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Zäıane · Ricardo J. G. B. Campello

the date of receipt and acceptance should be inserted later

Abstract Grouping data points is one of the fundamental tasks in data min-
ing, which is commonly known as clustering if data points are described by
attributes. When dealing with interrelated data that is represented in the form
of nodes and their relationships and the grouping is based on these relation-
ships but not the node attributes, this task is also referred to as community
mining. There has been a considerable number of approaches proposed in re-
cent years for mining communities in a given network. However, little work has
been done on how to evaluate the community mining algorithms. The common
practice is to evaluate the algorithms based on their performance on standard
benchmarks for which we know the ground-truth. This technique is similar
to external evaluation of attribute-based clustering methods. The other two
well-studied clustering evaluation approaches are less explored in the commu-
nity mining context; internal evaluation to statistically validate the clustering
result, and relative evaluation to compare alternative clustering results. These
two approaches enable us to validate communities discovered in a real world
application, where the true community structure is hidden in the data. In
this article, we investigate different clustering quality criteria applied for rel-
ative and internal evaluation of clustering data points with attributes, and
also different clustering agreement measures used for external evaluation; and
incorporate proper adaptations to make them applicable in the context of in-
terrelated data. We further compare the performance of the proposed adapted
criteria in evaluating community mining results in different settings through
extensive set of experiments.
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1 Introduction

Data Mining is the analysis of large scale data to discover meaningful patterns
such as groups of data records (cluster analysis), unusual records (anomaly
detection) or dependencies (association rule mining) which are crucial in a
very broad range of applications. It is a multidisciplinary field that involves
methods at the intersection of artificial intelligence, machine learning, statistics
and database systems. The recent growing trend in the Data Mining field is the
analysis of structured/interrelated data, motivated by the natural presence of
relationships between data points in a variety of the present-day applications.
The structures in these interrelated data are typically modeled by a graph of
interconnected nodes, known as complex networks or information networks.
Examples of such networks are hyperlink networks of web pages, citation or
collaboration networks of scholars, biological networks of genes or proteins,
trust and social networks of humans among others.

All these networks exhibit common statistical properties, such as power
law degree distribution, small-world phenomenon, relatively high transitivity,
shrinking diameter, and densification power laws. Network clustering, a.k.a.
community mining, is one of the principal tasks in the analysis of complex
networks. Many community mining algorithms have been proposed in recent
years: for surveys refer to Fortunato (2010), Porter et al. (2009). These al-
gorithms evolved very quickly from simple heuristic approaches to more so-
phisticated optimization based methods that are explicitly or implicitly trying
to maximize the goodness of the discovered communities. The broadly used
explicit maximization objective is the modularity introduced by Newman and
Girvan (2004).

Although there have been many methods proposed for community min-
ing, very little research has been done to explore evaluation and validation
methodologies. Similar to the well-studied clustering validity methods in the
Machine Learning field, we have three classes of approaches to evaluate com-
munity mining algorithms; external, internal and relative evaluation. The first
two are statistical tests that measure the degree to which a clustering confirms
a-priori specified scheme. The third approach compares and ranks clusterings
of a same dataset discovered by different parameter settings (Halkidi et al.
2001). In this article, we investigate the evaluation approaches of community
mining algorithms, considering this same classification.

External evaluation involves comparing the discovered clustering with a
prespecified structure, often called ground-truth, using a clustering agreement
measure such as Jaccard, Adjusted Rand Index, or Normalized Mutual In-
formation. In the case of attribute-based data, clustering similarity measures
are not only used for evaluation, but also applied to determine the number of
clusters in a data set, or to combine different clustering results and obtain a
consensus clustering i.e. ensemble clustering (Vinh et al. 2010). In the interre-
lated data context, these measures are used commonly for external evaluation
of community mining algorithms, where the performance of the algorithms are
examined on standard benchmarks for which we know the true communities
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(Chen et al. 2009b, Danon et al. 2005, Lancichinetti and Fortunato 2009, Or-
man et al. 2011). In Section 3.2 of this article, we overview the well-known
clustering agreement measures and elaborate on the considerations of using
them for community mining evaluation.

There are few and typically small real world benchmarks with known com-
munities available for external evaluaion of community mining algorithms,
while the current synthetic benchmark generators used for generating bench-
marks with built-in ground-truth, overlook some characteristics of the real net-
works (Orman and Labatut 2010). Moreover, in a real-world application, the
interesting communities that need to be discovered are hidden in the structure
of the network, thus, the discovered communities can not be validated based
on the external evaluation. These facts motivate investigating the other two
alternatives approaches – internal and relative evaluation.

Internal evaluation techniques verify whether the clustering structure pro-
duced by a clustering algorithm matches the underlying structure of the data,
using only information inherent in the data. These techniques are based on
an internal criterion that measures the correlation between the structure of
the data, represented as a proximity matrix1, and the discovered clustering
structure. The significance of this correlation is examined statistically based
on the distribution of the defined criteira, which is usually not known and is
estimated using Monte Carlo sampling method (Theodoridis and Koutroum-
bas 2009). An internal criterion can also be considered as a quality index
to compare different clusterings which overlaps with relative evaluation tech-
niques. The well-known modularity of Newman (2006) can be considered as
such, which is used both to validate a single community mining result and
also to compare different community mining results (Clauset 2005, Rosvall
and Bergstrom 2007). Modularity is defined as the fraction of edges within
communities, i.e. the correlation of adjecency matrix and the clustering struc-
ture, minus the expected value of this fraction that is computed based on the
configuration model (Newman 2006).

Relative evaluation compares alternative clustering structures based on an
objective function or quality index. This evaluation approach is the least ex-
plored in the community mining context. Defining an objective function to
evaluate community mining is non-trivial. Aside from the subjective nature of
the community mining task, there is no formal definition on the term commu-
nity. Consequently, there is no consensus on how to measure “goodness” of the
discovered communities by a mining algorithm. Nevertheless, the well-studied
clustering methods in the Machine Learning field are subject to similar issues
and yet there exists an extensive set of validity criteria defined for clustering
evaluation, such as Davies-Bouldin index (Davies and Bouldin 1979), Dunn
index (Dunn 1974), and Silhouette (Rousseeuw 1987); for a recent survey re-
fer to Vendramin et al. (2010). In Section 3.1 of this article, we describe how
these criteria could be adapted to the context of community mining in order to

1 A square matrix in which the entry in cell (j, k) is some measure of the similarity (or
distance) between the items i, and j.
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compare results of different community mining algorithms. Also, these criteria
can be used as alternatives to modularity to design novel community mining
algorithms.

In the following, we first briefly introduce well-known community mining
algorithms, and common evaluation practices including available benchmarks.
Next, we overview the clustering validity criteria and clustering similarity mea-
sures and propose proper adaptions these measures require to handle compar-
ison of community mining results. Then, we extensively compare and discuss
the adapted criteria on real and synthetic networks. Finally, we conclude with
a brief analysis of these results.

2 Related Work

A community is roughly defined as “densely connected” individuals that are
“loosely connected” to others outside their group. A great number of com-
munity mining algorithms have been developed in the last few years having
different interpretations of this definition. Basic heuristic approaches mine
communities by assuming that the network of interest divides naturally into
some subgroups, determined by the network itself. For instance, the Clique
Percolation Method (Palla et al. 2005) finds groups of nodes that can be
reached via chains of k-cliques. The common optimization approaches mine
communities by maximizing the overall “goodness” of the result. The most
credible “goodness” objective is known as modularity Q, proposed in (New-
man and Girvan 2004), which considers the difference between the fraction
of edges that are within the communities and the expected such fraction if
the edges are randomly distributed. Several community mining algorithms for
optimizing the modularity Q have been proposed, such as fast modularity
(Newman 2006), and Max-Min modularity (Chen et al. 2009b). Furthermore,
for large networks in which the global information is not available or computa-
tionaly expensive, local community mining algorithms based on local versions
of this measure are developed. Local modularity M (Luo et al. 2008), and local
modularity L (Chen et al. 2009a), are local variants of modularity Q, where
the ratio of internal and external edges is calculated by identifying boundary
nodes of a detected local community. Although many mining algorithms are
based on the concept of modularity, Fortunato and Barthélemy (2007) have
shown that the modularity cannot accurately evaluate small communities due
to its resolution limit. Hence, any algorithm based on modularity is biased
against small communities. As an alternative to optimizing modularity Q, we
previously proposed TopLeaders community mining approach (Rabbany et al.
2010), which implicitly maximizes the overall closeness of followers and lead-
ers, assuming that a community is a set of followers congregating around a
potential leader. There are many other alternative methods. One notable fam-
ily of approaches mine communities by utilizing information theory concepts
such as compression e.g. Infomap (Rosvall and Bergstrom 2008), and entropy
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e.g. entropy-base (Kenley and Cho 2011). For a survey on different community
mining techniques refer to (Fortunato 2010).

Fortunato (2010) shows that the different community mining algorithms
discover communities from different perspective and may outperform others
in specific classes of networks and have different computational complexities.
Therefore, an important research direction is to evaluate and compare the re-
sults of different community mining algorithms, and select the one providing
more meaningful clustering for each class of networks. An intuitive practice is
to validate the results partly by a human expert (Luo et al. 2008). However,
the community mining problem is NP-complete; the human expert validation
is limited and based on narrow intuition rather than on an exhaustive exami-
nation of the relations in the given network, specially for large real networks.

