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Relative Validity Criteria for Community
Mining Algorithms

Synonyms

Evaluation Approaches, Quality Measures, Clus-

tering Evaluation, Clustering Objective Function,

Graph Clustering, Graph Partitioning, Commu-

nity Mining

Glossary

Social network: a graph of interconnected nodes

Ground-truth: the right answer

A: adjacency matrix

C: clustering

ED: Edge Path

SPD: Shortest Path Distance

ARD: Adjacency Relation Distance

NOD: Neighbour Overlap Distance

PCD: Pearson Correlation Distance

ICD: ICloseness Distance

Definition

Grouping data points is one of the fundamen-

tal tasks in data mining, which is commonly

known as clustering if data points are described by

attributes. When dealing with interrelated data

data represented in the form of nodes and their re-

lationships and the connectivity is considered for

grouping but not the node attributes, this task is

also referred to as community mining. There has

been a considerable number of approaches pro-

posed in recent years for mining communities in

a given network. However, little work has been

done on how to evaluate community mining re-

sults. The common practice is to use an agreement

measure to compare the mining result against a

ground truth, however, the ground truth is not

known in most of the real world applications. In

this article, we investigate relative clustering qual-

ity measures defined for evaluation of clustering

data points with attributes and propose proper

adaptations to make them applicable in the con-

text of social networks. Not only these relative

criteria could be used as metrics for evaluating

quality of the groupings but also they could be

used as objectives for designing new community

mining algorithms.

Introduction

The recent growing trend in the Data Mining field

is the analysis of structured/interrelated data,

motivated by the natural presence of relationships

between data points in a variety of the present-

day applications. The structures in these inter-

related data are usually represented using net-
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works, known as complex networks or information

networks; examples are the hyperlink networks of

web pages, citation or collaboration networks of

scholars, biological networks of genes or proteins,

trust and social networks of humans and much

more.

All these networks exhibit common statisti-

cal properties, such as power law degree distri-

bution, small-world phenomenon, relatively high

transitivity, shrinking diameter, and densification

power laws [19; 17]. Network clustering, a.k.a.

community mining, is one of the principal tasks

in the analysis of complex networks. Many com-

munity mining algorithms have been proposed in

recent years (for a recent survey refer to Fortu-

nato [6]). These algorithms evolved very quickly

from simple heuristic approaches to more sophis-

ticated optimization based methods that are ex-

plicitly or implicitly trying to maximize the good-

ness of the discovered communities. The broadly

used explicit maximization objective is the mod-

ularity, first introduced by Newman and Girvan

[21].

Although there have been many methods pre-

sented for detecting communities, very little work

has been done on how to evaluate the results and

validate these methods. The difficulties of evalua-

tion are due to the fact that the interesting com-

munities that have to be discovered are hidden in

the structure of the network, thus, the true results

are not known for comparison. Furthermore, there

are no other means to measure the goodness of

the discovered communities in a real network. We

also do not have any large enough dataset with

known communities, often called ground truth, to

use as a benchmark to generally test and validate

the algorithms. The common practice is to use

synthetic benchmark networks and compare the

discovered communities with the built-in ground

truth. However, it is shown that the networks gen-

erated with the current benchmarks disagree with

some of the characteristics of real networks. These

facts motivate investigating a proper objective for

evaluation of community mining results.

Key Points

Defining an objective function to evaluate com-

munity mining is non-trivial. Aside from the sub-

jective nature of the community mining task,

there is no formal definition on the term commu-

nity. Consequently, there is no consensus on how

to measure “goodness” of the discovered commu-

nities by a mining algorithm. However, the well-

studied clustering methods in the Machine Learn-

ing field are subject to similar issues and yet there

exists an extensive set of validity criteria defined

for clustering evaluation, such as Davies-Bouldin

index [4], Dunn index [5], and Silhouette [29] (for

a recent survey refer to Vendramin et al [30]). In

this article, we describe how these criteria could

be adapted to the context of community mining

in order to compare results of different commu-

nity mining algorithms. Also, these criteria can

be used as alternatives to modularity to design

novel community mining algorithms.

In the following, we first briefly introduce well-

known community mining algorithms, and com-

mon evaluation approaches including available

benchmarks. Next, different ways to adapt clus-

tering validity criteria to handle comparison of

community mining results is proposed. Then, we

extensively compare and discuss the adapted cri-

teria on real and synthetic networks. Finally, we

conclude with a brief analysis of these results.

