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Abstract—A social role is a special position an individual
possesses within a network, which indicates his or her be-
haviours, expectations, and responsibilities. Identifying the roles
that individuals play in a social network has various direct
applications, such as detecting influential members, trustworthy
people, idea innovators, etc. Roles can also be used for further
analyses of the network, e.g. community detection, temporal
event prediction, and summarization. In this paper, we propose
a structural social role mining framework (SSRM), which is
built to identify roles, study their changes, and analyze their
impacts on the underlying social network. We define fundamental
roles in a social network (namely leader, outermost, mediator,
and outsider), and then propose methodologies to identify them,
and track their changes. To identify these roles, we leverage
the traditional social network analyses and metrics, as well as
proposing new measures, including community-based variants for
the Betweenness centrality. Our results indicate how the changes
in the structural roles, in combination with the changes in the
community structure of a network, can provide additional clues
into the dynamics of networks.

INTRODUCTION

Hundreds of years ago, people traveled in form of caravans
through the Silk Road for thousands of miles. These caravans
connected cultures and economies from China to Mediter-
ranean regions and Europe. What makes them interesting in our
contexts, is how the responsibility of travelers in these caravans
were correlated with their actual position in the caravan. For
example, the individuals who knew the path and were leading
the caravan would have been located in the front section,
whereas warriors who were responsible to protect the caravan
would have been located in both front and back sections, as
well as all along the caravan to keep everyone and especially
the merchandise safe.

Similar organized structure exists in most other human
societies, where the position of an individual within the society
correlates with his or her social role. The social role is in
fact an important and well-studied concept in sociology. This
concept refers to a special position, which is associated with a
set of behaviours, expectations, and responsibilities [1]. People
play different roles in their communities and societies, behave
in special ways, and abide by certain expectations. Social roles
are mainly used to define the influence of members on the
network structure. As Walton [2] states, the changing nature
of an individual and its leadership are of central importance
to the explanation of social action.

In social network analysis, various metrics are defined for
quantifying structural and non-structural (behavioural) char-

acteristics of individuals, such as different centrality mea-
sures [3]. However, there exists a gap between these metrics
and a high-level definition for the roles of individuals. In
this paper, we propose the “Structural Social Role Mining”
(SSRM) framework to define and identify these high-level
roles. This framework unifies various kinds of metrics in-
cluding the well-known centrality measures [3], and also
different social network analyses such as community detection,
influence propagation, and diffusion of innovation into the
high-level concept of social roles.

Our proposed social roles provide more insightful informa-
tion compared to their underlying social network metrics. In a
parallel work under review, we have shown how these social
roles can be effectively used to predict the temporal events and
transitions taking place in dynamic social networks. Moreover,
classifying nodes based on these social roles can provide
another level of abstraction for the large social networks; thus,
leading to more scalable and efficient algorithms. The three
main contributions of this paper can be highlighted as:

1) A methodical framework for defining, and identifying
structural roles is proposed;

2) Role changes are tracked over time and their correlation
with the structural events in the network is illustrated;

3) New metrics, based on the community structure, are
proposed, which are necessary for detecting social roles.

In the rest of the paper, after overviewing the related work,
we define a set of fundamental roles in a network, which are
based on the structural properties of the individuals, as well as
the structure of the whole network. Then, we present metrics
and methodologies to identify the aforementioned roles, and to
study changes of roles in consecutive time frames. We define
role events that capture the temporal changes of roles, and
study the relation between these events and other structural
events in the network. In the experiments, we show how
exploring these roles and their impacts gives valuable insight
into the evolution of the network.

RELATED WORK

Role is an important concept in sociology, however, there
is no consensus on the definition of role between sociologist.
Biddle [1] integrates various theories on role and discusses
about functional, structural, organizational, and cognitive role
theories. Among different theories on role, the only one which
enables modeling the concept mathematically is the structural
role theory. Oeser et al. [4]–[6] develop a mathematical model
for structural role theory by defining three component task,



position, and person that define a role in connection with each
other and also with other positions in a society.