To validate the result of a community mining algorithm, three approaches
are available; external evaluation, internal evaluation, and relative evaluation.
The external evaluation technique measures the degree of correspondence be-
tween the known and true clustering (i.e. ground-truth) of the underlying
dataset and the clustering that results after applying a specific community
mining algorithm to the dataset. To measure agreement between two cluster-
ings, a clustering agreement measure should be used. Two main families of
agreement measures are available: 1) pair counting approaches that rely on
counting pairs of items on which two clusterings agree or disagree. (e.g. Jac-
card); 2) information theoretic approaches that are based on measuring the
information shared by two clusterings (e.g. Normalized Mutual Information
(NMI)).

The external evaluation requires knowing the true communities, however,
for almost all real-world networks, the true communities are unknown and need
to be discovered by the community mining algorithms. Therefore, to validate
different community mining algorithms, we mainly apply external evaluation
on two cases: 1) real benchmark datasets with known community structure; 2)
synthetic networks with built-in ground-truth. In the literature, there are very
few typically small real-world datasets that their true communities are known
such as Karate Club by Zachary (Zachary 1977), Sawmill Strike data-set (Nooy
et al. 2004), NCAA Football Bowl Subdivision (Girvan and Newman 2002),
and Politician Books from Amazon (Krebs 2004). The standard procedure is
to assess the agreement between the communities discovered by an algorithm
and the true communities on these real dataset.

To synthesize networks with built-in ground truth, several generators are
proposed. GN benchmark (Girvan and Newman 2002) is the first synthetic
network generator. This benchmark is a graph with 128 nodes, with expected
degree of 16, and is divided into four groups of equal sizes; where the prob-
abilities of the existence of a link between a pair of nodes of the same group
and of different groups are zin and 1−zin, respectively. However, the same ex-
pected degree for all the nodes, and equal-size communities are not accordant
to real social network properties. LFR benchmark (Lancichinetti et al. 2008)
amends GN benchmark by considering power law distributions for degrees and
community sizes. Similar to GN benchmark, each node shares a fraction 1−µ
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of its links with the other nodes of its community and a fraction µ with the
other nodes of the network. However, having the same mixing parameter µ
for all nodes, and not satisfying the densification power laws and heavy-tailed
distribution are the main drawback of this benchmark. After generating syn-
thetic networks with built-in community structure using any of the network
generators, the accuracy of a community mining algorithm is then determined
by comparing the discovered communities with the ground-truth.

There are recent studies on the external evaluation of different community
mining algorithms. Gustafsson et al. (2006) compare hierarchical and k-means
community mining on real networks and also synthetic networks generated by
the GN benchmark. Lancichinetti and Fortunato (2009) compare a total of
a dozen community mining algorithms. The performance of the algorithms is
compared against the network generated by both GN and LFR benchmark.
Orman et al. (2011) compare a total of five community mining algorithms
on the synthetic networks generated by LFR benchmark. They first assess
the quality of the different algorithms by their difference with the ground
truth. Then, they perform a qualitative analysis of the identified communities
by comparing their size distribution with the community size distribution of
the ground truth. However, none of the mentioned work focus on comparing
different clustering agreement measures in the context of interrelated data.
Thus, in this paper we overview different agreement measures existing in the
literature, and also provide an alternative measure which works better on
interrelated data.

Internal evaluation is the second approach to validate different commu-
nity mining algorithms. This technique validates the significance of correlation
between the discovered community structure and the structural information
inherent in the data. The structural information usually infers from proxim-
ity matrix (similarity or distance matrix), thus, a common practice here is to
measure the correlation between the detected communities and the proximity
matrix using Monte Carlo Sampling method. The internal evaluation of differ-
ent community mining algorithms is studied in (Leskovec et al. 2010). They
propose network community profile (NCP) that characterizes the quality of
communities as a function of their size. The quality of the community at each
size is characterized by the notion of conductance which is the ratio between
the number of edges inside the community and the number of edges leav-
ing the community. Then, they compared the shape of the NCP for different
algorithms over random and real networks.

The external and internal evaluation are both statistical approaches and re-
quire prior knowledge on the community structure or the properties inherent in
the network. Relative evaluation, is a different approach that does not depend
on prior knowledge. Here, a set of community mining algorithms is considered
and the goal is to choose the best one according to a predefined objective
function - criterion. In the context of interrelated data, up to now, mainly
modularity Q is used as objective function to compare different community
mining algorithms with each other (Rosvall and Bergstrom 2007). Therefore,
in this article, we investigate other potential validity criteria for comparing
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different (non-overlapping) community mining results and examine the per-
formance of these measures parallel to the modularity Q. In the future, these
criteria not only can be used as a means to measure the goodness of discovered
communities, but also as an objective function to detect communities.

3 Evaluation of Community Mining Results

In this section, we elaborate on how to evaluate results of a community min-
ing algorithm based on external and relative evaluation. External evaluation
of community mining results involves comparing the discovered communities
with a prespecified community structure, often called ground truth, using a
clustering agreement measure, while the relative evaluation ranks different
alternative community structures based on an objective function – quality in-
dex (Theodoridis and Koutroumbas 2009). To be consistent with the terms
used in attribute-based data, we use clustering to refer to the result of any
community mining algorithm, and partitioning to refer to the case where the
communities are mutually exclusive. Note that, in this study we only focus
on non-overlapping community mining algorithms that always produce dis-
joint communities. Thus, in the definition of the following quality criteria and
agreement measures, partitioning is used instead of clustering which implies
that the these are only applicable in the case of mutually exclusive commu-
nities. In the rest, we first overview relative community quality criteria, then
describe different clustering agreement measures.

3.1 Community Quality Criteria

Here, we overview several validity criteria that could be used as relative in-
dexes for comparing and evaluating different partitionings of a given network.
All of these criteria are generalized from well-known clustering criteria. The
clustering quality criteria are originally defined with the implicit assumption
that data points consist of vectors of attributes. Consequently their defini-
tion is mostly integrated or mixed with the definition of the distance measure
between data points. The commonly used distance measure is the Euclidean
distance, which cannot be defined for graphs. Therefore, we first review dif-
ferent possible proximity measures that could be used in graphs. Then, we
present generalizations of criteria that could use any notion of proximity.

3.1.1 Proximity Between Nodes

Let A denote the adjacency matrix of the graph, and let Aij be the weight
of the edge between nodes ni and nj . The proximity between ni and nj ,
pij = p(i, j), can be computed by one of the following distance or similarity
measures. The latter is more typical in the context of interrelated data, there-
fore, we tried to plug-in similarities in the relative criteria definitions. When
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it is not straightforward, we used the inverse of the similarity index to obtain
the according dissimilarity/distance2.

Shortest Path (SP): distance between two nodes is the length of the
shortest path between them, which could be computed using the well-known
Dijkstra’s Shortest Path algorithm.

Adjacency (A): similarity between the two nodes ni and nj is considered
their incident edge weight, pAij = Aij ; accordingly, the distance between these
nodes is derived as:

dAij = M − pAij
where M is the maximum edge weight in the graph; M = Amax = maxij Aij .

Adjacency Relation (AR): distance between two nodes is their struc-
tural dissimilarity, that is computed by the difference between their immediate
neighbourhoods (Wasserman and Faust 1994):

dARij =

√∑
k 6=j,i

(Aik −Ajk)2

This definition is not affected by the (non)existence of an edge between the
two nodes. To remedy this, Augmented AR (ÂR) can be defined as;

dÂRij =

√∑
k

(Âik − Âjk)2

where Âij is equal to Aij if i 6= j and Amax otherwise.

Neighbour Overlap (NO): similarity between two nodes is the ratio of
their shared neighbours (Fortunato 2010):

pNOij = |ℵi ∩ ℵj |/|ℵi ∪ ℵj |

where ℵi is the set of nodes directly connected to ni, ℵi = {nk|Aik 6= 0}. The
corresponding distance is derived as dNOij = 1− pNOij .

There is a close relation between this measure and the previous one, since
dAR can also be computed as:

dARij =
√
|ℵi ∪ ℵj | − |ℵi ∩ ℵj |

while dÂRij is also derived from the same formula, if neighbourhoods are con-

sidered closed, i.e. ℵ̂i = {nk|Âik 6= 0}. We also consider the closed neighbour

overlap similarity, pN̂O, with the same analogy that two nodes are more similar

if directly connected. The closed overlap similarity, pN̂O, could be rewritten

2 For avoiding division by zero, when Pij is zero, if it is a similarity ε and if it is distance
1/ε is returned, where ε is a very small number, 10E-9.
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in terms of the adjacency matrix which can be straightforwardly generalized
for weighted graphs.

pN̂Oij =

∑
k ÂikÂjk∑

k [Â2
ik + Â2

jk − ÂikÂjk]

p
ˆNOV

ij =

∑
k (Âik + Âjk)(Âik + Âjk)−

∑
k (Âik − Âjk)(Âik − Âjk)∑

k (Âik + Âjk)(Âik + Âjk) +
∑
k (Âik − Âjk)(Âik − Âjk)

Topological Overlap (TP): similarity measures the normalized overlap size

of the neighbourhoods (Ravasz et al. 2002), which we generalize as:

pTPij =

∑
k 6=j,i (AikAjk) +A2

ij

min(
∑
k A

2
ik,
∑
k A

2
jk)

and the corresponding distance is derived as dTOij = 1− pTOij .