Historical Background

A community is roughly defined as “densely con-

nected” individuals that are “loosely connected”

to others outside their group. A large number

of community mining algorithms have been de-

veloped in the last few years having different

interpretations of this definition. Basic heuris-

tic approaches mine communities by assuming

that the network of interest divides naturally into

some subgroups, determined by the network it-

self. For instance, the Clique Percolation Method

[25] finds groups of nodes that can be reached

via chains of k-cliques. The common optimization
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approaches mine communities by maximizing the

overall “goodness” of the result. The most credi-

ble “goodness” objective is known as modularity

Q, proposed in [21], which considers the difference

between the fraction of edges that are within the

communities and the expected such fraction if the

edges are randomly distributed. Several commu-

nity mining algorithms for optimizing the modu-

larity Q have been proposed, such as fast modu-

larity [20]. Although many mining algorithms are

based on the concept of modularity, Fortunato

and Barthélemy [7] have shown that the modular-

ity cannot accurately evaluate small communities

due to its resolution limit. Hence, any algorithm

based on modularity is biased against small com-

munities. As an alternative to optimizing modu-

larity Q, we previously proposed TopLeaders com-

munity mining approach [27], which implicitly

maximizes the overall closeness of followers and

leaders, assuming that a community is a set of

followers congregating around a potential leader.

There are many other alternative methods. One

notable family of approaches mines communities

by utilizing information theory concepts such as

compression (e.g. Infomap [28]), and entropy (e.g.

entropy-base [12]). For a survey on different com-

munity mining techniques refer to [6].

The standard procedure for evaluating results

of a community mining algorithm is the exter-

nal evaluation of results, particularly when com-

paring accuracy of different algorithms; which is

assessing the agreement between the results and

the ground truth that is known for benchmark

datasets. These benchmarks are typically small

real world datasets or synthetic networks. On

the other hand, there is no well-defined criterion

for evaluating the resulting communities for net-

works without any ground truth, which is the

case in most of real world applications. The com-

mon practice is to validate the results partly by

a human expert.However, the community mining

problem is NP-complete; the human expert vali-

dation is limited and rather based on narrow intu-

ition than on an exhaustive examination of the re-

lations in the given network. Alternatively, mod-

ularity Q is sometimes reported to show the qual-

ity of discovered communities. In this article, we

investigate other potential measures for compar-

ing different (non-overlapping) community min-

ing results and examine the performance of these

measures parallel to the modularity Q. All these

new measures are adapted from well-grounded

traditional clustering criteria for evaluating data

points with attributes. Recently, Vendramin et al.

comprehensively compared their performances in

[30], based on the idea that the better a crite-

rion the more correlated is its ranking of different

partitions to the ranking of an external index.

The external evaluation requires knowing the

true communities. For this purpose, several gen-

erators have been proposed for synthesizing net-

works with built-in ground truth. GN benchmark

[8] is the first synthetic network generator. This

benchmark is a graph with 128 nodes, with ex-

pected degree of 16, and is divided into four

groups of equal sizes; where the probabilities of

the existence of a link between a pair of nodes

of the same group and of different groups are zin
and 1 − zin, respectively. However, the same ex-

pected degree for all the nodes, and equal-size

communities are not accordant to real social net-

work properties. LFR benchmark [16] amends GN

benchmark by considering power law distribu-

tions for degrees and community sizes. Similar to

GN benchmark, each node shares a fraction 1−µ
of its links with the other nodes of its commu-

nity and a fraction µ with the other nodes of the

network. In this article, we generate our synthetic

networks using LFR benchmark, due to its more

realistic structure.

There are recent studies on the comparison of

different community mining algorithms in terms

of evaluating their performance on synthetic and

real networks. For example, refer to studies by

Danon et al. [3]and Lancichinetti and Fortunato

[15]. All these studies are based on the agreements

of the generated communities with the true one in

the ground truth and are using GN and/or LFR

benchmarks. Orman et al. [23] further performed

a qualitative analysis of the identified communi-
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ties by comparing the distribution of resulting

communities with the community size distribu-

tion of the ground truth. None of these studies,

however, considers any different validity criteria

other than modularity to evaluate the goodness

of the detected communities. In this article, we

plan to examine potential validity criteria specifi-

cally defined for evaluation of community mining

results. In the future, these criteria not only can

be used as a means to measure the goodness of

discovered communities, but also as an objective

function to detect communities.

Community Quality Criteria

In this section, we overview several validity crite-

ria that could be used as relative indexes for com-

paring and evaluating different partitionings of a

given network. All of these criteria are generalized

from well-known clustering criteria. The cluster-

ing quality criteria are defined with the implicit

assumption that data points consist of vectors of

attributes. Consequently their definition is mostly

integrated or mixed with the definition of the

distance measure between data points. The com-

monly used distance measure is the Euclidean dis-

tance, which cannot be defined for graphs. There-

fore, we first review different possible distance

measures that could be used in graphs. Then, we

present generalizations of criteria that could use

any notion of distance.

Distance Between Nodes

Let A denote the adjacency matrix of the graph,

and let Aij be the weight of the edge between

nodes ni and nj. The distance d(i, j) denotes the

dissimilarity between ni and nj, which can be

computed by one of the following measures.

Edge Path (ED)

The distance between two nodes is the inverse of

their incident edge weight:

dED(i, j) =
1

Aij

For avoiding division by zero, when Aij is zero,

1/ε is returned where ε is a very small number;

the same is true for all other formula whenever a

division by zero may occur.