The emergence of social networking tools enables access
to more information in order to model and study social
roles. Consequently, the study of roles is now becoming an
interdisciplinary field of research, attracting researchers from
different disciplines, specifically data mining and machine
learning. Forestier et al. [7] present a survey of the state-of-
the-art techniques for role mining in social networks. They
further categorize roles to explicit, and non-explicit. Explicit
roles are defined a-priori, and are identified by calculating a
specifically designed method or a predefined criteria. Whereas,
non-explicit roles are identified in an unsupervised framework,
which requires little information about the roles beforehand.
Clustering algorithms are usually used to identify non-explicit
roles based on structural or contextual information in a net-
work.

The two widely defined examples of explicit roles are
experts and influentials. Notably, Zhang et al. [8] identify the
expert role on a java technical forum. They propose three
algorithms based on z-score, pagerank [9] and HITS [10]
using both indegree and outdegree of nodes to identify experts.
When they compare their results to the results on simulated
networks, they observe that the structure of the network has a
significant impact on the ranking of experts. Identifying nodes
as influential role has also attracted considerable attention from
researchers, mostly due to the influential role’s wide range of
applications in viral marketing, and diffusion of information.
Kim and Han [11] distinguish three types of influential roles:
sales person, opinion leaders, and connector. They further
develop a two-step methodology for identifying the first type
based on structural properties of the network. Agarwal et
al. [12] explicitly define influential as an individual who is
prominent in diffusion of innovation. They identify influential
bloggers in blogosphere by defining an iIndex for each blogger
based on their influential blog posts. Influential bloggers are
those who have at least one influential post. In addition, authors
discuss that influentials are different from initiators of an
idea or creators of a content. Influentials are more important
because of their position in the network that empowers them
to diffuse the influence.

In all the aforementioned works, the community structure
of the network is not directly considered in identifying roles.
Community-based roles, on the other hand, are less studied,
while they are important in many contexts, including link-
based classification and influence maximization, as shown
in [13]. Scripps et al. [13] define four structural community-
based roles (ambassadors, big fish, loners, and bridges); and
identify them based on the degree of nodes, and their com-
munity affiliation. Ambassadors are defined as nodes with
high degree and also high community metric. Whereas a big
fish is an individual who is only important within his/her
community. Bridges are the individuals with high community
score, but low degree, and loners are the ones with low
degree and also low community metric. These roles are defined
statically, and depend strictly on their metrics. However, the
framework presented in this paper delivers a more generalized
methodology for identifying roles, and could be used with
various metrics, while also tracks the temporal changes of
roles.

STRUCTURAL SOCIAL ROLE DEFINITION

Societies can be studied though social networks. A social
network is modelled by a graph G(V,E), where V is the
set of vertices/nodes and E is the set of graph’s edges.
Here, the entities/individuals in the society are associated with
the nodes of the graph, whereas the connections/interactions
between them are represented with the edges. Characteristics
and attributes of entities and their interactions can be also
included in this model, as different attributes on the nodes
and edges, which depend on the context.

We categorize the information in a social network into
structural and non-structural properties. Structural properties
are related to the topology of the graph such as an entity’s
connections (edges), neighbourhood structure, and the entity’s
position in that structure. Whereas, non-structural properties
are the information not reflected in the topology of the graph,
such as entities’ attributes, connections’ attributes and meta-
data about the graph. In a static network, role of an entity is de-
termined by its structural and non-structural properties. These
properties may change in the temporal networks. Thus, we
further define temporal-structural and temporal-non-structural
properties to reflect the changes in the features of the network
over the observation time. Since roles are important in the way
that they affect their environment, these temporal properties
should also be considered in identifying roles in a temporal
network.

Our proposed SSRM framework is built upon two char-
acteristics of human societies. The first is the role-taking
behaviour of the individuals in interaction with each others
which is aligned with their structural properties. The second
is the fact that all societies are intrinsically modular i.e.
composed of multiple groups (a.k.a communities). Thus, we
define roles of individuals in a social network considering
only structural properties of nodes, i.e. taking into account
their their interactions with other individuals, along with
their affiliations to the communities. From this perspective,
individuals can be classified as (see Figure 1 for illustrations):

1) with no affiliation to any community;
2) connecting multiple communities;
3) important members of a community;
4) ordinary/majority members of a community;
5) non-important members of a community, who do not

noticeably affect the community.

