
Capturing Temporal Node Evolution via Self-supervised Learning:
A New Perspective on Dynamic Graph Learning

Lingwen Liu∗
2201839@stu.neu.edu.cn

School of Computer Science and
Engineering, Northeastern University

Shenyang, Liaoning, China

Guangqi Wen∗
2110658@stu.neu.edu.cn

School of Computer Science and
Engineering, Northeastern University

Shenyang, Liaoning, China

Peng Cao†
caopeng@cse.neu.edu.cn

School of Computer Science and
Engineering, Northeastern University

Shenyang, Liaoning, China

Jinzhu Yang
yangjinzhu@cse.neu.edu.cn

School of Computer Science and
Engineering, Northeastern University

Shenyang, Liaoning, China

Weiping Li
wpli@ss.pku.edu.cn

School of Software and
Microelectronics, Peking University

Beijing, China

Osmar R. Zaiane
zaiane@cs.ualberta.ca

Alberta Machine Intelligence Institute,
University of Alberta

Edmonton, Alberta, Canada

ABSTRACT
Dynamic graphs play an important role in many fields like social
relationship analysis, recommender systems and medical science,
as graphs evolve over time. It is fundamental to capture the evo-
lution patterns for dynamic graphs. Existing works mostly focus
on constraining the temporal smoothness between neighbor snap-
shots, however, fail to capture sharp shifts, which can be benefi-
cial for graph dynamics embedding. To solve it, we assume the
evolution of dynamic graph nodes can be split into temporal shift
embedding and temporal consistency embedding. Thus, we propose
the Self-supervised Temporal-aware Dynamic Graph representa-
tion Learning framework (STDGL) for disentangling the temporal
shift embedding from temporal consistency embedding via a well-
designed auxiliary task from the perspectives of both node local and
global connectivity modeling in a self-supervised manner, further
enhancing the learning of interpretable graph representations and
improving the performance of various downstream tasks. Extensive
experiments on link prediction, edge classification and node classi-
fication tasks demonstrate STDGL successfully learns the disentan-
gled temporal shift and consistency representations. Furthermore,
the results indicate significant improvements in our STDGL over
the state-of-the-art methods, and appealing interpretability and
transferability owing to the disentangled node representations.

CCS CONCEPTS
• Theory of computation → Dynamic graph algorithms; Ma-
chine learning theory; • Information systems→Data mining.

∗Both authors contributed equally to this research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM ’24, March 4–8, 2024, Merida, Mexico
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0371-3/24/03
https://doi.org/10.1145/3616855.3635765

KEYWORDS
Dynamic Graph; Self-supervised Learning; Link Prediction; Node
Classification; Edge Classification

ACM Reference Format:
Lingwen Liu, Guangqi Wen, Peng Cao, Jinzhu Yang, Weiping Li, and Osmar
R. Zaiane. 2024. Capturing Temporal Node Evolution via Self-supervised
Learning: A New Perspective on Dynamic Graph Learning. In Proceedings
of the 17th ACM International Conference on Web Search and Data Mining
(WSDM ’24), March 4–8, 2024, Merida, Mexico. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3616855.3635765

1 INTRODUCTION
Graph representation learning has received much attention due to
its wide range of application domains, e.g., social network analysis,
protein analysis and recommendation systems. Most of the graph
representation learning algorithms focus on the static graphs con-
taining a fixed set of nodes and edges by learning low-dimensional
node embeddings for various graph analysis, e.g., link prediction [2],
node classification [16], and edge classification [1]. However, many
real-world graphs, e.g., recommendation graphs [5, 10], paper cita-
tion graphs [19, 23], or dynamic brain graphs [18, 20], are dynamic
where graph structures constantly evolve over time, and the simple
application of representation learning for the static graph fails to
capture the temporal information.