Pearson Correlation (PC): coefficient between two nodes is the corre-
lation between their corresponding rows of the adjacency matrix:

pPCij =

∑
k (Aik − µi)(Ajk − µj)

Nσiσj

where N is the number of nodes, the average µi = (
∑
k Aik)/N and the vari-

ance σi =
√∑

k (Aik − µi)2/N . This correlation coefficient lies between −1
(when the two nodes are most similar) and 1 (when the two nodes are most
dissimilar). Most relative clustering criteria are defined assuming distance is
positive, therefore we also consider the normalized version of this correlation,
i.e. pNPC = (pPCij + 1)/2. Then, the distance between two nodes is computed

as d
(N)PC
ij = 1− p(N)PC

ij .

In all the above proximity measures, the iteration over all other nodes can
be limited to iteration over the nodes in the union of neighbourhoods. More
specifically, in the formulas, one can use

∑
k∈ℵ̂i∪ℵ̂j instead of

∑N
k=1. This

will make the computation local and more efficient, especially in case of large
networks. This trick will not work for the current definition of the pearson
correlation, however, it can be applied if we reformulate it as follows:

pPCij =

∑
k AikAjk − (

∑
k Aik)(

∑
k Ajk)/N√

((
∑
k A

2
ik)− (

∑
k Aik)2/N)((

∑
k A

2
jk)− (

∑
k Ajk)2/N)

We also consider this correlation based on Â, pP̂C , so that the existence of an
edge between the two nodes, increases their correlation3.

3 Note that since we are assuming a self edge for each node, N̂ = N + 1 should be used.
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The above formula can be further rearranged as follows:

pPCij =

∑
k

[
AikAjk − (

∑
k′ Aik′)(

∑
k′ Ajk′)/N

2
]

√
(
∑
k

[
A2
ik − (

∑
k′ Aik′)

2/N2
]
)(
∑
k

[
A2
jk − (

∑
k′ Ajk′)

2/N2
]
)

Where if the k iterates over all nodes, it is equal to the original pearson
correlation; however, this is not true if it only iterates over the union of neigh-
bourhoods,

∑
k∈ℵ̂i∪ℵ̂j , which we call pearson overlap (NPO).

Number of Paths (NP): between two nodes is the sum of all the paths
between them, which is a notion of similarity. For the sake of time complexity,
we consider paths of up to a certain number of hops i.e. 2 and 3. The number
of paths of length l between nodes ni and nj can be computed as nplij = (Al)ij .
More specifically we have:

np1ij = Aij , np2ij =
∑
k

AikAjk, np3ij =
∑
kl

AikAklAjl

where pNP is defined as a combination these; pNP
2

= np1 + np2 and pNP
3

=
np1 + np2 + np3. We also considered two alternatives for this combination;

pNP
3
L = np1 +

np2

2
+
np3

3
, and pNP

3
E = np1 + 2

√
np2 + 3

√
np3

Modularity (M): similarity is defined inspired by the Modularity of New-
man (2006) as:

pMij = Aij −
(
∑
k Aik)(

∑
k Ajk)∑

klAkl

pMD
ij =

Aij
(
∑

k
Aik)(

∑
k
Ajk)∑

kl
Akl

The distance is derived as 1− pM(D).

ICloseness (IC): similarity between two nodes is computed as the inverse
of the connectivity between their scored neighbourhoods:

pICij =

∑
k∈ℵi∩ℵj

ns(k, i)ns(k, j)∑
k∈ℵi

ns(k, i)2 +
∑
k∈ℵj

ns(k, j)2 −
∑

k∈ℵi∩ℵj
ns(k, i)ns(k, j)

pICVij =
a− b
a+ b

a =
∑

k∈ℵ̂i∪ℵ̂j

(ns(k, i) + ns(k, j))(ns(k, i) + ns(k, j))

b =
∑

k∈ℵ̂i∪ℵ̂j

(ns(k, i)− ns(k, j))(ns(k, i)− ns(k, j))
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where ns(k, i) denotes the neighbouring score between nodes k and i that is
computed iteratively; for complete formulation refer to (Rabbany and Zäıane
2011)4. The distance is then derived as dIC(V ) = 1− pIC(V ).

3.1.2 Community Centroid

In addition to the notion of proximity measure, most of the cluster validity
criteria use averaging between the numerical data points to determine the cen-
troid of a cluster. The averaging is not defined for nodes in a graph, therefore
we modify the criteria definitions to use a generalized centroid notion, in a way
that, if the centroid is set as averaging, we would obtain the original criteria
definitions, but we could also use other alternative notions for centroid of a
group of data points. Averaging data points results in a point with the least
average distance to the other points. When averaging is not possible, using
medoid is the natural option, which is perfectly compatible with graphs. More
formally, the centroid of the community C can be obtained as the medoid:

C = arg min
m∈C

∑
i∈C

d(i,m)

3.1.3 Relative Validity Criteria

Here, we present our generalizations of well-known clustering validity criteria
defined as quality measures for internal or relative evaluation of clustering
results. All these criteria are originally defined based on distances between
data points, which is in all cases the Euclidean or other inner product norms
of difference between their vectors of attributes; refer to (Vendramin et al.
2010) for comparative analysis of these criteria in the clustering context. We
alter the formulae to use a generalized distance, so that we can plug in our
graph proximity measures. The other alteration is generalizing the mean over
data points to a general centroid notion, which can be set as averaging in the
presence of attributes and the medoid in our case of dealing with graphs and
in the absence of attributes.

In a nutshell, in every criterion, the average of points in a cluster is replaced
with a generalized notion of centroid (Section 3.1.2), and distances between
data points are generalized from Euclidean/norm to a generic distance (Section
3.1.1). Consider a partitioning C = {C1∪C2∪ ...∪Ck} of N data points, where
C denotes the centroid of data points belonging to C. The quality of C can
be measured using one of the following criteria.

Variance Ratio Criterion (VRC): measures the ratio of the between-
cluster/community distances to within-cluster/community distances which could

4 In Icloseness, the neighbourhood is defined with a depth; here we consider 3 variations:
direct neighbourhood (IC1), neighbourhood of depth 2 i.e. neighbours up to one hop apart
(IC2) and up to two hops apart (IC3).
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be generalized as follows:

V RC =

∑k
l=1 |Cl|d(Cl, C)∑k
l=1

∑
i∈Cl d(i, Cl)

× N − k
k − 1

where Cl is the centroid of the cluster/community Cl, and C is the centroid of
the entire data/network. The original clustering formula proposed by Calinski
and Harabasz (1974) for attributes vectors is obtained if the centroid is fixed
to averaging of vectors of attributes and distance to (square of) Euclidean
distance. Here we use this formula with one of the proximity measures men-
tioned in Section 3.1.1; if it is a similarity measure, we either transform the
similarity to its distance form and apply the above formula, or we use it di-
rectly as a similarity and inverse the ratio to within/between while keeping
the normalization, the latter approach is distinguished in the experiments as
V RC ′.

Davies-Bouldin index (DB): calculates the worst-case within-cluster to
between-cluster distances ratio averaged over all clusters/communities (Davies
and Bouldin 1979):

DB =
1

k

k∑
l=1

max
m 6=l

((dl + dm)/d(Cl, Cm)) , dl =
1

|Cl|
∑
i∈Cl

d(i, Cl)

If used directly with a similarity measure, we change the max in the formula
to min and the final criterion becomes a maximizer instead of minimizer, which
is denoted by DB′.

Dunn index : considers both the minimum distance between any two clus-
ters/communities and the length of the largest cluster/community diameter
(i.e. the maximum or the average distance between all the pairs in the clus-
ter/community) (Dunn 1974):

Dunn = min
l 6=m
{ δ(Cl, Cm)

maxp∆(Cp)
}

where δ denotes distance between two communities and ∆ is the diameter of a
community. Different variations of calculating δ and ∆ are available; δ could be
single, complete or average linkage, or only the difference between the two cen-
troids. Moreover, ∆ could be maximum or average distance between all pairs of
nodes, or the average distance of all nodes to the centroid. For example, the sin-
gle linkage for δ and maximum distance for ∆ are δ(Cl, Cm) = min

i∈Cl,j∈Cm
d(i, j)

and ∆(Cp) = max
i,j∈Cp

d(i, j). Therefore, we have different variations of Dunn in-

dex in our experiments, each indicated by two indexes for different methods
to calculate δ (i.e. single(0), complete(1), average(2), and centroid(3)) and
different methods to calculate ∆ (i.e. maximum(0), average(1), average to
centroid(3)).
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Silhouette Width Criterion (SWC): measures the average silhouette
scores, which is computed individually for each data point. The silhouette
score of a point shows the goodness of the assignment of this point to the
community it belongs to, by calculating the normalized difference between the
distance to its nearest neighbouring community and the distance to its own
community (Rousseeuw 1987). Taking the average one has:

SWC =
1

N

k∑
l=1

∑
i∈Cl

min
m 6=l

d(i, Cm)− d(i, Cl)

max {min
m6=l

d(i, Cm), d(i, Cl)}

where d(i, Cl) is the distance of point i to community Cl, which is originally set
to be the average distance (called SWC0) (i.e. 1/|Cl|

∑
j∈Cl d(i, j)) or could

be the distance to its centroid (called SWC1) (i.e. d(i, Cl)). An alternative
formula for Silhouette is proposed in (Vendramin et al. 2010) :

ASWC =
1

N

k∑
l=1

∑
i∈Cl

min
m 6=l

d(i, Cm)

d(i, Cl)

Similar to DB, if used directly with a similarity proximity measure, we
change the min to max and the final criterion becomes a minimizer instead of
maximizer, which is denoted by (A)SWC ′.