Based on this classification, we define the following four
fundamental roles. The framework we present can be extended
to include other specific roles based on a particular application,
following similar methodology we present here. As the basis,
we limited our focus to the most cross context roles.

LEADERS are the outstanding individuals in terms of
centrality or importance in each community. Leaders are
pioneers, authorities, or administrators of communities.

OUTERMOSTS are the small set of least significant in-
dividuals in each group, whose influence and effect on
the community are below the influence of the majority
of the community members.

MEDIATORS are individuals who play an important role
in connecting communities in a network. They act as
bridges between distinct communities.



Fig. 1: An intuitive illustration for different types of roles based on
structural properties, community affiliations, and members position
within communities. In this figure, three communities A, B, and C
are shown. Nodes are colour coded based on their role and affiliation:
orange represents nodes that are connecting communities to each
other (These nodes might also be part of community, however, we
have ignored that case in this figure for simplicity, but considered in
our definitions.); pink represents nodes with no connections or very
week connections to communities; members of community A, B and
C are coloured blue, dark green, light green respectively. Within each
community, nodes are positioned based on their importance, i.e. closer
to the borders of communities, the weaker and more inactive they are.

OUTSIDERS are individuals who are not affiliated to any
one community. They either have almost equal affiliation
to different communities, or have very weak ties to
a community. The latter are commonly reffered to as
outliers, whereas the former are exclusive mediators.

STRUCTURAL SOCIAL ROLE IDENTIFICATION

Having the definition of these four fundamental roles, we
now describe how they can be identified in a given network.
These roles and their identifications are based on a set of
(non-overlapping) communities, which provide an interme-
diate representation for the structure of the network. The
role mining process assumes that the communities are given,
either explicitly known, or extracted by a community mining
algorithm. Having the communities, it identifies roles either
directly based on the community memberships (outsiders), or
based on a ranking of nodes within the communities (leaders
and outermosts), or the whole network (mediators). For the
ranking based roles (i.e. leader and outermost), the distribution
of the ranking scores for nodes is used to automatically identify
the roles. Whereas, the identification of the mediator role,
requires a more complicated procedure, described in the greedy
MedExtractor Algorithm. More formally, we identify each of
the four fundamental roles defined in the previous section as
follows:

OUTSIDER members are the most straightforward role to
identify. Having the communities of a network, individuals
who do not belong to any community are identified as
outsiders.

LEADER members are identified in association with each
community. First, an appropriate importance/centrality mea-
sure M is used to score the members of the community (one
might apply any of the commonly used centrality measures,
or any other analysis that provides a ranking for importance
of nodes). Then, the probability distribution function (pdf)
for the importance scores (in that community) is estimated.
Analyzing the characteristics of this pdf, determines the
leaders. More specifically, nodes falling in the upper tail of
the distribution, are identified as the community leaders.

OUTERMOST members are identified in contrast to the lead-
ers, i.e. as members of a community falling in the lower tail
of the importance pdf1.

MEDIATOR members are the ones that connect different
communities. Commonly-used betweenness centrality ranks
nodes based on the number of shortest paths that pass through
the nodes. Thus, a node with high betweenness centrality
is a connectors between all nodes of the network without
considering the notion of communities. Using this analogy,
we propose two extensions of the betweenness centrality to
include communities for extracting mediators in a network:
C-Betweenness and L-Betweenness.

C-Betweenness counts the number of shortest paths be-
tween different communities that pass through a node. Let sp
and ep denote the start point and end point of the shortest path
p, respectively. Also let cv return the community that node
v belongs to. Now consider the set of all shortest paths that
connect different communities as CPaths = {p | csp 6= cep}.
Also let Ip(p, v) return 1 if node v resides on path p, and 0
otherwise. Then, C-Betweenness of node v is defined as:

CBC(v) =
1

2

∑
p∈CPaths

Ip(p, v)

for undirected networks, where the division by 2 is omitted
for directed graphs.