Shortest Path Distance (SPD)

The distance between two nodes is the length of

the shortest path between them, which could be

computed using the well-known Dijkstra’s Short-

est Path algorithm.

Adjacency Relation Distance (ARD)

The distance between two nodes is the struc-

tural dissimilarity between them, that is com-

puted by the difference between their immediate

neighbourhood.

dARD(i, j) =
√∑

k 6=j,i

(Aik − Ajk)2

Neighbour Overlap Distance (NOD)

The distance between two nodes is the ratio of the

unshared neighbours between them.

dNOD(i, j) = 1− |ℵi ∩ ℵj|
|ℵi ∪ ℵj|

where ℵi is the set of nodes directly connected to

ni . Note that there is a close relation between

this measure and the previous one, since similarly

dNOD could be re-written as:

dNOD(i, j) = 1−

∑
k 6=j,i

|Aik+Ajk|−
∑

k 6=j,i

|Aik−Ajk|∑
k 6=j,i

|Aik+Ajk|+
∑

k 6=j,i

|Aik−Ajk|

The latter formulation of dNOD in terms of the

adjacency matrix can be straightforwardly gener-

alized for weighted graphs.

Pearson Correlation Distance (PCD)

The Pearson correlation coefficient between two

nodes is the correlation between their correspond-

ing rows of the adjacency matrix:

C(i, j) =

∑
k (Aik − µi)(Ajk − µj)

Nσiσj

where N is the number of nodes, the av-

erage µi = (
∑

k Aik)/N and the variance
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σi =
√∑

k (Aik − µi)2/N . Then, the dis-

tance between two nodes is computed as

dPCD(i, j) = 1 − C(i, j), which lies between

0 (when the two nodes are most similar) and 2

(when the two nodes are most dissimilar).

ICloseness Distance (ICD)

The distance between two nodes is computed as

the inverse of the connectivity between their com-

mon neighbourhood:

dICD(i, j) =
1∑

k∈ℵi∩ℵj
ns(k, i)ns(k, j)

where ns(k, i) denotes the neighbouring score be-

tween nodes k and i that is computed iteratively

(for complete formulation refer to [26]).

Community Centroid

In addition to the notion of distance measure,

most of the cluster validity criteria use averaging

between the numerical data points to determine

the centroid of a cluster. The averaging is not de-

fined for nodes in a graph, therefore we modify

the criteria definitions to use a generalized cen-

troid notion, in a way that, if the centroid is set

as averaging, we would obtain the original criteria

definitions, but we could also use other alternative

notions for centroid of a group of data points.

Averaging data points results in a point with

the least average distance to the other points.

When averaging is not possible, using medoid is

the natural option, which is perfectly compati-

ble with graphs. More formally, the centroid of a

community can be obtained as:

C = arg min
m∈C

∑
i∈C

d(i,m)

Relative Validity Criteria

Here we present our generalizations of well-known

clustering validity criteria defined as quality mea-

sures for internal evaluation of clustering results.

All these criteria are originally defined based on

distances between data points, which is in all

cases the Euclidean or other inner product norms

of difference between their vectors of attributes;

refer to [30] for comparative analysis of these cri-

teria in the clustering context. We alter the formu-

lae to use a generalized distance, so that we can

plug in our graph distance measures. The other al-

teration is generalizing the mean over data points

to a general centroid notion, which can be set as

averaging in the presence of attributes and the

medoid in our case of dealing with graphs and in

the absence of attributes.

In a nutshell, in every criterion, the average of

points in a cluster is replaced with a generalized

notion of centroid, and distances between data

points are generalized from Euclidean/norm to a

generic distance. Consider a clustering C = {C1∪
C2 ∪ ... ∪ Ck} of N data points, where C denotes

the centroid of data points belonging to C. The

quality of C can be measured using one of the

following criteria.

Variance Ratio Criterion (VRC)

This criterion measures the ratio of the

between-cluster/community distances to within-

cluster/community distances which could be

generalized as follows:

V RC =

k∑
l=1
|Cl|d(C l, C)

k∑
l=1

∑
i∈Cl

d(i, C l)
× N − k

k − 1

where C l is the centroid of the cluster/community

Cl, and C is the centroid of the entire

data/network. The original clustering formula

proposed in [1] for attributes vectors is obtained

if the centroid is fixed to averaging of vectors of

attributes and distance to (square of) Euclidean

distance.

Davies-Bouldin index (DB)

This minimization criterion calculates the worst-

case within-cluster/community to between-

cluster/community distances ratio averaged over

all clusters/communities [4]:

DB =
1

k

k∑
l=1

max
m 6=l

((dl + dm)/d(C l, Cm))
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dl =
1

|Cl|
∑
i∈Cl

d(i, C l)

Dunn index

This criterion considers both the minimum dis-

tance between any two clusters/communities and

the length of the largest cluster/community di-

ameter (i.e. the maximum or the average distance

between all the pairs in the cluster/community)

[5]:

Dunn = min
l 6=m
{ δ(Cl, Cm)

maxp∆(Cp)
}

where δ denotes distance between two communi-

ties and ∆ is the diameter of a community. Differ-

ent variations of calculating δ and ∆ are available;

δ could be single, complete or average linkage,

or only the difference between the two centroids.

