at
least mcl objects and noise, or noise only if the cluster disappears.

3. From the full clustering hierarchy containing all splits, a compact hierarchy
is created containing only the most important levels, namely when clusters
appear the first time or completely disappear.
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As a special case, setting mpts = 1 results in a single-linkage hierarchy.
Due to the different density-thresholds represented by the hierarchy (the

closer to the root the less dense the density threshold is), the user does not need
to provide the parameter ε anymore. The original DBSCAN algorithm produced
flat partitions whose clusters are maximal sets of connected points with a point
density in their neighborhood above a given density threshold, set by the pa-
rameter ε. The result corresponds to extracting clusters from the HDBSCAN*
hierarchy at the density level ε, representing a horizontal cut through the hi-
erarchy. In order to extract clusters of variable densities (different levels) from
such a hierarchy, the measure of Stability was introduced. The Stability S of
a cluster measures how stable it is in the hierarchy. This is dependent on the
density-range in which the cluster exists, i.e. minimum density value at which
the cluster starts to exist and maximum density level at which the cluster is
either split or disappears, as well as how many objects the cluster contains com-
pared to its descendants and parent cluster. Stability values can be computed
while creating the hierarchy.

The algorithm to extract a flat partition from such a hierarchy is an iterative
procedure and starts at the leaf level as the current clustering solution. For every
parent-descendants pair in the current solution: If a parent Cp is more stable
than its descendants, say Cd1

and Cd2
, i.e. SCp

> SCd1
+ SCd2

, Cd1
and Cd2

are
replaced by Cp in the current solution. Otherwise the parent of Cp is assigned
to Cd1 and Cd2 as new parent cluster, basically ignoring Cp from now on. This
procedure is repeated until the root of the hierarchy is the parent of all clusters
in the current solution.

Extracting a clustering solution this way is efficient since at every stage local
decisions are made, i.e. comparing only parents and descendants (and no other
clusters) is sufficient to obtain a globally optimal solution regarding S, returning
the most stable set of clusters.

3 Method

In this section we present how to create a GMM from HDBSCAN* hierarchies.
To account for the variations in the cluster tree when choosing different values of
mpts, we use multiple hierarchies and choose the best partition according to the
CL. Neto et al. [17] show how over a hundred hierarchies (i.e., different values
of mpts) can be efficiently computed with the cost of about 2 HDBSCAN* runs.

3.1 Classification Likelihood Criterion

While the original HDBSCAN* Stability measure works well for density-based
clustering, it may not be suitable for a dataset following a GMM. Different clus-
ters with a relatively dense overlap could be considered as a very stable single
cluster since it could appear as such early in the hierarchy and be separated
very late. However, extracting a clustering solution based on Stability is efficient
due to local decision making. Through using the models VVV, VVI, and VII,
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and CL as optimization criterion, it is sufficient to make local decisions as well,
while still extracting the best model (according to CL) from an HDBSCAN*
hierarchy, when Gaussian distributed clusters are assumed. In [3], GMMs with
different settings of K are fitted to a dataset and a CL-like criterion is used
to compare these models. The authors argue that the CL works for finding the
correct number of mixture components K, whereas the loglikelihood L in Equa-
tion 1 overestimates K. We argue that each mixture component is represented
as separate cluster in the HDBSCAN* hierarchy and that the CL (instead of
Stability) can be used to extract those clusters.

3.2 Creating GMMs from HDBSCAN* hierarchies

The high-level steps of our algorithm for clustering dataset X are the following:

1. Create HDBSCAN* hierarchies for X, one for each mpts-value.
2. For each hierarchy:

(a) Create an initial GMM with one component per leaf, independently es-
timated.

(b) Assign each noise object to the leaf with the highest loglikelihood accord-
ing to the initial GMM and re-estimate the parameters of all components,
representing a candidate model.

(c) After estimating the Gaussian parameters of all clusters in the hierarchy,
the optimal GMM (according to CL and given the hierarchy) for each
model parametrization (VVV, VVI and VII) is extracted. This is done
through an iterative procedure similar to using the Stability in [4].

3. Select the best model among all models and create a flat partition according
to this model.

In the following, we provide a detailed description of these steps.

1. Create HDBSCAN* hierarchy. We run the original HDBSCAN* algo-
rithm on a dataset X in order to create a compact hierarchy for each mpts-value.