L-Betweenness considers only the shortest paths between
leaders of different communities. Let leaderSet(c) denote
the set of leaders of community c, then consider LPaths as:

LPaths = {p ∈ CPaths | ∃ ci, cj :
sp ∈ leaderSet(ci) ∧ ep ∈ leaderSet(cj)}

L-Betweenness of a node v, LBC(v), is then defined as:

LBC(v) =
∑

p∈LPath

Ip(p, v)

Figure 2 illustrates the difference between the proposed
LBC and CBC scores. According to the LBC score, node A
gets higher score, however considering CBC scores, node B is
more important. Thus, based on the structure of the network,
its communities, and more importantly the application of the
mediators, one of these measures reflects the importance of
the nodes better than the other.

1One should note that identifying outermosts is challenging using centrality
measures. Because the intuition behind centrality measures is to identify higher
values, not lower ones. This means, high centrality scores for nodes infer
their importance, however, low centrality scores do not necessarily mean that
they are not important. Thus, in general, centrality measures are efficient for
identifying more central nodes, but not necessarily least central ones.



Fig. 2: This figure presents a synthetic network consisting of two com-
munities. Leaders of two communities (l1 and l2) are connected to the
node A, while other nodes are all connected to node B. Computing
LBC and CBC for all nodes of the graph, the results are as follows:
LBC(A) = 1, LBC(B) = 0, CBC(A) = 7, CBC(B) = 12,
∀i : CBC(vi) = CBC(ui) = 6, and CBC(l1) = CBC(l2) = 3.

The proposed CBC and LBC measures are necessary
for identifying mediators, but are not sufficient. Consider a
network consisting of 10 communities and two mediators M1

and M2 where both lie on 100 shortest paths between commu-
nities, and therefore have the same CBC values. Whereas, M1

connects two distinct communities, while M2 connects all 10.
In this scenario, M2 is connecting communities more globally
and should be considered more of a mediator compared to M1.
Therefore, in our role mining framework, we also incorporate
the notion of diversity score, which indicates the distinct
communities that are connected through a mediator. We define
two variants for the diversity score: DScount and DSpair.

DScount(v) is simply defined as the number of distinct
communities connected through a node. Let Id(ci, v) to be 1
if ∃ p ∈ CPaths : sp ∈ ci ∧ v ∈ p. Then DScount of node v
can be calculated as follows:

DScount(v) =
1

2

∑
ci

Id(ci, v) for undirected networks.

(division by 2 is omitted for directed graphs.)

Diversity score can also be defined to count pairs of com-
munities that have at least one shortest path between their
members passing through node v. This variant of diversity
score is denoted by DSpair(v). Prior to definition of DSpair,
we define Id(ci, cj , v) such that it is 1 if ∃ p ∈ CPaths : sp ∈
ci ∧ ep ∈ cj ∧ v ∈ p. Then we have:

DSpair(v) =
1

2

∑
ci

∑
cj 6=ci

Id(ci, cj , v) undirected graph.

(division by 2 is omitted for directed graphs.)

In both DScount and DSpair, we can consider the shortest
paths between nodes. Thus, a connection between two com-
munities means having at least one shortest path between their
members.

Using a combination of the above metrics, the mediacy
score of nodes can be computed as a function of LBC or CBC
and DScount or DSpair. We rank nodes by their mediacy score
and propose MedExtractor algorithm to identify highly ranked
nodes connecting the maximum number of communities as
mediators.

Algorithm 1 MedExtractor: Find Mediators from SortedList
based on their Mediacy Score

1: procedure ExtractMediators (Graph G, OrderedList L)
2: .G is the graph associated with a network
3: .L is descending OrderedList containing nodes of the net-

work sorted based on their mediacy score.
4: mediatorSet = {} . set of selected nodes as mediators
5: connectedComs = {} . set of communities connected to

eachother by nodes in mediatorSet
6: while connectedComs.size < G.CommunityCount do
7: n← L.top()
8: for all Community c ∈ n.incedentCommunities() do
9: if c /∈ connectedComs then

10: Add n to mediatorSet
11: Add c to connectedComs
12: end if
13: end for
14: L.remove(n)
15: end while
16: end procedure

CASE STUDY

We apply the SSRM framework to identify roles in the
Enron email network which contains emails exchanged be-
tween employees of the Enron Corporation. Without loss of
generality, we study the year 2001, the year the company
declared bankruptcy, and only consider people who had sent
at least one email per day to filter out non-informative nodes.
The resulting graph has almost 250 nodes and 1500 edges, with
each month being one snapshot. Since the SSRM framework is
built upon the assumption of the existence of communities, we
apply the computationally effective local community mining
algorithm [14] to produce sets of disjoint communities for
each twelve snapshots. The Enron dataset is dynamic, hence,
its extracted communities evolve and change over time. To
capture the changes of the communities over the observation
time, we apply the community events proposed by Takaffoli
et al. [15] as the underlying temporal events. These events
are later used in the analysis to observe the mutual effects
between the changes in the extracted roles and the community
events. We expect that the changes in the individuals role,
play an important factor in the evolution of their corresponding
communities.