Although various designs are proposed to improve the represen-
tation performance of the dynamic graph [8, 17], these methods
generally assume that temporal evolution between adjacent time
steps is smooth, and attempt to enforce the temporal smoothness
of node representations from adjacent snapshots [9, 21]. However,
such methods are effective only in high-sparsity settings, failing
when nodes exhibit complex temporal characteristics in dynamic
graphs [26], as shown in Fig. 1(a). Learning the temporal repre-
sentations reflecting the inherent evolution patterns in dynamic
graphs is a crucial task. It can be observed that temporal evolution
is not always smooth and exhibits a more complex evolution, e.g.,
the maximum node degree varies across time points in the bitcoin
dataset. The reason is that economic fluctuations in the Bitcoin
market are prone to affect Bitcoin transactions, resulting in sudden
changes or irregular patterns in the user transactions or the trust

https://orcid.org/0000-0002-3525-2297
https://orcid.org/0000-0001-6786-6261
https://orcid.org/0000-0002-7859-2769
https://orcid.org/0000-0002-7754-1273
https://orcid.org/0000-0003-2958-3097
https://orcid.org/0000-0002-0060-5988
https://doi.org/10.1145/3616855.3635765
https://doi.org/10.1145/3616855.3635765

WSDM ’24, March 4–8, 2024, Merida, Mexico Lingwen Liu et al.

2 4 6 8 100

60

120
Max Degree (whole graph)

Time points

D
eg
re
e

(a) Maximum degree evolution (whole graph).

0 2 4 6 8 10 12

2

4
Temporal Shift
Temporal Consistency
DDGCL
EvolveGCN

Time points

Node ID=1352

0 2 4 6 8 10 12

0

40
Degree (node ID=1352)
Ave Score (node ID=1352)

Time points

D
eg

re
e

-3

0

3

A
ve

Sc
or

e

(b) Node ID=1352

0 2 4 6 8 10 12

2

4

Time points

Temporal Shift Temporal Consistency
DDGCL EvolveGCN

Node ID=1953

0 2 4 6 8 10 12

0

40
Degree (node ID=1953)
Ave Score (node ID=1953)

D
eg

re
e

Time points

-3

0

3

6

A
ve

Sc
or

e

(c) Node ID=1953

Figure 1: The temporal variation on the Bitcoin-OTC dataset.
(a): The variation wrt. maximum degree for the whole graph.
The top of (b) and (c) show the temporal graph evolutions
with the disentangled embeddings (PCA) of STDGL and the
comparable embeddings (PCA) learned by EvolveGCN [25]
and DDGCL [28]. The bottom of (b) and (c) show the temporal
graph evolutions wrt. degree and the average who-trusts-
whom scores.

Table 1: The comparison of EvolveGCN, DDGCL, and our
STDGL for the various tasks on the Bitcoin-OTC dataset.

Model Link prediction Edge classification
MRR AUC F1

EvolveGCN [25] 14.2±1.4 65.1±0.8 86.2±0.9
DDGCL [28] 18.8±0.9 71.3±0.8 88.1±1.2
STDGL-c (Temporal Consistency) 24.5±0.8 81.1±1.6 88.9±0.4
STDGL-s (Temporal Shift) 28.7±0.6 85.4±0.8 89.2±0.7

scores [14]. However, numerous works [8, 9] ignore the considera-
tion of the complicated temporal characteristics in dynamic graphs.
For example, Jiang [8] proposed a temporal-aware node embedding
approach with a joint temporal-aware inference model using tempo-
ral consistency information as constraints. Liao [17] and Mahdavi
[21] assume that a dynamic network should vary smoothly and
continuously between two neighbor snapshots over time, and learn
the latent representations by minimizing the difference between
two embedding distributions of the neighbor graphs.

To address the limitations of existing works, we consider de-
signing a model that explicitly explores the characteristics of the
temporal shift to better model the complex and nonlinearly evolv-
ing processes in the dynamic graphs. To this end, we propose a
Self-supervised Temporal-aware Dynamic Graph representation
Learning framework (STDGL). The framework aims to explicitly
disentangle two kinds of temporal information for dynamic node
embedding learning by exploring graph temporal and structural
properties, i.e., temporal shift information (the sharp evolution
mode introduced by sudden events) and temporal consistency in-
formation (the stable mode across the time points), thus enhanc-
ing interpretable node temporal representation and improving the

downstream task performance. To the best of our knowledge, this
is the first work to explicitly capture the temporal shift embedding
for the dynamic graph analysis.