(a) Create initial GMM. HDBSCAN* creates a hierarchy of clusters top-
down. Whenever clusters are split, noise objects may be created. Our algorithm
starts by creating GMMs bottom-up, which makes it necessary to assign all noise
objects to leaf clusters in the hierarchy, since the union of all leaf clusters is not
necessarily equal to X. For each leaf, the parameters of one Gaussian with an
unrestricted Σk (model VVV) are estimated. If it is not possible to estimate a
non-singular unrestricted Σk due to data sparsity, more restricted models are
used, VVI or VII. Leaves where this is not possible are removed from the set of
leaves including its sibling and the parent cluster is added instead. Parameter
estimation is then tried again for this node. The initial GMM is defined by the
set of all estimated components, one for each leaf.
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(b) Assign noise objects. All noise objects are assigned to the model com-
ponent l with l = argmaxk=1,...,K pkf(xi|ak). After this step, it is possible to
estimate parameters more accurately since all xi ∈ X are assigned to clusters
now, and, therefore, the parameters of all components are re-estimated.

(c) Create candidate GMMs. The initial GMM represents a clustering solu-
tion with the maximum possible K, given the clusters in the HDBSCAN* cluster
tree. New models of smaller sizes and parametrizations (VVV, VVI or VII) can
be created iteratively by merging or keeping siblings according to the best CL
of the resulting model. This works the same way as done using the Stability
as described in Section 2.5. The only parameters that have to be estimated are
the mean µk and covariance matrix Σk of the parent, since the parameters of
the descendants are estimated in the previous iteration or step (b). In addition,
since we are using the VVV, VVI and VII parameterizations, parameters of other
components in the current model are independent and therefore do not have to
be re-estimated. Decisions are made locally using the CL in the following way.

Consider parent solution Cp = {C1, . . . , CK−1, Cpd1,d2
} and descendant solu-

tion Cd = {C1, . . . , CK−1, Cd1, Cd2} with parent cluster Cpd1,d2
replaced by its

descendants Cd1 and Cd2 (Cpd1,d2
= Cd1 ∪ Cd2). Cp and Cd represent a solution

with K and K + 1 clusters, respectively. CLp(X, ΘK) for solution Cp can be
written as:

CLp(X, ΘK) =

K−1∑
k

∑
xi∈Ck

log(pkf(xi|ak)) +
∑

xi∈Cpd1,d2

log(ppd1,d2
f(xi|apd1,d2

))

(3)

CLd(X, ΘK+1) for solution Cd with pd1
+ pd2

= ppd1,d2
can be written as:

CLd(X, ΘK+1) =

K−1∑
k

∑
xi∈Ck

log(pkf(xi|ak)) +
∑

xi∈Cd1

log(pd1
f(xi|ad1

))

+
∑

xi∈Cd2

log(pd2
f(xi|ad2

))

(4)

The first part of Equations 3 and 4 is identical and can be ignored, if
CLp(X, ΘK) and CLd(X, ΘK+1) are compared. Therefore, comparing both so-
lutions can be restricted to comparing the CL of the parent cluster (Cpd1,d2

) and
the sum of the CLs of the descendants (Cd1 and Cd2).

We claim that our method works well when each component in the ini-
tial GMM contains at most one mode from the data-generating distribution
GMMdata. If this is not the case, it would not be possible to create a model
with K components with one mode from GMMdata per component. However,



10 M. Strobl et al.

the modes from GMMdata are presumably the densest parts of the data, lead-
ing to a separation of these in the leaf-level of the hierarchy. This property of
HDBSCAN* hierarchies often holds in practice.

Figure 1 shows a dataset generated by a GMM with K = 5 and two merging
iterations performed by our method, based on an initial GMM with K = 7.
Figure 1a shows the clustering result according to the initial GMM after assigning
all noise objects to the leaf clusters. We can observe that every leaf contains
at most one mode from GMMdata. In Figure 1b the purple cluster resulted
from merging two clusters since this resulted in a higher CL. Only one of them
contained a mode. Similarly, Figure 1c shows the final clustering based on a
GMM with K = 5. All final clusters contain exactly one mode. The subsequent
potential merges all resulted in a solution with a lower, i.e. worse, CL.

The parameters of the candidate models (one for each parameterization) are
refined again, running the CEM algorithm until convergence.