Moreover, ∆ could be maximum or average dis-

tance between all pairs of nodes, or the average

distance of all nodes to the centroid. For exam-

ple, the single linkage for δ and maximum dis-

tance for ∆ are δ(Cl, Cm) = min
i∈Cl,j∈Cm

d(i, j) and

∆(Cp) = max
i,j∈Cp

d(i, j). Therefore, we have different

variations of Dunn index in our experiments, each

indicated by two indexes for different methods to

calculate δ (i.e. single(0), complete(1), average(2),

and centroid(3)) and different methods to calcu-

late ∆ (i.e. maximum(0), average(1), average to

centroid(3)).

Silhouette Width Criterion (SWC)

This criterion measures the average of silhouette

score for each data point. The silhouette score of a

point shows the goodness of the community it be-

longs to by calculating the normalized difference

between the distance to its nearest neighbouring

community and its own community [29]. Taking

the average one has:

SWC =
1

N

k∑
l=1

∑
i∈Cl

min
m 6=l

d(i, Cm)− d(i, Cl)

max {min
m6=l

d(i, Cm), d(i, Cl)}

where d(i, Cl) is the distance of point i to commu-

nity Cl, which is originally set to be the average

distance (called SWC2) (i.e. 1/|Cl|
∑

j∈Cl
d(i, j))

or could be the distance to its centroid (called

SWC4) (i.e. d(i, Cl)). An alternative formula for

Silhouette is proposed in [30] :

ASWC =
1

N

k∑
l=1

∑
i∈Cl

min
m 6=l

d(i, Cm)

d(i, Cl)

PBM

This criterion is based on the within-community

distances and the maximum distance between

centroids of communities[24]:

PBM =
1

k
× maxl,m d(C l, Cm)

k∑
l=1

∑
i∈Cl

d(i, C l)

C-Index

This criterion compares the sum of the within-

community distances to the worst and best case

scenarios [2]. The best case scenario is where the

within-community distances are the shortest dis-

tances in the graph, and the worst case scenario

is where the within-community distances are the

longest distances in the graph.

θ =
1

2

k∑
l=1

∑
i,j∈Cl

d(i, j)

CIndex =
θ −min θ

max θ −min θ
The min θ/max θ is computed by summing the

m1 smallest/largest distances between every two

points, where m1 =
k∑

l=1

|Cl|(|Cl|−1)
2

.

Z-Statistics

This criterion is similar to C-Index, however with

different formulation [10]:

ZIndex =
θ − E(θ)√
var(θ)

E(θ) =
1

N

N∑
i=1

N∑
j=1

d(i, j)

V ar(θ) =

(
N∑
i=1

N∑
j=1

d(i, j)

)2

− 2
N∑
i=1

(
N∑
j=1

d(i, j)

)2

N(N − 1)
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−

(
N∑
i=1

N∑
j=1

d(i, j)

)2

N2
+

N∑
i=1

N∑
j=1

d(i, j)2

N

Point-Biserial (PB)

This criterion computes the correlation of the

distances between nodes and their cluster co-

membership which is dichotomous variable [18].

Intuitively, nodes that are in the same commu-

nity should be separated by shorter distances than

those which are not:

PB =
M1 −M0

S

√
m1m0

m2

where m is the total number of distances

i.e. N(N − 1)/2 and S is the standard

deviation of all pairwise distances i.e.√
1
m

∑
i,j(d(i, j)− 1

m

∑
i,j d(i, j))2, while M1,

M0 are respectively the average of within and

between-community distances, and m1 and m0

represent the number of within and between

community distances. More formally:

m1 =
k∑

l=1

Nl(Nl − 1)

2
m0 =

k∑
l=1

Nl(N −Nl)

2

M1 = 1/2
k∑

l=1

∑
i,j∈Cl

d(i, j) M0 = 1/2
k∑

l=1

∑
i∈Cl
j /∈Cl

d(i, j)

Modularity

is the well-known criterion proposed by Newman

et al. [21] specifically for the context of commu-

nity mining. This criterion considers the differ-

ence between the fraction of edges that are within

the community and the expected such fraction

if the edges were randomly distributed. Let E

denote the number of edges in the network i.e.

E = 1
2

∑
ij Aij, then Q-modularity is defined as:

Q =
1

2E

k∑
l=1

∑
i,j∈Cl

[Aij −
∑

k Aik
∑

k Akj

2E
]

The computational complexity of different va-

lidity criteria is provided in the previous work by

Vendramin et al. [30].

Comparison Methodology and

Results

In this section, we compare the proposed rela-

tive community criteria. First, we describe the

approach we have used for the comparison. Then,

we report the criteria performances in different

settings. The following procedure summarizes our

comparison approach.