PBM : criterion is based on the within-community distances and the max-
imum distance between centroids of communities(Pakhira and Dutta 2011):

PBM =
1

k
× maxl,m d(Cl, Cm)

k∑
l=1

∑
i∈Cl d(i, Cl)

Again similar to DB, here also if used directly with a similarity measure,
we change the max to min and consider the final criterion as a minimizer
instead of maximizer, which is denoted by PBM ′.

C-Index : criterion compares the sum of the within-community distances
to the worst and best case scenarios (Dalrymple-Alford 1970). The best case
scenario is where the within-community distances are the shortest distances
in the graph, and the worst case scenario is where the within-community dis-
tances are the longest distances in the graph.

CIndex =
θ −min θ

max θ −min θ
, θ =

1

2

k∑
l=1

∑
i,j∈Cl

d(i, j)

The min θ/max θ is computed by summing the Θ smallest/largest distances

between every two points, where Θ = 1
2

∑k
l=1 |Cl|(|Cl| − 1).

C-Index can be directly used with a similarity measure as a maximization
criterion, whereas with a distance measure it is a minimizer. This is also true
for the two following criteria.
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Z-Statistics: criterion is defined similar to C-Index (Hubert and Levin
1976):

ZIndex =
θ − E(θ)√
var(θ)

, d̄ =
1

N2

N∑
i=1

N∑
j=1

d(i, j)

E(θ) = Θ × d̄, V ar(θ) =
1

4

k∑
l=1

∑
i,j∈Cl

(d(i, j)− d̄)2

Point-Biserial (PB): This criterion computes the correlation of the dis-
tances between nodes and their cluster co-membership which is dichotomous
variable (Milligan and Cooper 1985). Intuitively, nodes that are in the same
community should be separated by shorter distances than those which are not:

PB =
M1 −M0

S

√
m1m0

m2

where m is the total number of distances i.e. N(N − 1)/2 and S is the stan-

dard deviation of all pairwise distances i.e.
√

1
m

∑
i,j(d(i, j)− 1

m

∑
i,j d(i, j))2,

while M1, M0 are respectively the average of within and between-community
distances, and m1 and m0 represent the number of within and between com-
munity distances. More formally:

m1 =

k∑
l=1

Nl(Nl − 1)

2
m0 =

k∑
l=1

Nl(N −Nl)
2

M1 = 1/2

k∑
l=1

∑
i,j∈Cl

d(i, j) M0 = 1/2

k∑
l=1

∑
i∈Cl
j /∈Cl

d(i, j)

Modularity : Modularity is the well-known criterion proposed by Newman
et al. (Newman and Girvan 2004) specifically for the context of community
mining. This criterion considers the difference between the fraction of edges
that are within the community and the expected such fraction if the edges
were randomly distributed. Let E denote the number of edges in the network
i.e. E = 1

2

∑
ij Aij , then Q-modularity is defined as:

Q =
1

2E

k∑
l=1

∑
i,j∈Cl

[Aij −
∑
j Aij

∑
iAij

2E
]

The computational complexity of different validity criteria is provided in
the previous work by Vendramin et al. (2010).
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3.2 Clustering Agreement Measures

Here, we formally review different well-studied partitioning agreement mea-
sures used in the external evaluation of clustering results. Consider two dif-
ferent partitionings U and V of data points in D. There are several measures
to examine the agreement between U and V , originally introduced in the
Machine Learning field. These measures assume that the partitionings are dis-
joint and cover the dataset. More formally, consider D consist of n data items,
D = {d1, d2, d3 . . . dn} and let U = {U1, U2 . . . Uk} denotes the k clusters in U
then D = ∪ki=1Ui and Ui ∩ Uj = ∅ ∀i 6= j.

3.2.1 Pair Counting Based Measures

Clustering agreement measures are originally introduced based on counting
the pairs of data items that are in the same/different partitions in U and
V . Generally, each pair (di, dj) of data items is classified into one of these
four groups based on their co-membership in U and V ; which results in the
following four pair counts:

V \U Same Different

Same M11 M10

Different M01 M00

These pair counts can be translated considering the contingency table (Hu-
bert and Arabie 1985). The contingency table, consists of all the possible
overlaps between each pair of clusters in U and V , where nij = |Ui ∩ Vj | and
ni. =

∑
j nij . Considering the contingency table, we could compute the pair

counts using following formulae.

V1 V2 . . . Vr sums

U1 n11 n12 . . . n1r n1.

U2 n21 n22 . . . n2r n2.

...
...

...
. . .

...
...

Uk nk1 nk2 . . . nkr nk.

sums n.1 n.2 . . . n.r n

M10 =
k∑
i=1

(
ni.
2

)
−

k∑
i=1

r∑
j=1

(
nij
2

)
, M01 =

r∑
j=1

(
n.j
2

)
−

k∑
i=1

r∑
j=1

(
nij
2

)

M11 =

k∑
i=1

r∑
j=1

(
nij
2

)
, M00 =

(
n

2

)
+

k∑
i=1

r∑
j=1

(
nij
2

)
−

k∑
i=1

(
ni.
2

)
−

r∑
j=1

(
n.j
2

)
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These pair counts have been used to define a variety of different clustering
agreement measures. In the following, we briefly explain the most common
pair counting measures; the reader can refer to Albatineh et al. (2006) for a
recent survey.

Jaccard : similarity coefficient measures similarity of two sets as the frac-
tion of their intersection to their union. If we consider co-membership of data
points in the same or different clusters as a binary variable, Jaccard agreement
between co-memberships in clustering U and V is defined as follows (Manning
et al. 2008):

J =
M11

M01 +M10 +M11

Rand Index : is defined similar to Jaccard, but it also prizes the pairs
that belong to different clusters in both partitioning (Manning et al. 2008):

RI =
M11 +M00

M11 +M01 +M10 +M00

= 1 +
1

n2 − n
(2

k∑
i=1

r∑
j=1

n2ij − (

k∑
i=1

n2i. +

r∑
j=1

n2.j))

F-measure: is a weighted mean of the precision (P ) and recall (R) (Man-
ning et al. 2008) defined as:

Fβ =
(β2 + 1)PR

β2P +R
, P =

M11

M11 +M10
, R =

M11

M11 +M01

The parameter β indicates how much recall is more important than pre-
cision. The two common values for β are 2 and .5; the former weights recall
higher than precision while the latter prizes the precision more.

3.2.2 Information Theoretic Based Measures

There is also a family of information theoretic based measures defined based
on Mutual Information between the two clusterings. These measures con-
sider the cluster overlap sizes of U and V , nij , as a joint distribution of two
random variables – the cluster memberships in U and V . Then, entropy of
cluster U (H(U)), joint entropy of U and V (H(U, V )), and their mutual
information(I(U, V )) are defined as follows; based on which several clustering
agreements have been derived.

H(U) = −
k∑
i=1

ni.
n

log(
ni.
n

) , H(V ) = −
r∑
j=1

n.j
n

log(
n.j
n

)

H(U, V ) = −
k∑
i=1

r∑
j=1

nij
n

log(
nij
n

) , I(U, V ) =

k∑
i=1

r∑
j=1

nij
n

log(
nij/n

ni.n.j/n2
)
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Variation of Information (VI): is specifically proposed for comparing
two different clusterings as (Meil 2007):

V I(U, V ) =

k∑
i=1

r∑
j=1

nij
n

log(
ni.n.j/n

2

n2ij/n
2

)

All the pair counting measures defined previously have a fixed range of [0, 1],
i.e. are normalized. The above information theoretic definitions however are
not normalized; the mutual information for example, ranges between (0, logk],
while the range for variation of information is [0, 2 log max(k, r)] (Wu et al.
2009). Therefore, to be suitble for comparing different clusterings, the mutual
information has been normalized in several different ways (Vinh et al. 2010):

Normalized Mutual Information (NMI): is defined in several ways
(Vinh et al. 2010), while the followings are are the most commonly used forms:

NMIsum =
2I(U, V )

H(U) +H(V )
, NMIsqrt =

I(U, V )√
H(U)H(V )

Vinh et al. (2010) discussed another important property that a proper clus-
tering agreement measure should comply with: correction for chance, which is
adjusting the agreement index in a way that the expected value for agreements
no better than random becomes a constant, e.g. 0. As an example, consider
that the agreement between a clustering and the ground-truth is measured as
.7; if the measure is not adjusted for chance and its baseline varies for agree-
ments at random – the baseline may be .6 in one settings or .2 in another;
in this case the .7 value, can not be interpreted directly as strong or weak
agreement without knowing the baseline.