−5 0 5 10 15
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−
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0
5

(a) Initial clustering.
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(b) Intermediate cluster-
ing.
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0

−
5
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5

(c) Final result.

Fig. 1: Dataset generated from five Gaussians. Clusters contain between 50 and
100 objects. HDBSCAN* was run with mpts = 9.

3. Model selection. After one candidate model for each possible value of mpts

and each parameterization is created in the previous step, the best has to be
selected according to a model selection strategy. To do so, information criteria,
such as the BIC and ICL, have been used in the literature to penalize larger
models with more parameters.

Since it is not clear in which circumstances which criterion works best, we
propose a model selection strategy similar to k-fold cross validation, apart from
using the BIC or ICL. For this case, we still create candidate models as described
in steps 1 and 2. However, in order to evaluate these models we split the dataset
into m folds and refine them using the CEM algorithm m times on m− 1 folds
(leaving a different fold out each time) and evaluate each model on the left-
out fold using the loglikelihood. We can use the average of the resulting m
loglikelihoods as criterion (denoted as VAL in the rest of this article) for model
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selection since they were computed using the left-out folds that were not used
for fitting the model directly.

Therefore, BIC, ICL and VAL can be used as model selection criteria.

4 Evaluation

In this section, we present empirical results for our approach (denoted by HCEM)
and two baselines. In order to measure the effectiveness of the approaches in
recovering the data-generating distribution, we use synthetic datasets where this
distribution is known as ground truth, and measure (1) the similarity of the
GMMs discovered by the methods with the ground truth, and (2) the quality of
the induced partition on the data. In addition, we use real datasets to show the
superiority of our approach regarding the resulting partitions.

4.1 Baselines

Mclust [12] is based on EM and hierarchical initialization as described in Section
2.3 and uses the BIC for model selection. Since models up to n clusters (if
there are n observations in the dataset) can be extracted from the agglomerative
hierarchical clustering hierarchy, a set of possible K ∈ K has to be provided to
restrict the number of components in the final set of models, from which the
best according to BIC is selected. However, this requires domain knowledge
and is difficult to set, if the approximate number of clusters is unknown, and
computationally expensive, if |K| is large.

Mixmod [2] uses different traditional initialization methods, the BIC, ICL or
NEC for model selection. We denote these different instances as Mixmod (BIC),
Mixmod (ICL) and Mixmod (NEC), respectively.

4.2 Parameter settings

For our experiments, we set K = [2,K + 10] for Mclust and Mixmod, to make
sure we include the correct number of clusters K in the dataset, while still
keeping the range large enough to show that both baseline methods are able to
select a model with K components from a larger collection. The three model
parameterizations VVV, VVI and VII can be used by both methods.

In addition, Mixmod is initialized with the “smallEM” approach, running
EM with random initialization 10 times for 5 iterations. It continues with the
best model among these 10, according to the highest loglikelihood.

For HDBSCAN*, we chose mpts ∈ {5, 6, 7, 8, 9, 10}, which are typical values.
HCEM is run once for these values of mpts and the result of the best model
according to a model selection strategies is reported. As model selection strate-
gies, we use BIC, ICL and VAL, denoting the resulting instances by HCEM
(BIC), HCEM (ICL) and HCEM (VAL), respectively. Setting K is not required
for HCEM since there is only a single model per hierarchy (one for each value
of mpts) created, limiting the set of models to be evaluated.
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4.3 Synthetic datasets

We used the GMM data generator from [14] to create synthetic datasets with
the following parameters:

– Number of Gaussians: 10, 40
– Dimensions: 2, 5, 10, 25, 50
– Objects per Gaussian: uniformly distributed in the range [5 ∗ D, 10 ∗ D],

where D is the dimensionality of the dataset.
– Mean: uniformly distributed in the range [−10, 10]
– Off-diagonal entries of covariance matrix: random number y in the range

[−1, 1], with a distribution following y = x2 where x is a uniformly random
deviate in [0, 1] and the sign of y is determined randomly.

– Diagonal entries of covariance matrix: generated as the sum of all off-diagonal
entries plus a random number y in the range [0, 20∗

√
D] with a distribution

following y = x2, where x is a uniformly random deviate in [0, 1], and the
sign of y is determined randomly.

This generator [14] guarantees that generated Gaussians do not overlap. We
created 20 datasets for each configuration (dimensionality and number of clus-
ters) and averaged the result on these 20 datasets.