Choosing a Centrality Measure

Intuitively, degree and closeness centrality scores seem to
be good candidates for ranking individuals in a community in
order to identify leaders and outermosts. However, as shown in
Figure 3, degree distributions have mostly one tail (the upper
tail). Although the long upper tail of degree distributions can be
used to identify leaders, outermosts cannot be simply identified
using degree distributions of communities. Thus, we consider
closeness centrality rather than degree centrality that follows
a normal-like distribution (Figure 4); the two tails in each
community can be effectively used to identify both leaders
and outermosts.

We use measures defined in the previous section to compute
the mediacy score of a node. The number of leaders and
the number of shortest paths between them are small in
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Fig. 3: Degree distribution of four community in August 2001.
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Fig. 4: Closeness distribution of four community in August 2001.

Enron dataset, thus, LBC is not an appropriate indicator for
mediators. Hence, in this experiment, we use CBC to identify
mediators. Although CBC is more expensive in terms of time
complexity, it identifies mediators that could not be identified
by LBC. Mediators found by CBC more strongly connect
members of two communities, while mediators found by LBC
connect community leaders. In addition to time complexity,
CBC has another challenge; the probability of finding more
prominent mediators between larger communities is higher in
comparison to the smaller communities. This situation hap-
pens because there are more members in larger communities
that results in having more shortest paths between them. To
compensate for this effect, we use normalized CBC as follows:

NBC(v) =
1

2

∑
p∈CPaths

Ip(p, v)

min(|csp |, |cep |)

where division by 2 is omitted for directed graphs.

While two mediators may have equal scores, they can
substantially be different in terms of the number of distinct
communities they connect. Thus, we also consider diversity
score which takes into account the variant of communities.
Based on this idea, we define mediator score as the multipli-
cation of the node’s normalized C-Betweenness and diversity
score as follows:

MS(v) = NCB(v)×DScount(v). (1)

Identifying Roles

After choosing a metric to compute nodes’ score, we
develop the following methods to extract roles from the ranked
lists.

The closeness distribution used for identifying leaders
and outermosts in the Enron dataset is close to the normal
distribution. Using properties of the normal distribution, we
set µ+2σ as the upper and µ− 2σ as the lower thresholds to
identify leaders and outermosts respectively. Figure 5a shows
communities of Enron in the August 2001 and visually presents
how central a node is within its community. Other than this,
more information from distributions such as gaps could also
be used in identifying these roles.

Email Community Position
jeff.dasovich@enron.com C9T0 Executive/Director for State Government Affairs
giger.dernehl@enron.com C9T0
richard.shapiro@enron.com C9T0 VP regulatory affairs (Enron’s top lobbyist)
kimberly.watson@enron.com C10T0 Director
d..steffes@enron.com C9T0 Vice President
kenneth.lay@enron.com C17T2 CEO, chairman, and chief executive officer
e..haedicke@enron.com C7T0 Managing director
susan.mara@enron.com C9T0 California director of Regulatory Affairs
billy.lemmons@enron.com C17T2 Vice President
becky.spencer@enron.com C7T0
l..denton@enron.com C20T2 Lawyer

TABLE I: Leaders of the network shown in Figure 5b, their commu-
nity affiliation and position in the Enron organization

Leaders identified in August 2001 are shown in Table I.
Being a leader in the network (Figure 5b) translates into having
a high average of short email distance to other individuals in
the community. Among these names, Kenneth Lay is founder,
CEO, chairman, and chief executive officer of Enron. Kimberly
Watson is likely to be one of the influential directors in the
company based on the information we found in two meeting
minutes [16], [17].