More specifically, our model consists of two individual encoders
to disentangle temporal shift embedding and temporal consistency
embedding, and a cross decoder to reconstruct the graph structure.
The two individual encoders consist of a local connectivity encoder
which leverages the local connectivity to obtain node embedding,
and an edge-level encoder which aggregates global connectivity
to obtain topology embedding. To better encourage disentangling,
we design three losses, i.e., the temporal disentangling loss forcing
two neighbor snapshots’ temporal shift embeddings dissimilar and
temporal consistency embeddings similar, the reconstruction loss
and discrepancy loss encourage the consistency between the two
graphs reconstructed by combining temporal shift embedding at
current snapshot with temporal consistency embeddings at cur-
rent/neighbor snapshots. Finally, the disentangled temporal em-
beddings are utilized for the downstream tasks. To investigate the
relationship between the disentangled temporal shift embedding
and the temporal evolution patterns, we conduct a pilot experi-
ment to investigate it in Fig. 1(b)(c). It can be observed that the
disentangled temporal shift embedding is consistent with the sig-
nificant evolution patterns highlighted by the yellow bands, while
other methods fail to capture these trends sufficiently. Contrary to
temporal shift embedding, the disentangled temporal consistency
embedding exhibits stability across consecutive time-steps. In Table
1, the significant improvement achieved by STDGL-s also gives
evidence that leveraging temporal shift embedding provides more
meaningful patterns for graph-related tasks.

Comprehensive experiments on six real-world datasets across
three different tasks, including link prediction, edge classification
and node classification, demonstrate the significant improvement of
our framework over the existing alternatives. Specifically, STDGL-s
outperforms DDGCL [28], which is also a self-supervised dynamic
graph learning method, with an average improvement of 5.2% and
3.4% on MRR and AUC in the link prediction task on five datasets,
outperforms EvolveGCN [25] with an average improvement of
5.4%/5.5% on F1 in the edge/node classification task. The various
experimental results prove our assumption that the temporal nodes
can be split into temporal shift information and temporal consis-
tent information by a well-designed pretext task from the data
itself. Moreover, the comprehensive evaluations demonstrate that
disentangled temporal shift information is critical to capture the
evolution nature of dynamic graphs.

Our contributions are as follows:
1. This work formalizes the task of learning latent node represen-

tations for various temporal graph analysis from the perspective of
disentangling the underlying factors (temporal shift and temporal
consistency embeddings) hidden in the observable temporal graphs
through a self-supervised learning paradigm. Owing to the disen-
tangled temporal node representations, the proposed model has
appealing interpretability and transferability. Such a model helps
reveal more insights into the underlying dynamic graph evolution.

2. Unlike other self-supervised dynamic graph learning methods
that only focus on node embedding learning, we propose a series
of encoders and multiple regularizations to capture the structural

Capturing Temporal Node Evolution via Self-supervised Learning: A New Perspective on Dynamic Graph Learning WSDM ’24, March 4–8, 2024, Merida, Mexico

representation of the dynamic graphs from the aspects of local
connectivity information and global connectivity information.

3. Extensive experiment results on link prediction, edge classifi-
cation and node classification tasks demonstrate that the proposed
disentangled representation learning scheme via pre-training sig-
nificantly facilitates the learning of the node embedding suited to
different downstream tasks.

2 RELATEDWORK
2.1 Dynamic Graph Embedding Learning
The dynamic graph representation learning is a very important re-
search topic in the graph domain. TGCN [33] incorporates a Graph
Neural Network (GNN) into the Gated Recurrent Unit (GRU) cell by
replacing linear transformations in GRUwith graph convolution op-
erators to capture the spatio-temporal correlation representations.
EvolveGCN [25] utilizes an RNN to dynamically update weights of
internal GNNs, which allows the GNN model to change during the
test time. DySAT [26] captures node embedding through joint self-
attention along the two dimensions of the structural neighborhood
and temporal dynamics. However, they cannot explicitly model the
temporally-aware information, leads to poor performance.