None of the measures we have talked about so far are adjusted to have a
constant baseline value or in other words, are not corrected for chance. The
adjustment is done based on the bound on the index and its expected value,
E(index), mostly in the following way (Hubert and Arabie 1985):

adjusted index =
index− E(index)

Max(index)− E(index)

Adjusted Rand Index : is the adjusted version of Rand Index (ARI)
which is proposed by Hubert and Arabie (1985), which returns 0 for agreements
no better than random and ranges between [−1, 1].

ARI =

k∑
i=1

r∑
j=1

(
nij
2

)
−

k∑
i=1

(
ni.
2

) r∑
j=1

(
n.j
2

)
/
(
n
2

)
1/2[

k∑
i=1

(
ni.
2

)
+

r∑
j=1

(
n.j
2

)
]−

k∑
i=1

(
ni.
2

) r∑
j=1

(
n.j
2

)
/
(
n
2

)
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The necessity of correction for chance for the information theoretic based
measures has been discussed quite recently by Vinh et al. (2009; 2010). They
have shown that the unadjusted indexes such as the widely-used NMI, do not
have a constant baseline and in fact are biased in favor of large number of
clusters. We will illustrate this bias of the unadjusted indexes further in the
experiments.

Adjusted Mutual Information (AMI): is proposed by Vinh et al.
(2010) using the similar adjustment approach as the ARI, please refer to the
main source, or the supplementary materials for the exact formula. They have
shown that after correction for chance, the adjusted variation of information,
AV I, is equivalent to AMI when the 1/2(H(U)+H(V )) upper bound is used,
i.e.:

AV I = AMI =
I(U, V )− E(I(U, V ))

1/2(H(U) +H(V ))− E(I(U, V ))

3.2.3 Graph Agreement Measures

The result of a community mining algorithm is a set of sub-graphs. To also
consider the structure of these sub-graphs in the agreement measure, we first
define a weighted version of these measures; where nodes with more importance
affect the agreement measure more. Second, we alter the measures to directly
assess the structural similarity of these sub-graphs by focusing on the edges
instead of nodes.

More specifically, instead of nij = |Ui ∩ Vj |, we first use:

ηij =
∑

l∈Ui∩Vj

wl

where wl is the weight of item l. If we assume all items are weighted equally
as 1, then ηij = nij . Instead, we can consider weight of a node equal to its
degree in the graph. Using this degree weighted index can be more informa-
tive for comparing agreements between community mining results, since nodes
with different degrees have different importance in the network, and therefore
should be weighted differently in the agreement index. Another possibility
is to use the clustering coefficient of a node as its weight, so that nodes that
contribute to more triangles – have more connected neighbours – weight more.

Second, we consider the structure in a more direct way by counting the
edges that are common between Ui and Vj . More formally, we define;

ξij =
∑

k,l∈Ui∩Vj

Akl

which sums all the edges in the overlap of cluster Ui and Vj . Applying ξij
instead of nij , in the agreement measures defined above, is more appropriate
when dealing with inter-related data, since it takes into account the structural
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information of data i.e. the relationship between data points, whereas the
original agreement measures that completely overlook the existence of these
relationships, i.e edges. For more clarification see Figure 1.

(a) V (b) U1 (c) U2

Fig. 1 Example for the benefits of the altered agreement indexes for graphs. Partitioning U1

and U2 of the same graph with true partitioning V . Both partitionings have the exact same
contingency table with V , {{5, 0}{1, 3}}, and therefore the same agreement value regardless
of the agreement method used, however, U1 looks more similar to the true partitioning V ,
which is reflected in the adapted measure: in the degree weighted index, we have η(U1, V ) =
{{18, 0}{3, 9}} and η(U2, V ) = {{14, 0}{7, 9}}. And in the edge based measure we have
ξ(U1, V ) = {{6, 0}{0, 3}} and ξ(U2, V ) = {{4, 0}{0, 3}}.

4 Comparison Methodology and Results

In this section, we first describe the our experimental settings. Then, we exam-
ine behaviour of different external indexes in comparing different community
mining results. Next, we report the performances of the proposed community
quality criteria in relative evaluation of communities.

4.1 Experiment Settings

We have used three set of benchmarks as our datasets: Real, GN and LFR.
The Real dataset consists of five well-known real-world benchmarks: Karate
Club (weighted) by Zachary (Zachary 1977), Sawmill Strike data-set (Nooy
et al. 2004), NCAA Football Bowl Subdivision (Girvan and Newman 2002),
and Politician Books from Amazon (Krebs 2004). The GN and LFR datasets,
each include 10 realizations of the GN and LFR synthetic benchmarks (Lan-
cichinetti et al. 2008), which are the benchmarks widely in use for community
mining evaluation.

For each graph in our datasets, we generate different partitionings to sam-
ple the space of all possible partitionings. For doing so, given the perfect par-
titioning, we generate different randomized versions of the true partitioning
by randomly merging and splitting communities and swapping nodes between
them. The sampling procedure is described in more details in the supplemen-
tary materials. The set of the samples obtained covers the partitioning space
in a way that it includes very poor to perfect samples.
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4.2 Agreement Indexes Experiments

We have reviewed different agreement indexes used in external evaluation in
Section 3.2. Here we first examine two characteristics of general clustering
agreement indexes, then we illustrate our adopted indexes for graphs.

4.2.1 Bias of Unadjusted Indexes

In Figure 2, we show the bias of the unadjusted indexes, where the average
agreement of random partitionings to a true partitioning is plotted as a func-
tion of number of clusters5. We can see that the average agreement increases
for the unadjusted indexes when the number of clusters increases, while the
adjusted rand index, ARI, is unaffected. Interestingly, we do not observe the
same behaviour from AMI in all the datasets, while it is unaffected in football
and GN datasets (where k � N), it increases with the number of clusters in
the strike and karate dataset (where k � N is not true).

(a) Karate (b) Strike

(c) Football (d) GN

Fig. 2 Necessity of adjustment of external indexes for agreement at chance. Here we gener-
ated 100 sample partitionings for each k, then for each sample, we computed its agreement
with the true partitioning for that dataset. The average and variance of these agreements
are plotted as a function of the number of clusters. We can see that the unadjusted measures
of Rand, V I, Jaccard, Fmeasure and NMI tend to increase/decrease as the the number
of clusters in the random partitionings increases. While the Adjusted Rand Index (ARI) is
unaffected and always returns zero for agreements at random.

5 Similar to the experiment performed in (Vinh et al. 2010).



Communities Validity 21

(a) Karate (b) Strike

(c) Football (d) GN

Fig. 3 Behaviour of different external indexes around the true number of clusters. We can
see that the ARI exhibits a clear knee behaviour, i.e., its values are relatively lower for
partitionings with too many or too few clusters. While others such as NMI and Rand
comply less with this knee shape.

4.2.2 Knee Shape

Figure 3, illustrates the behaviour of these criteria on different fragmenta-
tions of the ground-truth as a function of the number of clusters. The ideal
behaviour is that the index should return relatively low scores for partition-
ings/fragmentations in which the number of clusters is much lower or higher
than what we have in the ground-truth. In this figure, we can see that ARI
exhibits this knee shape while NMI does not show this clearly. Table 1, re-
ports the average correlation of these external indexes over these four datasets.
Here we used the similar sampling procedure described before but we generate
merge and split versions separately, so that the obtained samples are fragmen-
tations of the ground-truth obtained from repeated merging or splitting. Refer
to the supplementary materials for the detailed sampling procedure.

There are different ways to compute the correlation between two vectors.
The classic options are Pearson Product Moment coefficient or the Spear-
man’s Rank correlation coefficient. The reported results in our experiments
are based on the Spearman’s Correlation, since we are interested on the cor-
relation of rankings that an index provides for different partitionings and not
the actual values of that index. However, the reported results mostly agree
with the results obtained by using Pearson correlation, which are reported in
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Index ARI Rand NMI VI Jaccard AMI Fβ=2
ARI 1 0.73±0.18 0.67±0.07 -0.80±0.17 0.85±0.08 0.76±0.15 0.64±0.16
Rand 0.73±0.18 1 0.83±0.12 -0.46±0.42 0.41±0.32 0.71±0.11 0.13±0.46
NMI 0.67±0.07 0.83±0.12 1 -0.43±0.27 0.31±0.17 0.93±0.07 0.04±0.10
VI -0.80±0.17 -0.46±0.42 -0.43±0.27 1 -0.93±0.02 -0.54±0.27 -0.82±0.21
Jaccard 0.85±0.08 0.41±0.32 0.31±0.17 -0.93±0.02 1 0.46±0.28 0.90±0.13
AMI 0.76±0.15 0.71±0.11 0.93±0.07 -0.54±0.27 0.46±0.28 1 0.25±0.13
Fβ=2 0.64±0.16 0.13±0.46 0.04±0.10 -0.82±0.21 0.90±0.13 0.25±0.13 1

Table 1 Correlation between external indexes averaged for datasets of Figure 3, computed
based on Spearman’s Correlation. Here we can see for example that ARI is behaves more
similar to, has a higher correlation with, Adjusted Mutual Information,AMI, compared to
Normalized Mutual Information, NMI.