D ← {d1, d2 . . . dn}
for all dataset d ∈ D do

{generate m possible partitionings}
P (d)← {pd1 , pd2 . . . pdm}
{compute external scores}
E(d)← {a(pd1 , p

∗
d), a(pd2 , p

∗
d) . . . a(pdm , p

∗
d)}

for all c ∈ Criteria do

{compute internal scores}
Ic(d)← {c(pd1), c(pd2) . . . c(pdm)}
{compute the correlation}
scorec(d)← correlation(E, I)

end for

end for

{rank criteria based on their average scores}
scorec ← 1

n

∑n
d=1 scorec(d)

The performance of a criterion could be exam-

ined by how well it could rank different partition-

ings of a given dataset. More formally, consider

we have a dataset d and a set of m different pos-

sible partitionings, i.e. P (d) = {pd1, pd2, . . . , pdm}.
Then, the performance of criterion c on dataset

d could be determined by how much its values,

Ic(d) = {c(pd1), c(pd2), . . . , c(pdm)}, correlate with

the “goodness” of these partitionings. Assuming

that the true partitioning (i.e. ground truth) p∗d is

known for dataset d, the “goodness” of partition-

ing pdi could be determined using partitioning

agreement measure a, a.k.a. external evaluation.

Hence, for dataset d with set of possible parti-

tionings P (d), the external evaluation provides

E(d) = {a(pd1, p
∗
d), a(pd2, p

∗
d), . . . , a(pdm, p

∗
d)},

where (pd1, p
∗
d) denotes the “goodness” of parti-

tioning pd1 comparing to the ground truth. Then,

the performance score of criterion c on dataset

d could be examined by the correlation of its



8

values Ic(d) and the values obtained from the

external evaluation E(d) on different possible

partitionings. Finally, the criteria are ranked

based on their average performance score over a

set of datasets.

External evaluation is done with an agreement

measure, which computes the agreement between

two given partitionings or between a partitioning

and the ground truth. There are several choices

for the partitioning agreement measure. The com-

monly used ones are pair counting based, such

as Adjusted Rank Index (ARI) [9] and Jaccard

Coefficient [11], and the information theoretic-

based, such as Normalized Mutual Information

(NMI) [14; 3] and the Adjusted Mutual Informa-

tion (AMI) [31].

There are also different ways to compute the

correlation between two vectors. The classic op-

tions are Pearson Product Moment coefficient or

the Spearman’s Rank correlation coefficient. The

reported results in our experiments are based

on the Spearman’s Correlation, since we are in-

terested in the correlation of rankings that a

criterion provides for different partitionings and

not the actual values of that criterion. However,

the reported results mostly agree with the re-

sults obtained by using Pearson correlation, which

are reported in the supplementary materialsavail-

able from: http://cs.ualberta.ca/~rabbanyk/

criteriaComparison.

Sampling the Partitioning Space

In our comparison, we generate different parti-

tionings for each dataset d to sample the space of

all possible partitionings. For doing so, given the

perfect partitioning, p∗d, we randomized different

versions of p∗d by randomly merging and splitting

communities and swapping nodes between them.

The sampling procedure is described in more de-

tails in the supplementary materials.

Table 1. Statistics for sample partitionings of each real
world dataset. For example, for the Karate Club dataset
which has 2 communities in its ground truth, we have gen-
erated 60 different partitionings with average 3.57±1.23
clusters ranging from 2 to 6 and the “goodness” of the

samples is on average 0.46±0.27 in terms of their AMI
agreement.

Results on Real World Datasets

We first compare performance of different criteria

on five well-known real-world benchmarks: Karate

Club (weighted) by Zachary [32], Sawmill Strike

data-set [22], NCAA Football Bowl Subdivision

[8], and Politician Books from Amazon [13]. Ta-

ble 1 shows general statistics about the datasets

and their generated samples. We can see that the

randomized samples cover the space of partition-

ings according to their external index range.

Fig. 1. Visualization of correlation between an external
agreement measure and some relative quality criteria for
Karate dataset. The x axis indicates different random par-
titionings, and the y axis indicates the value of the index.
While, the blue/darker line represents the value of the ex-
ternal index for the given partitioning and the red/lighter
line represents the value that the criterion gives for the
partitioning. Please note that the value of criteria are not
generally normalized and in the same range as the exter-
nal indexes, in this figure AMI. For the sake of illustration
therefore, each criterion’s values are scaled to be in the
same range as of the external index.

Figure 1 exemplifies how different criteria ex-

hibit different correlations with the external in-

dex. It visualizes the correlation between few se-

lected relative indexes and an external index for

one of our datasets listed in Table 1.

Similar analysis is done for all 4 datasets ×
19 criteria × 7 distances × 4 external indexes,

which produced over 2000 such correlations. The

top ranked criteria based on their average perfor-

mance over these datasets are summarized in Ta-

ble 2. Based on these results, CIndex when used

with PCD distance has a higher correlation with

the external index comparing to the modularity

Q. And this is true regardless of the choice of AMI

as the external index, since it is ranked above Q

also by ARI and NMI.