Having the ranked list of nodes based on their mediator
score, we need a method to extract mediators. To this end, we
use and compare two methods. In the first one, we use the
MedExtractor (Algorithm 1), a greedy algorithm to identify
mediators. MedExtractor tries to minimize the number of
mediators that connect the maximum number of communities
in a network. Mediators found by this algorithm are high
score individuals according to their mediator score that all
together maximize the number of connected communities in
the network. These nodes identified as mediators are shown in
red in Figure 6b.

In the second method, we use the properties of the distri-
bution of mediator score to identify mediators. The mediator
score distribution is close to a power-law distribution. This
means a small number of nodes (the ones in the tail of the
distribution) are in control of lots of shortest path between
communities in our dataset. Based on this property, we use the
tail of the mediator score distribution to identify mediators.
However, the tail of the mediator score distributions for the
Enron dataset is very sparse. The reason for sparsity of the



(a) (b)

(c)

Fig. 5: (a) communities within the Enron email network in August 2001. Colours represent communities except for black that represents
outsiders. The bigger the size of the node, the more central it is in the community. (b) Leaders of communities are shown in red, (c) outermosts
are shown in red. Only two communities have nodes serving as outermosts. From the right to left, outermosts are Ava Garcia (probably an
assistant according to the body of some emails), Shirley Crenshaw (probably an assistant), and Leslie Reeves a module manager.

Email Community MedExtractor Mediator Score
kenneth.lay@enron.com C17T2 X 1
kam.keiser@enron.com C17T2 X 0.486
l..denton@enron.com C20T2 0.378
gerald.nemec@enron.com C7T0 0.338
janette.elbertson@enron.com C7T0 0.332
kimberly.bates@enron.com C7T0 X 0.294
e..haedicke@enron.com C7T0 0.270
tim.belden@enron.com C20T2 0.193
jeff.dasovich@enron.com C9T0 0.181
rika.imai@enron.com C21T7 0.180
d..steffes@enron.com C9T0 0.179
w..cantrell@enron.com C9T0 0.175

TABLE II: Top-12 nodes (based on their mediator score) as mediators
using gaps in the distribution of mediator score.

tail could be due to the small population of the network.
To overcome this problem in our dataset, we use the point
where the tail of the distribution starts getting sparse (the
first or second gap in the histogram) as the lower threshold
to identify mediators. Table II presents the top-12 mediators
chosen considering the sparseness and gaps in the distribution.
The nodes that are identified as mediators by this method, are
not only connecting communities, but also reside on most of
the shortest paths between communities.

MedExtractor determines the minimum number of me-
diators that connect the maximum number of communities
in the network, while using information from distributions,
we find nodes controlling most of the connections between
communities. As shown in Figure 6b and Table II, nodes
that are selected by the MedExtractor are a subset of nodes
identified by the analysis on the distribution function. Thus,
depending on what we expect from mediators, one of the
aforementioned methods can be used.

Roles Changes

In this section, we present the results on how nodes change
their role through time. Since two important roles in our

Fig. 7: Changes of nodes serving as leaders in the Enron dataset.

proposed framework are leaders and mediators, the focus in
this section is on nodes that have been leaders or mediators at
least once in different timeframes.

We present change of roles by means tables in Figure 7
and Figure 8, where rows and columns are respectively nodes
and timeframes. The intersection of rows and columns has
information about the role of the associated node in the re-
spective timeframe. For better visualization, cells are coloured
to represent nodes’ relative strength in having a specific role.

We track nodes’ roles after the first time they become
leaders. Thus, whether they are present in the network or
not before their first become a leader is not depicted in
Figure 7. This figure provides us with interesting information
about leader, i.e. some nodes are constantly leaders in early
timeframes while some others are constantly leaders in later
timeframes. Also, the importance of the leadership of leader
nodes change over time. Intuitively, being a constant leader
over more timeframes could mean that a node is more impor-
tant and influential in its community.