Index ARI ξ ηwi=di
ηwi=ti

ηwi=ci
NMI

ARI 1±0 0.571±0.142 0.956±0.031 0.819±0.135 0.838±0.087 0.736±0.096
ξ 0.571±0.142 1±0 0.623±0.133 0.572±0.169 0.45±0.109 0.497±0.2
ηwi=di

0.956±0.031 0.623±0.133 1±0 0.876±0.097 0.777±0.106 0.787±0.094

ηwi=ti
0.819±0.135 0.572±0.169 0.876±0.097 1±0 0.848±0.056 0.759±0.107

ηwi=ci
0.838±0.087 0.45±0.109 0.777±0.106 0.848±0.056 1±0 0.6±0.064

NMI 0.736±0.096 0.497±0.2 0.787±0.094 0.759±0.107 0.6±0.064 1±0

Table 2 Correlation between adopted external indexes on karate and strike datasets, com-
puted based on Spearman’s Correlation. Here, ηwi=di , ηwi=ti , and ηwi=ci denote the
weighted ARI where each node is weighted respectively by, its degree, the number of tri-
angles it belongs to, or its clustering coefficient. The ξ, on the other hand, stands for the
structural agreement based on number of edges (see Section 3.2.3 for more details).

the supplementary materialsavailable from: http://cs.ualberta.ca/∼rabbanyk/
criteriaComparison.

4.2.3 Graph Partitioning Agreement Indexes

Finally, we examine the adopted versions of agreement measures described in
Section 3.2.3. Figure 4 shows the constant baseline of these adopted criteria
for agreements at random, and also the knee shape of the adopted measures
around the true number of clusters, same as what we have for the original
ARI. Therefore, one can safely apply one of these measures depending on the
application at hand. Table 2 summarizes the correlation between each pair of
the external measures.

In the following we compare the performance of different quality indexes,
defined in Section 3.1, in relative evaluation of clustering results.

4.3 Quality Indexes Experiments

The performance of a criterion could be examined by how well it could rank
different partitionings of a given dataset. More formally, consider we have a
dataset d and a set of m different possible partitionings, i.e.

P (d) = {pd1, pd2, . . . , pdm}

Then, the performance of criterion c on dataset d could be determined by how
much its values, Ic(d) = {c(pd1), c(pd2), . . . , c(pdm)}, correlate with the “good-
ness” of these partitionings. Assuming that the true partitioning (i.e. ground



Communities Validity 23

(a) Strike (b) Football

(c) Strike (d) Football

Fig. 4 Adopted agreement measures for graphs. On top we see that the adopted measures,
specially the weighted indexes by degree (di) and the number of triangles (ti), are adjusted
by chance, which can not be seen for the structural edge based version (ξ). The bottom
figures illustrate the perseverance of the knee behaviour in the adopted measures.

truth) p∗d is known for dataset d, the “goodness” of partitioning pdi could be
determined using partitioning agreement measure a. Hence, for dataset d with
set of possible partitionings P (d), the external evaluation provides E(d) =
{a(pd1, p

∗
d), a(pd2, p

∗
d), . . . , a(pdm, p

∗
d)}, where (pd1, p

∗
d) denotes the “goodness”

of partitioning pd1 comparing to the ground truth. Then, the performance score
of criterion c on dataset d could be examined by the correlation of its values
Ic(d) and the values obtained from the external evaluation E(d) on different
possible partitionings. Finally, the criteria are ranked based on their average
performance score over a set of datasets. The following procedure summarizes
our comparison approach.

D ← {d1, d2, . . . , dn}
for all dataset d ∈ D do
P (d)← {pd1, pd2, . . . , pdm} {generate m possible partitionings}
E(d)← {a(pd1, p

∗
d), a(pd2, p

∗
d), . . . , a(pdm, p

∗
d)} {compute the external scores}

for all c ∈ Criteria do
Ic(d)← {c(pd1), c(pd2), . . . , c(pdm)} {compute the internal scores }
scorec(d)← correlation(E, I) {compute the correlation }

end for
end for
scorec ← 1

n

∑n

d=1
scorec(d) {rank criteria based on their average scores}
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Table 3 Statistics for sample partitionings of each real world dataset. For example, for
the Karate Club dataset which has 2 communities in its ground truth, we have generated
100 different partitionings with average 3.82±1.51 clusters ranging from 2 to 7 and the
“goodness” of the samples is on average 0.29±0.26 in terms of their ARI agreement.

Dataset K∗ # K ARI
strike 3 100 3.2±1.08∈[2,7] 0.45±0.27∈[0.01,1]
polboks 3 100 4.36±1.73∈[2,9] 0.43±0.2∈[0.03,1]
karate 2 100 3.82±1.51∈[2,7] 0.29±0.26∈[-0.04,1]
football 11 100 12.04±4.8∈[4,25] 0.55±0.22∈[0.16,1]

(a) ZIndex with Topological Overlap (b) Q modularity

(c) Point-Biserial with Pearson Correlation (d) Silhouette with Modularity Proximity

Fig. 5 Visualization of correlation between an external agreement measure and some rela-
tive quality criteria for Karate dataset. The x axis indicates different random partitionings,
and the y axis indicates the value of the index. While, the blue/darker line represents the
value of the external index for the given partitioning and the red/lighter line represents the
value that the criterion gives for the partitioning. Please note that the value of criteria are
not generally normalized and in the same range as the external indexes, in this figure ARI.
For the sake of illustration therefore, each criterion’s values are scaled to be in the same
range as of the external index.

4.3.1 Results on Real World Datasets

Table 3 shows general statistics of our real world datasets and their gener-
ated samples. We can see that the randomized samples cover the space of
partitionings according to their external index range.

Figure 5 exemplifies how different criteria exhibit different correlations with
the external index. It visualizes the correlation between few selected relative
indexes and an external index for one of our datasets listed in Table 3. Similar
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analysis is done for all 4 datasets× 645 criteria (combination of relative indexes
and distances variations)× 5 external indexes, which produced over 12900 such
correlations. The top ranked criteria based on their average performance over
these datasets are summarized in Table 4. Based on these results, ZIndex when
used with almost all of the proximity measures, such as Topological Overlap
(TO), Pearson Correlation Similarity (PC ) or Intersection Closeness (IC ); has
a higher correlation with the external index comparing to the modularity Q.
And this is true regardless of the choice of ARI as the external index, since it
is ranked above Q also by other external indexes, e.g. NMI and NMI. Other
criteria, on the other hand, are all ranked after the modularity Q, except the
CIndex SP. One may conclude based on this experiment that ZIndex is a
more accurate evaluation criterion comparing to Q. We can also examine the
ranking of different proximity measures in this table. For example, we can see
that the Number of Paths of length 2, NP2, performs better than length 3,
NP3; and that the exponential combination of NPE performs better than
linear, NPL, and uniform, NP , alternatives.

The correlation between a criterion and an external index depends on how
close the randomized partitionings are from the true partitioning of the ground
truth. This can be seen in Figure 5. For example, SWC1 (Silhouette with
Criterion where distance of a node to a community is computed by its distance
to the centroid of that community) with the Modularity M proximity agrees
strongly with the external index in samples with higher external index value,
i.e. closer to the ground truth, but not on further samples. We can also see the
similar pattern in the Point-Biserial with PC proximity. With this in mind, we
have divided the generated clustering samples into three sets of easy, medium
and hard samples and re-ranked the criteria in each of these settings. Since
the external index determines how far a sample is from the optimal result, the
samples are divided into three equal length intervals according to the range of
the external index. Table 5, reports the rankings of the top criteria in each of
these three settings. We can see that these average results support our earlier
hypothesis, i.e., when considering partitionings near or medium far from the
true partitioning, PB’ PC is between top criteria, while its performance drops
significantly for samples very far from the ground truth.

4.3.2 Synthetic Benchmarks Datasets

Similar to the last experiment, Table 7 reports the ranking of the top criteria
according to their average performance on synthesized datasets of Table 6.
Based on which, ZIndex overall outperforms other criteria including the mod-
ularity Q, this is more significant in ranking finner partitionings, near optimal;
while it is less significant in ranking poor partitionings.

The LFR generator can generate networks with different levels of difficulty
for the partitioning task, by changing how well separated the communities
are in the ground truth. To examine the effect of this difficulty parameter, we
have ranked the criteria for different values of this parameter. We observed that
modularity Q becomes the overall superior criterion for synthetic benchmarks
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Table 4 Overall ranking of criteria on the real world datasets, based on the average Spear-
man’s correlation of criteria with the ARI external index, ARIcorr. Ranking based on corre-
lation with other external indexes is also reported. The full ranking of the 654 criteria, which
is not reported here due to space limit, can be accessed in the supplementary materials.

Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ TO 0.925±0.018 9 148 9 7

2 ZIndex’ P̂C 0.923±0.012 2 197 2 2

3 ZIndex’ ˆNPC 0.923±0.012 3 198 1 1
4 ZIndex’ IC2 0.922±0.024 8 182 5 3

5 ZIndex’ ˆTO 0.922±0.016 10 153 8 8

6 ZIndex’ ˆNPO 0.921±0.014 6 204 3 4
7 ZIndex’ ICV2 0.919±0.04 18 163 12 10
8 ZIndex’ PC 0.918±0.018 4 207 10 11
9 ZIndex’ IC3 0.918±0.039 19 165 15 12

10 ZIndex’ ˆNOV 0.915±0.014 11 213 6 9
11 ZIndex’ IC1 0.912±0.02 5 235 13 20
12 ZIndex’ NPE2.0 0.911±0.03 26 168 21 15
13 ZIndex’ NOV 0.91±0.023 12 225 18 21
14 ZIndex’ ICV1 0.91±0.023 13 226 19 22

15 ZIndex’ ˆNPE2.0 0.91±0.025 23 184 22 19
16 ZIndex’ NPL2.0 0.909±0.02 24 202 14 13
17 ZIndex’ M 0.908±0.028 25 149 26 23
18 ZIndex’ ICV3 0.908±0.057 29 176 28 25
19 ZIndex’ NP2.0 0.907±0.021 20 212 16 14

20 ZIndex’ ˆNPL2.0 0.906±0.022 21 216 17 17

21 ZIndex’ ˆNP2.0 0.906±0.022 22 217 20 18

22 ZIndex’ N̂O 0.905±0.022 16 253 11 16
23 ZIndex’ NO 0.904±0.034 7 250 23 31

24 ZIndex’ M̂M 0.903±0.037 17 233 24 30
25 CIndex SP 0.9±0.02 1 251 31 42

26 ZIndex’ ˆNPL3.0 0.899±0.032 30 200 27 24

27 ZIndex’ ˆNP3.0 0.899±0.033 33 196 29 27

28 ZIndex’ ˆNPE3.0 0.899±0.048 31 205 35 33

29 ZIndex ÂR 0.898±0.035 14 264 30 36
30 ZIndex’ NPE3.0 0.897±0.052 35 187 39 34
31 ZIndex’ NPL3.0 0.897±0.038 36 170 32 28
32 ZIndex SP 0.895±0.036 28 215 40 41
33 ZIndex’ NP3.0 0.895±0.039 37 166 34 29
34 ZIndex AR 0.895±0.039 15 255 36 38
35 ZIndex’ A 0.894±0.045 32 158 38 35
36 ZIndex’ MD 0.894±0.048 34 179 33 32

37 ZIndex’ Â 0.891±0.05 27 241 37 37
38 Q 0.878±0.034 45 110 45 44
39 CIndex’ NPE3.0 0.876±0.054 43 9 4 6
40 CIndex’ ICV3 0.869±0.069 44 4 7 5
41 CIndex AR 0.864±0.031 40 268 42 40

42 CIndex ÂR 0.861±0.032 42 266 41 39

43 CIndex’ ˆNPE3.0 0.858±0.07 47 8 25 26

44 ZIndex’ M̂D 0.856±0.101 38 323 43 45
45 SWC0 IC1 0.847±0.09 41 108 46 47
46 SWC0 IC2 0.838±0.092 49 11 50 49
47 SWC0 NO 0.837±0.106 39 146 48 50
48 SWC0 IC3 0.819±0.104 57 7 58 52
49 SWC0 NOV 0.814±0.094 52 26 54 56
50 SWC0 ICV1 0.814±0.094 53 27 55 57
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Table 5 Difficulty analysis of the results: considering ranking for partitionings near op-
timal ground truth, medium far and very far. Reported result are based on ARI and the
Spearman’s correlation.

Near Optimal Samples
Rank Criterion ARIcorr Rand Jaccard NMI AMI

1 ZIndex’ ˆNPC 0.851±0.081 1 3 4 5

2 ZIndex’ P̂C 0.851±0.081 2 4 3 3
3 ZIndex SP 0.847±0.084 18 2 8 8

4 ZIndex’ ˆNPO 0.845±0.088 3 9 6 6
5 DB ICV2 0.845±0.065 30 1 31 30

6 ZIndex’ ˆNPE3.0 0.842±0.082 10 5 2 2
7 ZIndex’ ICV3 0.839±0.084 4 20 20 21

8 ZIndex’ ˆNOV 0.835±0.093 11 14 15 15

9 ZIndex’ ˆTO 0.835±0.09 9 10 7 7

10 ZIndex’ ˆNPE2.0 0.834±0.089 13 8 1 1
11 ZIndex’ TO 0.834±0.089 7 16 11 11
12 ZIndex’ IC2 0.834±0.095 5 23 18 18

...
36 ZIndex’ M 0.763±0.139 33 29 30 31
37 Q 0.762±0.166 39 21 41 41
38 DB ICV3 0.757±0.126 37 35 38 36
39 DB IC3 0.753±0.176 35 36 39 39
40 PB’ PC 0.753±0.289 45 26 71 71

Medium Far Samples
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ TO 0.775±0.087 5 361 22 20

2 ZIndex’ ˆTO 0.771±0.091 6 386 19 17
3 ZIndex’ IC3 0.768±0.134 2 372 16 13
4 ZIndex’ ICV2 0.766±0.124 3 370 2 2
5 ZIndex’ NPL3.0 0.762±0.079 12 349 28 27
6 ZIndex’ ICV3 0.757±0.12 4 376 21 19
7 ZIndex’ NP3.0 0.756±0.085 15 354 29 28

8 ZIndex’ P̂C 0.755±0.122 9 417 4 4

9 ZIndex’ ˆNPC 0.755±0.122 11 418 3 3
10 ZIndex’ NPE2.0 0.753±0.107 10 373 14 14
11 ZIndex’ NPE3.0 0.746±0.093 8 369 24 24

12 ZIndex’ ˆNPO 0.744±0.123 14 437 5 5
...

29 ZIndex’ M̂M 0.694±0.168 31 458 40 32
30 Q 0.69±0.151 58 70 79 72

...
31 ZIndex’ A 0.69±0.144 34 366 58 54
46 PB’ PC 0.623±0.06 112 28 200 157

Far Far Samples
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ ICV2 0.724±0.066 36 520 4 9
2 ZIndex’ IC3 0.72±0.062 40 523 11 19
3 ZIndex’ ICV3 0.717±0.059 47 511 23 25
4 ZIndex’ IC2 0.715±0.072 35 540 3 6
5 ZIndex’ TO 0.706±0.064 49 519 16 14

6 ZIndex’ ˆNPO 0.704±0.076 44 547 1 3

7 ZIndex’ ˆTO 0.704±0.062 51 522 13 5
8 ZIndex’ NPE2.0 0.701±0.057 55 505 15 7

9 ZIndex’ ˆNPC 0.698±0.083 45 552 6 10

10 ZIndex’ P̂C 0.697±0.083 46 553 9 11

11 ZIndex’ ˆNPE2.0 0.688±0.047 57 521 24 23
12 ZIndex’ NPL2.0 0.688±0.072 58 529 12 4

...
30 ZIndex’ IC1 0.655±0.132 43 566 34 40

31 ZIndex’ N̂O 0.651±0.106 52 567 22 26
32 Q 0.643±0.033 86 444 50 45
33 ZIndex’ NO 0.638±0.158 38 572 38 47
34 ZIndex’ MD 0.63±0.099 78 513 43 41

...
117 PB’ PC 0.372±0.126 197 170 159 129
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Table 6 Statistics for sample partitionings of each synthetic dataset. The benchmark gen-
eration parameters: 100 nodes with average degree 5 and maximum degree 50, where size of
each community is between 5 and 50 and mixing parameter is 0.1.

Dataset K∗ # K ARI
network1 4 100 5.26±2.45∈[2,12] 0.45±0.18∈[0.13,1]
network2 3 100 4±1.7∈[2,8] 0.47±0.23∈[0.06,1]
network3 2 100 4±1.33∈[2,6] 0.36±0.22∈[0.07,1]
network4 7 100 10.68±3.3∈[4,19] 0.69±0.21∈[0.25,1]
network5 2 100 4.68±1.91∈[2,9] 0.32±0.22∈[-0.01,1]
network6 5 100 5.98±2.63∈[2,14] 0.52±0.21∈[0.12,1]
network7 4 100 6.62±2.72∈[2,12] 0.52±0.22∈[0.11,1]
network8 5 100 5.8±2.45∈[2,12] 0.55±0.22∈[0.15,1]
network9 5 100 6.54±2.08∈[3,11] 0.64±0.2∈[0.25,1]
network10 6 100 8.88±2.74∈[4,15] 0.59±0.19∈[0.21,1]

with higher level of mixed communities (.3 ≤ µ ≤ .5). Table 8 reports the
overall ranking of the criteria for a difficult set of datasets that have high
mixing parameter. We can see that although Q is the overall superior criterion,
ZIndex still significantly outperforms Q in ranking finer partitionings. Results
for other settings are available in the supplementary materials.

In short, the relative performances of different criteria depends on the diffi-
culty of the network itself, as well as how far we are sampling from the ground
truth. Altogether, choosing the right criterion for evaluating different commu-
nity mining results depends both on the application, i.e., how well-separated
communities might be in the given network, and also on the algorithm that
produces these results, i.e., how fine the results might be. For example, if the
algorithms is producing high quality results close to the optimal, modularity
Q might not distinguish the good and bad partitionings very well. While if
we are choosing between mixed and not well separated clusterings, it is the
superior criterion 6.