Model recovery results GMMs are versatile models that can be used to
generate new data or as a classifier for unseen data. This leads to the goal
of generating models that are ideally identical to the original data-generating
distribution in their parameter settings. The Kullback-Leibler-Divergence (KLD)
can be used as a measure of how much two GMMs deviate from each other (see
[15]). However, the KLD is analytically not tractable, therefore [15] suggested
to use Monte Carlo Sampling (MC) to compute an approximation:

DMC (f‖g) =
1

n

n∑
i=1

log
f(xi)

g(xi)
(5)

Table 1 shows experiments on the output of Equation 5 using a sample of size
n = 100, 000 of the data generating distribution. f corresponds to the probability
density of the original distribution from which the datasets were sampled, g
corresponds to the probability density of the distribution fitted to the datasets
by the three clustering algorithms. The lower the DMC (f‖g), the better, and a
result of 0.0 means the distributions are identical.

The results were averaged over all 20 datasets per configuration, and we
also report the overall average of all runs for all dimensions and number of
clusters. Welch’s t-test [21] for unequal variances was used with threshold 0.05
as significance test.

Mclust works well for most datasets, but is unstable in 50 dimensions, which
lead to the second worst average out of all tested approaches. In order to merge
the right clusters when building up the hierarchy for Mclust, accurate parameter
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Dimensions 2 5 10 25 50 Avg

Alg/K 10 40 10 40 10 40 10 40 10 40

Mclust(BIC) 0.27 0.50 0.31 0.35 0.37 0.34 0.37 0.37 2.68 0.66 0.62
Mixmod(BIC) 0.32 0.47 0.36 0.46 0.37 0.52 0.38 0.54 0.40 0.48 0.43
Mixmod(ICL) 0.31 0.45 0.32 0.43 0.37 0.54 0.38 0.60 0.40 0.60 0.44
Mixmod(NEC) 0.49 0.45 1.26 0.64 1.60 0.96 1.27 1.61 1.16 2.48 1.19
HCEM(BIC) 0.34 0.51 0.34 0.54 0.37 0.51 0.37 0.37 0.40 0.40 0.42
HCEM(ICL) 0.35 0.48 0.33 0.51 0.37 0.44 0.37 0.37 0.40 0.40 0.40
HCEM(VAL) 0.29 0.40 0.28 0.33 0.34 0.37 0.37 0.37 0.40 0.40 0.35

Table 1: Experiments on synthetic datasets, evaluated using KLD, averaged over
20 datasets per configuration. Lower is better; the best KLD is presented in bold.
Results, that are statistically significant, are presented in green (better than all
other approaches and model selection criteria) and blue (better than the other
two approaches).

estimations are necessary, which is increasingly difficult with more dimensions
for datasets of limited size.

While not creating the models with the best KLD in all but one configuration,
Mixmod with ICL and BIC provides similar results to Mclust, except that it is
able to return a lower KLD for 50-dimensional data. NEC performs worse than
BIC and ICL in our setting with the only exception of 2 dimensions and 40
clusters. The average of all KLD values for Mixmod (BIC) and Mixmod (ICL)
is higher than the worst HCEM approach, HCEM (BIC).

HCEM consistently returns the best GMM or close to the best, independently
of the number of clusters in the dataset. There are only small differences between
the models selected by BIC and ICL. HCEM (VAL) achieves overall the best
average of 0.35 over all runs, which is statistically significant.

Clustering results We also evaluate the performance of all approaches using
the Adjusted Rand Index (ARI) [16] to measure the quality of a clustering result.
Table 2 shows experiments using Mclust, Mixmod and HCEM. The average ARI
for all algorithms and data configurations (20 datasets each) is reported as well
as the overall average all dimensions and number of clusters. Values in bold are
the best results, i.e. highest ARI averaged over all 20 datasets per configuration.

The results lead to similar conclusions about the relative performance of the
algorithms as in the previous experiments. All HCEM approaches achieve a bet-
ter average ARI than Mclust and Mixmod for all model selection criteria. HCEM
(VAL) achieves, again, the best average value and in 7 out of 10 configurations
and the best individual average ARI. HCEM (BIC), HCEM (ICL) and HCEM
(VAL) return, on average, better partitions than Mixmod and Mclust, and these
differences are statistically significant.