Recently, many works [8, 9, 22] focus on the temporal-aware
graph embedding, which tries to learn the evolving patterns of a
graph and incorporate time information into embedding learning.
For instance, t-TransE [9] provides a link prediction method by
using temporal order constraints to model transformation between
time-sensitive relations. In the embedding process, t-TransE en-
forces the embeddings to be temporally consistent. To incorporate
the valid time of facts, [8] proposes a temporal-aware graph em-
bedding approach with a joint temporal-aware inference model
using temporal consistency information as constraints. However,
a purely supervised learning scheme for the dynamic graph data
usually leads to poor generalization due to insufficient supervision.

2.2 Self-supervised Dynamic Graph Learning
Recently, Tian et al. [28] first introduced self-supervised learning
into the dynamic graph and proposed a dynamic graph contrastive
learning method. They adopted a continuous-time formulation and
introduced a time-dependent generalization of the representation
similarity metric that measures the agreement between two tem-
poral views of the same node. Besides, Chen et al. [3] proposed a
pre-training framework on dynamic graph neural networks based
on the graph generation tasks, which can capture structural fea-
tures and node attributes by fusing temporal information. How-
ever, these self-supervised dynamic graph approaches extend the
self-supervised paradigm of static graphs and fail to sufficiently
consider the rich temporal properties in the dynamic graphs. More-
over, these works cannot explain how the self-supervised paradigm
assists dynamic graph learning.

3 METHODOLOGY
3.1 Notation and Problem Statement
A dynamic graph G = {𝐺1,𝐺2, · · ·,𝐺𝑇 } can be modeled as a set of
multiple graphs𝐺𝑡 at different time points 𝑡 , where𝐺𝑡 = (V𝑡 , E𝑡).
V𝑡 = {𝑣1, 𝑣2, · · ·, 𝑣N𝑡 } represents the node set of𝐺𝑡 andN𝑡 denotes

the node number at time point 𝑡 . Let E𝑡 = {𝑒𝑖 𝑗 |𝑣𝑖 , 𝑣 𝑗 ∈ V𝑡 } denotes
the edge set of𝐺𝑡 , where 𝑒𝑖 𝑗 connects two nodes 𝑣𝑖 and 𝑣 𝑗 . Let𝐴𝑡 ∈
RN

𝑡×N𝑡
and 𝑋 𝑡 ∈ RN𝑡×𝐷 denote the adjacency matrix and the

node features at 𝑡 , A = {𝐴1, 𝐴2, · · ·, 𝐴𝑇 } and X = {𝑋 1, 𝑋 2, · · ·, 𝑋𝑇 }
denote the adjacency matrices and node features of G across times.
In dynamic graphs, the evolution nature is reflected by the changes
from the aspects of V , E, A and X across time.

3.2 Method
3.2.1 Overview. The overview of our proposed method is illus-
trated in Fig. 2. It consists of two main components, i.e., a couple
of temporal-aware encoders for yielding temporal shift embedding
and temporal consistency embedding, and a cross decoder for the
reconstruction of the graph structure. Specifically, the temporal-
aware encoder contains the local connectivity encoder 𝐸𝑙 composed
of a stack of dynamic graph convolution layers for node embed-
ding learning and a global connectivity encoder 𝐸𝑔 for learning
the global connectivity of nodes. The cross decoder takes the com-
bination of temporal shift embedding and temporal consistency
embedding as inputs and reconstructs the graph structures. To
encourage the disentangling of temporal shift embeddings and
temporal consistency embeddings, we design the overall losses in-
cluding the temporal disentangling loss L𝑡 forcing the temporal
shift embeddings of neighboring snapshot dissimilar and temporal
consistency embeddings similar, while the reconstruction loss L𝑟𝑒𝑐

and discrepancy loss L𝑑 constraining the consistency between the
two graphs reconstructed by combining temporal shift embedding
at current snapshot with temporal consistency embeddings at cur-
rent/neighbor snapshots. The disentangled embeddings are used
for different downstream tasks.