5 Conclusion

In this article, we examined different approaches for evaluating community
mining results. Particularly we examined different external and relative mea-
sures defined for clustering validity and adopted these for the inter-related
data. The main contribution is our generalization for well-known clustering
validity criteria originally used as quantitative measures for evaluating quality
of clusters of data points represented by attributes. The first reason of this
generalization is to adapt these criteria in the context of community mining of
interrelated data. The only commonly used criterion to evaluate the goodness
of detected communities in a network is the modularity Q. Providing more
validity criteria can help researchers to better evaluate and compare commu-
nity mining results in different settings. Also, these adapted validity criteria

6 Please note that these results and criteria are different from our earlier work (Rabbany
et al. 2012), particularly, ZIndex is defined differently in this paper.
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Table 7 Overall ranking and difficulty analysis of the synthetic results. Here communities
are well-separated with mixing parameter of .1. Similar to the last experiment, reported
result are based on AMI and the Spearman’s correlation.

Overall Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ ICV2 0.96±0.029 5 32 3 3
2 ZIndex’ IC3 0.958±0.028 4 42 2 2
3 ZIndex’ IC2 0.958±0.033 1 58 1 1

4 ZIndex’ P̂C 0.953±0.04 3 78 6 6

5 ZIndex’ ˆNPC 0.953±0.04 2 79 7 7
6 ZIndex’ ICV3 0.953±0.027 8 44 4 5

7 ZIndex’ ˆNPO 0.951±0.041 6 83 9 9

8 ZIndex’ ˆTO 0.949±0.045 13 60 17 17

9 ZIndex’ ˆNOV 0.949±0.042 7 90 8 8
10 ZIndex’ TO 0.948±0.046 16 50 21 21
11 ZIndex’ PC 0.947±0.043 10 77 16 15

12 ZIndex’ ˆNPE2.0 0.947±0.042 11 68 13 13
13 ZIndex’ NPE2.0 0.946±0.043 17 51 20 20
14 ZIndex’ NOV 0.941±0.047 14 95 18 18
15 ZIndex’ ICV1 0.941±0.047 15 96 19 19

...
29 ZIndex’ NPL3.0 0.895±0.072 31 121 38 37
30 Q 0.893±0.046 33 33 26 22
31 ZIndex’ NP3.0 0.89±0.076 32 130 39 39

Near Optimal Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ IC2 0.826±0.227 2 10 4 6
2 CIndex’ ICV2 0.822±0.132 7 1 11 7
3 ZIndex’ IC3 0.821±0.232 1 16 5 9
4 CIndex’ ICV3 0.818±0.237 4 9 3 5
5 ZIndex’ ICV2 0.816±0.232 3 18 7 10

6 ZIndex’ Â 0.813±0.225 5 19 2 2
7 CIndex’ IC3 0.8±0.2 31 2 13 8
8 ZIndex’ A 0.795±0.177 30 20 6 4

9 ZIndex’ M̂M 0.794±0.221 9 33 1 1
...

206 SWC1’ N̂O 0.591±0.179 225 194 244 233
207 Q 0.589±0.161 222 198 138 110

Medium Far Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ ICV2 0.741±0.177 4 231 22 22
2 ZIndex’ IC2 0.738±0.181 1 247 16 20
3 ZIndex’ IC3 0.728±0.188 5 252 18 21
4 ZIndex’ ICV3 0.721±0.177 8 258 21 23

5 ZIndex’ P̂C 0.719±0.204 3 285 30 35

6 ZIndex’ ˆNPC 0.719±0.204 2 286 31 36
7 CIndex’ ICV3 0.713±0.151 28 21 33 27

8 ZIndex’ ˆNPO 0.709±0.205 7 278 32 38

9 ZIndex’ ˆTO 0.703±0.216 12 240 42 48
10 ZIndex’ TO 0.702±0.217 14 239 45 53

...
37 Q 0.62±0.139 42 167 56 47

Far Far Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ ICV2 0.834±0.062 9 464 5 3
2 ZIndex’ IC3 0.832±0.06 7 469 4 2
3 ZIndex’ TO 0.825±0.098 22 423 29 27
4 ZIndex’ ICV3 0.823±0.063 12 458 6 6

5 ZIndex’ ˆTO 0.823±0.096 18 446 27 25
...

30 ZIndex’ M 0.638±0.151 31 537 9 4
31 Q 0.581±0.155 95 368 69 32
32 ZIndex SP 0.58±0.158 72 539 25 29
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Table 8 Overall ranking of criteria based on AMI & Spearman’s Correlation on the syn-
thetic benchmarks with the same parameters as in Table 6 but much higher mixing param-
eter, .4. We can see that in these settings, modularity Q overall outperforms the ZIndex
while the latter is significantly better in differentiating finer results near optimal.

Overall Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 Q 0.854±0.039 11 1 4 2
2 ZIndex’ M 0.839±0.067 2 5 1 1
3 ZIndex’ A 0.813±0.071 4 11 3 3

4 ZIndex’ M̂M 0.785±0.115 1 63 2 4

5 ZIndex’ Â 0.767±0.101 3 86 5 5

6 ZIndex’ P̂C 0.748±0.19 5 108 7 7

7 ZIndex’ ˆNPC 0.748±0.19 6 109 8 8

8 ZIndex’ ˆNPO 0.745±0.191 7 110 9 9

9 ZIndex’ ˆTO 0.738±0.197 13 88 16 15

10 ZIndex’ ˆNOV 0.738±0.197 8 134 10 10

Near Optimal Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 ZIndex’ M 0.825±0.105 1 1 1 1
2 ZIndex’ A 0.8±0.184 2 2 2 2

3 ZIndex’ M̂M 0.768±0.166 3 4 3 3

4 ZIndex’ Â 0.76±0.192 4 6 4 4
5 Q 0.72±0.209 34 3 34 34

6 ASWC0 ˆNPL2.0 0.719±0.248 22 8 5 5

7 SWC0 ˆNPL2.0 0.718±0.247 23 9 6 6

8 ZIndex’ ˆNPE2.0 0.714±0.259 5 21 7 8
9 ASWC0 SP 0.71±0.286 28 5 29 26

10 ZIndex’ ˆNPL2.0 0.702±0.261 6 29 13 18
Medium Far Results

Rank Criterion ARIcorr Rand Jaccard NMI AMI
1 Q 0.578±0.124 106 22 3 1

2 CIndex’ ˆNPC 0.522±0.146 154 12 78 69

3 CIndex’ P̂C 0.521±0.146 155 13 79 70

4 CIndex’ ˆNPO 0.519±0.142 176 5 120 100

5 CIndex’ ˆNOV 0.501±0.14 209 4 142 135
6 ZIndex’ M 0.498±0.199 4 364 2 2
7 CIndex’ IC2 0.492±0.146 227 9 176 173
8 CIndex’ ICV2 0.483±0.193 149 79 119 115
9 CIndex’ IC3 0.478±0.191 187 43 148 146
10 CIndex’ TO 0.478±0.175 179 31 204 203

Far Far Results
Rank Criterion ARIcorr Rand Jaccard NMI AMI

1 ZIndex’ P̂C 0.527±0.169 61 501 5 4

2 ZIndex’ ˆNPC 0.527±0.169 62 502 6 5
3 Q 0.523±0.192 128 73 93 25
4 ZIndex’ M 0.522±0.121 77 465 8 2

5 ZIndex’ ˆNPO 0.518±0.168 63 504 10 6

6 ZIndex’ ˆNOV 0.515±0.166 60 518 11 7

7 ZIndex’ ˆTO 0.489±0.171 78 485 15 9

8 ZIndex’ ˆNPE2.0 0.481±0.168 79 491 24 14

9 ZIndex’ M̂M 0.48±0.15 30 553 2 3

10 ZIndex’ N̂O 0.48±0.17 43 552 7 8
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can be further used as objectives to design new community mining algorithms.
Our generalized formulation is independent of any particular distance measure
unlike most of the original clustering validity criteria that are defined based
on the Euclidean distance. The adopted versions therefore could be used as
community criteria when plugged in with different graph distances. In our
experiments, several of these adopted criteria exhibit high performances on
ranking different partitionings of a given dataset, which makes them possi-
ble alternatives for the Q modularity. However, a more careful examination is
needed as the rankings depends significantly on the experimental settings and
the criteria should be chosen based on the application.
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Chen, J., Zäıane, O. R., and Goebel, R. (2009b). Detecting communities in so-
cial networks using max-min modularity. In SIAM International Conference
on Data Mining, pages 978–989.

Clauset, A. (2005). Finding local community structure in networks. Physical
Review E (Statistical, Nonlinear, and Soft Matter Physics), 72(2):026132.

Dalrymple-Alford, E. C. (1970). Measurement of clustering in free recall.
Psychological Bulletin, 74:32–34.

Danon, L., Guilera, A. D., Duch, J., and Arenas, A. (2005). Comparing com-
munity structure identification. Journal of Statistical Mechanics: Theory
and Experiment, (09):09008.

Davies, D. L. and Bouldin, D. W. (1979). A cluster separation measure.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-
1(2):224 –227.

Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions.
Journal of Cybernetics, 4(1):95–104.

Fortunato, S. (2010). Community detection in graphs. Physics Reports,
486(35):75–174.



32 Rabbany et al.
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Rabbany, R., Chen, J., and Zäıane, O. R. (2010). Top leaders community
detection approach in information networks. In SNA-KDD Workshop on
Social Network Mining and Analysis.

Rabbany, R., Takaffoli, M., Fagnan, J., Zaiane, O., and Campello, R. (2012).
Relative validity criteria for community mining algorithms. In Advances
in Social Networks Analysis and Mining (ASONAM), 2012 International
Conference on.
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