Table 2. Overall ranking of criteria on the real world
datasets, based on the average Spearman’s correlation of
criteria with the AMI external index, AMIcorr. Ranking
based on correlation with other external indexes is also
reported.
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The correlation between a criterion and an ex-

ternal index depends on how close the randomized

partitionings are from the true partitioning of the

ground truth. This can be seen in Figure 1. For

example, Dunn01 (single linkage network diame-

ter and average linkage within community scores)

with the ICD distance agrees strongly with the

external index in samples with higher external

index value, i.e. closer to the ground truth, but

not on further samples. On the other hand, Q

is very well matched for the samples too far or

too close to the ground truth, but is not doing as

well as others in the middle. With this in mind,

we have divided the generated clustering samples

into three sets of easy, medium and hard sam-

ples and re-ranked the criteria in each of these

settings. Since the external index determines how

far a sample is from the optimal result, the sam-

ples are divided into three equal length intervals

according to the range of the external index. Ta-

ble 3, reports the rankings of the top criteria in

each of these three settings. We can see that these

average results support our earlier hypothesis, i.e.,

when considering partitionings medium far from

the true partitioning, CIndex PCD performs sig-

nificantly better than modularity Q, while their

performances are not very different in the near

optimal samples or the samples very far from the

ground truth. One may conclude based on this

experiment that CIndex PCD is a more accurate

evaluation criterion comparing to Q, especially

when the results might not be very accurate or

very poor.

Table 3. Difficulty analysis of the results: consider-
ing ranking for partitionings near optimal ground truth,
medium far and very far. Reported result are based on
AMI and the Spearman’s correlation.

Synthetic Benchmarks Datasets

Lastly, we compare the criteria on a larger set

of synthetic benchmarks. We have generated our

dataset using the LFR benchmarks [16] which are

the generators widely in use for community min-

ing evaluation. Similar to the last experiment, Ta-

ble 5 reports the ranking of the top criteria ac-

cording to their average performance on synthe-

sized datasets of Table 4. Based on which, mod-

ularity Q overall outperforms other criteria espe-

cially in ranking poor partitionings; while CIndex

PCD performs better in ranking finner results.

Table 4. Statistics for sample partitionings of each
synthetic dataset. The benchmark generation parameters:
100 nodes with average degree 5 and maximum degree 50,
where size of each community is between 5 and 50 and
mixing parameter is 0.1.

Table 5. Overall ranking and difficulty analysis of
the synthetic results. Here communities are well-separated
with mixing parameter of .1. Similar to the last experi-
ment, reported result are based on AMI and the Spear-
man’s correlation.

The LFR generator can generate networks with

different levels of difficulty for the partitioning

task, by changing how well separated the com-

munities are in the ground truth. To examine the

effect of this difficulty parameter, we have ranked

the criteria for different values of this parame-

ter. We observed that modularity Q is the supe-

rior criterion for these synthetic benchmarks up to

some level of how mixed are the communities, but

this changes in more difficult settings. Results for

other settings are available in the supplementary

materials.

Table 6 reports the overall ranking of the cri-

teria for a difficult set of datasets that have high

mixing parameter. We can see that in this set-

ting PB index used with PCD, NOD, SPD or

ARD distances, is significantly more reliable than

modularity Q, particularly considering the much

higher variance of the latter.

Table 6. Overall ranking of criteria based on AMI &
Spearman’s Correlation on the synthetic benchmarks with
the same parameters as in Table 4 but much higher mix-
ing parameter, .7. We can see that in these settings, PB
indexes outperform modularity Q.

In short, the relative performances of different

criteria depends on the difficulty of the network

itself, as well as how far we are sampling from the

ground truth. Altogether, choosing the right cri-

terion for evaluating different community mining
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results depends both on the application, i.e., how

well-separated communities might be in the given

network, and also on the algorithm that produces

these results, i.e., how fine the results might be.

For example, if the problem is hard and commu-

nities are heavily mixed, modularity Q might not

distinguish the good and bad partitionings very

well. While if we are choosing between fine and

well separated clusterings, it indeed is the supe-

rior criterion.

Conclusion

In this article, we generalized well-known cluster-

ing validity criteria originally used as quantitative

measures for evaluating quality of clusters of data

points represented by attributes. The first reason

of this generalization is to adapt these criteria in

the context of community mining of interrelated

data. The only commonly used criterion to eval-

uate the goodness of detected communities in a

network is the modularity Q. Providing more va-

lidity criteria can help researchers to better eval-

uate and compare community mining results in

different settings. Also, these adapted validity cri-

teria can be further used as objectives to design

new community mining algorithms. Our general-

ized formulation is independent of any particu-

lar distance measure unlike most of the original

clustering validity criteria that are defined based

on the Euclidean distance. The adopted versions

therefore could be used as community criteria

when plugged in with different graph distances.