3.2.2 Temporal-aware encoder. We design a temporal-aware en-
coder to extract the temporal shift information and temporal consis-
tency information. It should be noted that the weights of encoders
for temporal shift/consistency information are independent of each
other. Due to the evolution of dynamic graphs not only in terms of
node attributes and the addition/absence of nodes but also in terms
of topological dynamics of graph structure, in order to achieve
better graph disentanglement representation, it is essential to fully
capture the node embeddings along two dimensions: local connec-
tivity and global connectivity. To this end, we propose the local
connectivity encoder 𝐸𝑙 and global connectivity encoder 𝐸𝑔 .

(1) Local connectivity encoder The traditional graph convolu-
tion layer on graph𝐺 = (𝐴,𝑋) can be formulated as:𝐻 = 𝜎 (𝐴𝑋𝑊),
where 𝐴 is the normalized adjacency matrix of the input graph,𝑊
is the learnable parameter, 𝜎 denotes the activation function ReLU,
and𝐻 ∈ R𝑁×𝐷 is the node embedding of graph𝐺 . However, such a
simple graph convolution layer cannot describe the complex intra-
node and inter-node evolution relationship between two graphs
at consecutive time points. To incorporate the embeddings of the
previous time point in the graph convolution layer for graphs 𝐺𝑡 ,
we propose a dynamic graph convolution layer.

Let 𝑋 𝑡 be the node embedding matrix for graphs𝐺𝑡 . We assume
that the node embeddings 𝐻𝑡−1

𝑙
at 𝑡 − 1 have been updated with

a previous graph convolution layer. The extended graph convolu-
tion formulation can be defined as follows: 𝐻𝑡

𝑙
= 𝐸𝑙 (𝐺𝑡 ,𝐺𝑡−1) =

WSDM ’24, March 4–8, 2024, Merida, Mexico Lingwen Liu et al.

Global connectivity
encoder:

Cross Decoder

Encoding

Cross Decoder

Cross Decoder

Cross Decoder

Decoding

Edge Convolution
Layer

Node Aggregation

Temporal-aware encoder:

Local connectivity
encoder:

Downstream (STDGL-s)

Pre-training (STDGL)

Temporal Shift

Temporal Consistency

Temporal Shift

Temporal Consistency

Pre-training loss:

Downstream loss:

Temporal Shift

Temporal Consistency

Link Prediction:

Node Classification:

Edge Classification:

ec

nc

lp

temporal shift
embedding

temporal consistency
embedding

temporal shift
embedding

temporal consistency
embeddingTemporal Shift

Figure 2: Illustration of the proposed STDGL. In the pre-training stage, our model includes an encoder-decoder architecture
to exploit the dynamic graphs with the self-supervised learning scheme. We aim to disentangle the representations into
temporal shift embedding 𝐹 ·𝑠 and temporal consistency embedding 𝐹 ·𝑐 by local connectivity and global connectivity encoders.
Then, we design a cross decoder for reconstructing the graph. Moreover, the temporal disentangling loss L𝑡 , the topology
reconstruction loss L𝑟𝑒𝑐 and the discrepancy loss L𝑑 are introduced to better encourage the discrimination of temporal shift
and temporal consistency embeddings. In the downstream stage, only the temporal shift embedding (named STDGL-s) is
used for graph-related tasks which are supervised by the cross-entropy loss. We preserve the three losses used during the
pre-training stage by a ratio of 0.5.

𝜎 ((𝜎 (𝐴𝑡𝑋 𝑡𝑊1);𝐻𝑡−1
𝑙

)𝑊2) where𝑊1 and𝑊2 are trainable param-
eters. The output node embeddings 𝐻𝑡

𝑙
capture information from

both the current and previous time points, allowing the model to
learn temporal dependencies in dynamic graphs.