14 M. Strobl et al.

Dimensions 2 5 10 25 50 Avg

Alg/K 10 40 10 40 10 40 10 40 10 40

Mclust(BIC) 0.92 0.54 1.00 0.98 1.00 1.00 1.00 1.00 0.81 0.98 0.92
Mixmod(BIC) 0.89 0.54 0.97 0.93 0.98 0.95 0.99 0.95 1.00 0.96 0.92
Mixmod(ICL) 0.89 0.60 0.98 0.93 0.99 0.96 0.99 0.95 1.00 0.96 0.92
Mixmod(NEC) 0.76 0.66 0.64 0.78 0.63 0.76 0.85 0.72 0.91 0.63 0.73
HCEM(BIC) 0.92 0.68 0.99 0.94 1.00 0.99 1.00 1.00 1.00 1.00 0.95
HCEM(ICL) 0.92 0.71 0.99 0.96 1.00 1.00 1.00 1.00 1.00 1.00 0.96
HCEM(VAL) 0.92 0.74 0.99 0.97 1.00 0.99 1.00 1.00 1.00 1.00 0.96

Table 2: Experiments on synthetic datasets, evaluated using ARI, averaged over
20 datasets per configuration. Higher is better and best ARI is presented in
bold. Results, that are statistically significant, are presented in green (better
than all other approaches and model selection criteria) and blue (better than
the other two approaches).

4.4 Real datasets

Here we present clustering results for 5 different real datasets from the UCI
repository4 with data statistics summarized in Table 3. The Digits dataset was
downloaded from Scikit-learn [18]. Ecoli, Iris, Diabetes and Wine datasets were
previously used for the evaluation of clustering algorithms, e.g. in [12], [5], [20]
and [13]. Since the data-generating distribution is unknown for real data, we are
using the ARI to judge the resulting partitions.

Ecoli Iris Diabetes Wine Digits

Dimensions 7 4 3 13 64

Objects 336 150 145 178 1797

Table 3: Real datasets used in our experiments from the UCI repository.

We set K = [2, 100] for Mclust and Mixmod, which includes the correct
number of clusters for each dataset. All other parameters are as described in
Section 4.2. Table 4 shows experiments on all 5 datasets and compares the ARI
of the resulting partitions using all available model parameterizations.

The results are consistent with the ARI experiments on synthetic data. For
the Ecoli, Iris, Wine and Digits datasets, all HCEM approaches achieve a better
clustering result than Mclust and all Mixmod approaches by a large margin.
Mclust (BIC), Mixmod (BIC) and Mixmod (ICL) return the best result only on
the Diabetes dataset, which is the dataset with the lowest dimensionality (only 3
dimensions). HCEM (BIC) returns the best partitions on three out of five cases
for real data and is close to the best result on Diabetes and Iris.

4 https://archive.ics.uci.edu/ml/datasets.php
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Alg/Dataset Ecoli Iris Diabetes Wine Digits

Mclust (BIC) 0.39 0.57 0.66 0.71 0.29
Mixmod (BIC) 0.34 0.31 0.66 0.68 0.30
Mixmod (ICL) 0.28 0.33 0.66 0.68 0.29
Mixmod (NEC) 0.07 0.57 0.44 0.08 0.27
HCEM (BIC) 0.68 0.90 0.65 0.85 0.71
HCEM (ICL) 0.66 0.92 0.53 0.83 0.62
HCEM (VAL) 0.66 0.92 0.53 0.83 0.62

Table 4: Experiments on real datasets, evaluated using ARI. Higher is better
and best ARI is presented in bold.

5 Conclusion

We proposed a clustering framework for model-based clustering that is better
in accurately recovering the data generating distribution and partitioning the
data for synthetic as well as real datasets, compared to the baselines Mixmod
and Mclust. Furthermore, the number of clusters does not have to be known a
priori and no assumptions about the set K has to be made. We also showed that
our approach is robust to different parameter settings (mpts from HDBSCAN*
as well as the model selection method). Therefore, HCEM seems to be a good
choice for initializing the EM algorithm for clustering.

Currently 3 models are supported since only those make sure that models
with different numbers of components can be extracted from the HDBSCAN*
hierarchy efficiently without recomputing all model parameters after a decision
about whether a parent or its descendant results in a better model. In [11]
ways for efficiently extracting GMMs with a different number of components
are described using more models than the three currently used ones. We leave
implementing those for future work.
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