In our experiments, several of these adopted cri-

teria exhibit high performances on ranking differ-

ent partitionings of a given dataset, which makes

them possible alternatives for the Q modularity.

However, a more careful examination is needed as

the rankings depends significantly on the experi-

mental settings and the criteria should be chosen

based on the application.
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(a) CINDEX PCD (b) Q

(c) SWC2 NOD (d) Dunn01 ICD

Fig. 1. Visualization of correlation between an external agreement measure and some relative quality criteria for
Karate dataset. The x axis indicates different random partitionings, and the y axis indicates the value of the index.
While, the blue/darker line represents the value of the external index for the given partitioning and the red/lighter
line represents the value that the criterion gives for the partitioning. Please note that the value of criteria are not
generally normalized and in the same range as the external indexes, in this figure AMI. For the sake of illustration
therefore, each criterion’s values are scaled to be in the same range as of the external index.
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Table 1. Statistics for sample partitionings of each real world dataset. For example, for the Karate Club dataset which
has 2 communities in its ground truth, we have generated 60 different partitionings with average 3.57±1.23 clusters
ranging from 2 to 6 and the “goodness” of the samples is on average 0.46±0.27 in terms of their AMI agreement.

Dataset K∗ # K AMI
Strike 3 60 3.17±1∈[2,5] 0.59±0.27∈[-0.04,1]
Polboks 3 60 3.17±1.13∈[2,6] 0.44±0.25∈[0.04,1]
Karate 2 60 3.57±1.23∈[2,6] 0.46±0.27∈[-0.02,1]
Football 11 60 10.17±4.55∈[4,19] 0.68±0.16∈[0.4,1]
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Table 2. Overall ranking of criteria on the real world datasets, based on the average Spearman’s correlation of criteria
with the AMI external index, AMIcorr. Ranking based on correlation with other external indexes is also reported.

Rank Criterion AMIcorr ARI Jaccard NMI
1 CIndex PCD 0.907±0.058 1 1 1
2 SWC2 NOD 0.857±0.031 4 4 2
3 Q 0.85±0.083 2 2 3
4 CIndex ARD 0.826±0.162 6 15 5
5 CIndex SPD 0.811±0.126 3 10 4
6 ASWC2 NOD 0.809±0.043 5 11 6
7 CIndex NOD 0.794±0.096 12 3 9
8 SWC2 PCD 0.789±0.103 7 7 8
9 SWC4 NOD 0.778±0.075 9 5 7
10 ASWC2 PCD 0.772±0.088 10 9 10
11 SWC2 SPD 0.751±0.121 8 6 11
12 Dunn01 ICD 0.742±0.111 18 24 12
13 ASWC2 SPD 0.733±0.116 11 8 13
14 Dunn00 PCD 0.721±0.1 21 30 14
15 DB ICD 0.712±0.063 24 22 16
16 Dunn00 ICD 0.707±0.133 28 28 15
17 Dunn03 ICD 0.703±0.055 25 23 17
18 SWC4 PCD 0.7±0.072 14 12 21
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Table 3. Difficulty analysis of the results: considering ranking for partitionings near optimal ground truth, medium
far and very far. Reported result are based on AMI and the Spearman’s correlation.

Near Optimal Samples
Rank Criterion AMIcorr ARI Jaccard NMI
1 Q 0.736±0.266 5 5 2
2 CIndex PCD 0.72±0.326 1 1 3
3 SWC2 SPD 0.718±0.389 3 3 4
4 CIndex SPD 0.716±0.14 4 4 1
5 SWC2 ICD 0.713±0.396 2 2 5
6 ASWC2 ICD 0.687±0.334 11 10 7

Medium Far Samples
Rank Criterion AMIcorr ARI Jaccard NMI
1 CIndex PCD 0.608±0.202 8 18 1
2 CIndex NOD 0.58±0.053 39 13 2
3 CIndex ARD 0.513±0.313 26 62 5
4 Dunn01 ICD 0.457±0.173 58 83 8
5 SWC2 NOD 0.447±0.19 5 9 3
6 ASWC2 PCD 0.446±0.191 7 3 9
7 SWC2 PCD 0.446±0.19 6 2 10
8 Dunn03 ICD 0.439±0.109 43 37 11
9 Dunn31 SPD 0.437±0.177 56 47 15
10 Dunn01 SPD 0.434±0.205 29 67 7
11 Q 0.409±0.353 4 7 16
12 DB ICD 0.405±0.072 40 38 18

Far Far Samples
Rank Criterion AMIcorr ARI Jaccard NMI
1 SWC2 NOD 0.634±0.217 3 13 1
2 ASWC2 NOD 0.583±0.191 5 21 2
3 Q 0.498±0.179 4 38 5
4 CIndex PCD 0.493±0.282 2 4 13
5 CIndex SPD 0.437±0.291 1 11 4
6 SWC3 NOD 0.436±0.344 8 2 25
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Table 4. Statistics for sample partitionings of each synthetic dataset. The benchmark generation parameters: 100
nodes with average degree 5 and maximum degree 50, where size of each community is between 5 and 50 and mixing
parameter is 0.1.