Figure 8 presents how mediators change their role through
time. Unlike the leading role where several nodes attain
their leadership over several timeframes, we observe more
fluctuations over the mediating role over time. According to
Figure 8, mediators identified for the months July, August,



(a) Communities (b) Mediators

Fig. 6: a) Communities within August 2001 timeframe. Size of the nodes depicts their mediator score. b) mediators (red nodes) found by
MedExtractor

Fig. 8: Changes of nodes serving as mediators in the Enron dataset.

and September express higher mediator scores. This shows
that more conversations have happened between communities
of the Enron network in these three months.

Finally, Figure 9 depicts how nodes change their roles
through time. Note that this figure presents the information
merely relevant to the nodes that have served as leader or
mediator in at least one timeframe. Based on the informa-
tion presented in this figure, there are examples that a node
simultaneously acts as both a mediator and a leader. This
figure provides knowledge regarding the role transition of each
node. For example, Jeff Dasovich is a mediator in January
2001, then transforms into simultaneous leader and mediator.
Later, he becomes only a leader and then regains his leading
and mediacy until October. He is not a leader any more in
October and does not have any role after that time. One other
example is Kenneth Lay who is an outermost in March and
later on becomes both a leader and a mediator in August.
This role change is coincident with the time when the former
Enron CEO, Jeffery Skilling, resigned and Lay became the new
CEO. Tracking such temporal changes results in interesting

Fig. 9: Role changes in the Enron email network.

information that helps in analyzing phenomena happening
in the network. We use these transitions to analyze events
happening for communities.

Role Transitions and Community Events

Tracking role changes in aggregation with community
events in the Enron email network provides interesting result
on the impact of role changes on the community changes.

Steven Kean, Enron executive vice president and chief of
staff, is a leader in community C9T0 in August but no more in



Dataset tBC tCBC tLBC tBC/tCBC

karate club (34 nodes) 64ms 118ms 57ms 0.54
Enron Oct. 2001 (228 nodes) 1012ms 762ms 152ms 1.33

TABLE III: Running time comparison between BC, CBC, and LBC
on the karate-club and Enron networks.

September. Coincidentally, community C9T0 dissolves in the
end of September.

Jeff Dasovich is both a mediator and a leader in C9T0 in
March, but is not a mediator any more in April. Interestingly,
community C9T0 faces a merge in the beginning of May with
another large community.

Some other interesting role changes that happen with the
event split are: Jan Moore who becomes a leader in C10T0
in March resulting by a split happening in C10T0 in April.
Same thing happens for Becky Spencer who becomes a leader
of C7T0 in April, and a month later a split occurs in C7T0.
Similar scenarios happen for Alan Comnes in C9T0, Susan
Mara in C9T0, and Ginger Dernehl in C9T0.

BC, CBC, and LBC Comparison

In this section, we present the comparisons between Be-
tweenness centrality (BC), C-Betweenness centrality (CBC),
and L-Betweenness centrality (LBC). We have computed
these three metrics on two different networks: (i) karate-
club network, and (ii) Enron communication network. We
compare the top-k lists for these metrics. According to what we
have found, more than half of the nodes are shared between
the top-20 nodes for BC and CBC. Moreover, LBC for the
karate-club identifies exactly those nodes that are important in
connecting two communities. We also compare the running
time to compute these metrics (Table III) on each of our
networks. The algorithm used for computing BC scores is
the one implemented in the JUNG framework and thus much
more efficient than the ones implemented by us for CBC and
LBC. The results on the running time shows however, BC was
implement more efficiently and performed much better than
CBC on the karate-club, CBC is better than BC when size of
the network increases. This shows the growth of BC is more
than CBC and LBC.

CONCLUSION AND FUTURE WORK

We developed a framework for structural role mining in
social network called SSRM in this paper. In order to evaluate
the SSRM framework, we applied it on the Enron communica-
tion network. We identified outsiders, outermosts, mediators,
and leaders. Among these roles, leaders and mediators are the
important ones to study more. Thus, we found information
about the people associated with nodes having the role of
a leader or a mediator. According to our findings, they are
indeed important people in the Enron organizational hierarchy.
Moreover, we observed how nodes change their role through
time. Based on role changes, we analyzed community events
happening in the Enron network and observed mutual relation
between role changes and community events.

Tracking how these roles change through time provides
information about the temporal characteristics of nodes and
the network. Hence, defining dynamic roles by focusing on
temporal patterns of role changes can be considered as a future
work to extend the SSRM framework.
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