Dataset K∗ # K AMI
network1 4 60 3.4±1.17∈[2,6] 0.46±0.23∈[0,1]
network2 3 60 3.1±1.27∈[2,7] 0.49±0.22∈[0.13,1]
network3 2 60 3.3±1.13∈[2,6] 0.47±0.23∈[0.11,1]
network4 7 60 5.17±2.49∈[2,12] 0.57±0.2∈[0.18,1]
network5 2 60 3.5±1.36∈[2,8] 0.44±0.22∈[0.11,1]
network6 5 60 5.8±2.55∈[2,12] 0.68±0.2∈[0.27,1]
network7 4 60 5.2±2.65∈[2,12] 0.47±0.19∈[0.13,1]
network8 5 60 5.37±2.04∈[2,10] 0.67±0.21∈[0.32,1]
network9 5 60 5.5±2.05∈[2,10] 0.69±0.19∈[0.37,1]
network10 6 60 5.33±2.51∈[2,11] 0.63±0.19∈[0.24,1]
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Table 5. Overall ranking and difficulty analysis of the synthetic results. Here communities are well-separated with
mixing parameter of .1. Similar to the last experiment, reported result are based on AMI and the Spearman’s corre-
lation.

Overall Results
Rank Criterion AMIcorr ARI Jaccard NMI
1 Q 0.894±0.018 1 2 1
2 ASWC2 NOD 0.854±0.056 3 4 2
3 SWC2 NOD 0.854±0.051 4 3 3
4 CIndex PCD 0.826±0.07 2 1 4
5 CIndex SPD 0.746±0.137 8 24 5
6 SWC2 PCD 0.743±0.047 5 5 6
7 ASWC2 PCD 0.739±0.048 6 6 7
8 Dunn00 PCD 0.707±0.11 11 26 8
9 SWC4 NOD 0.699±0.131 7 7 9
10 SWC4 ARD 0.689±0.124 9 8 10
11 ASWC2 ARD 0.683±0.108 15 21 11
12 ASWC2 ED 0.665±0.139 10 11 12
13 SWC2 SPD 0.657±0.124 14 16 13
14 ASWC2 SPD 0.651±0.196 16 17 15
15 Dunn03 NOD 0.645±0.156 23 33 14

Near Optimal Results
Rank Criterion AMIcorr ARI Jaccard NMI
1 CIndex PCD 0.729±0.17 1 1 1
2 Q 0.722±0.111 6 5 5
3 SWC2 SPD 0.717±0.185 18 18 2
4 SWC4 NOD 0.709±0.201 5 6 4
5 SWC2 ICD 0.704±0.216 15 15 3
6 SWC4 ARD 0.674±0.183 7 7 6
7 ASWC2 NOD 0.66±0.261 20 19 7
8 SWC2 NOD 0.649±0.264 14 14 9

Medium Far Results
Rank Criterion AMIcorr ARI Jaccard NMI
1 SWC2 NOD 0.455±0.191 5 11 3
2 CIndex PCD 0.453±0.245 1 2 5
3 Q 0.45±0.236 2 9 2
4 ASWC2 NOD 0.435±0.187 4 14 1
5 Dunn00 ARD 0.386±0.243 119 111 7
6 Dunn00 PCD 0.38±0.195 58 91 6
7 CIndex NOD 0.373±0.213 7 1 14
8 Dunn01 NOD 0.358±0.146 108 95 15

Far Far Results
Rank Criterion AMIcorr ARI Jaccard NMI
1 Q 0.63±0.139 1 4 2
2 ASWC2 NOD 0.596±0.164 2 2 3
3 SWC2 NOD 0.57±0.159 3 3 5
4 CIndex SPD 0.565±0.132 4 25 1
5 CIndex PCD 0.446±0.142 5 1 21
6 CIndex ARD 0.433±0.25 10 106 4
7 ASWC4 NOD 0.397±0.119 15 63 11
8 SWC2 PCD 0.356±0.143 6 6 25
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Table 6. Overall ranking of criteria based on AMI & Spearman’s Correlation on the synthetic benchmarks with the
same parameters as in Table 4 but much higher mixing parameter, .7. We can see that in these settings, PB indexes
outperform modularity Q.

Rank Criterion AMIcorr ARI Jaccard NMI
1 PB PCD 0.454±0.15 1 1 1
2 PB NOD 0.448±0.146 2 2 2
3 PB SPD 0.445±0.144 3 3 4
4 PB ARD 0.44±0.149 4 4 5
5 VRC ICD 0.424±0.117 5 5 3
6 Q 0.391±0.381 17 6 12
7 CIndex ARD 0.365±0.173 6 7 6
8 ASWC4 SPD 0.358±0.101 12 12 7
9 DB PCD 0.358±0.108 15 9 10
10 ASWC4 NOD 0.357±0.114 10 10 8