(2) Global connectivity encoder Most recent works on dy-
namic graph representation learning only aggregate information
via a node’s local connections to generate the node embedding
[32]. However, these works cannot capture the global connectiv-
ity patterns of the node. To fully consider the node topology in-
formation in dynamic graphs, we propose a global connectivity
encoder to explore the global connectivity information and then
aggregate the information into node embeddings. Specifically, we
introduce a specialized edge convolution operation consisting of
vertical and horizontal convolution kernels, which is designed to ex-
plore the potential graph structure information by considering the
spatial topological association in the graph structure. To overcome
the expensive computation cost on large-scale graph adjacency
matrix 𝐴𝑡 of time point 𝑡 , we propose to divide the graph into
𝑠 sub-graphs {𝐴𝑡

{1} , 𝐴
𝑡
{2} , ..., 𝐴

𝑡
{𝑠 } |𝐴

𝑡
{𝑙 } ∈ RM×M }, each with M

nodes [4]. At first, we introduce a learnable semantic augmenta-
tion matrix 𝑆 ∈ [0, 1]M×M , to indicate the critical structure of the
graph. The enhanced graph structure can capture and highlight
the explicit interaction relation and the implicit semantic relation.
Specifically, we obtain the augmented graph structure 𝐴𝑡

{𝑘 } via

𝐴𝑡
{𝑘 } = 𝐴𝑡

{𝑘 } ⊙ 𝑆 .
The global connectivity encoder 𝐸𝑔 consists of an edge con-

volution layer and a node aggregation operation. To capture the

essential topological representation, we introduce an edge convo-
lution layer to globally leverage the connectivity by aggregating
the features of the all edges associated with the nodes at the two
ends of a connection. Our edge convolution layer involves multiple
cross-shaped kernels for edge embedding learning, which can be
formulated as:

𝐹 𝑡 = Concat(
M∑︁
𝑖=0

𝑤𝑣
𝑖 · 𝐴𝑡

{𝑘 }𝑖 · +
M∑︁
𝑗=0

𝑤ℎ
𝑗 · 𝐴

𝑡
{𝑘 } · 𝑗)

𝑠
𝑘=1 (1)

where 𝑤𝑣
𝑖

∈ R1×M and 𝑤ℎ
𝑗
∈ RM×1 are learnable parameters

of vertical and horizontal convolution kernels, 𝐹 𝑡 ∈ RN𝑡×N𝑡 is
the topology embedding of 𝐴𝑡 . The edge convolution is capable of
enhancing the potentially important connections and generating en-
hanced edge embedding. Then the node embedding 𝐻𝑡

𝑔 is obtained
through modeling global connectivity patterns by an aggregation
operation as follows: 𝐻𝑡

𝑔 =
∑N𝑡

𝑖=0𝑤
𝑎
𝑖
· 𝐹 𝑡

𝑖 ·, where𝑤
𝑎
𝑖
∈ R1×N𝑡 is the

aggregation operator.
Obviously, our edge convolution operation is different from the

convolution operations on images. The spatial locality in our edge
convolution refers to the local connectivity topology associated
with a certain edge, while the locality of the image is the neighbor-
hood of pixels, as shown in Fig. 3. Moreover, global connectivity is
different from local connectivity, which is used in graph convolu-
tion. As Fig. 4 shown, the difference is that the local connectivity
pattern refers to the independent connection between a node and
its each neighbor, e.g., 𝑒12 or 𝑒13, while the global connectivity
pattern refers to the edge set of the associated connections, e.g.,
{𝑒12, 𝑒13, 𝑒14, 𝑒15, 𝑒56, 𝑒57, 𝑒58}, in which the associated connections

Capturing Temporal Node Evolution via Self-supervised Learning: A New Perspective on Dynamic Graph Learning WSDM ’24, March 4–8, 2024, Merida, Mexico

Graph
Adjacency

Matrix

Image

the -th pixel

Figure 3: Illustration of the comparison on spatial locality
between images and graphs. The difference is that the locality
in images denotes the elements that are close together (for
the (𝑖, 𝑗)-th element, the locality is the 3 × 3 neighborhood),
while the locality in the graph refers to the connectivity
structure associated with each edge (for the (𝑖, 𝑗)-th edge, the
locality is the edge set of 𝑒𝑖 · and 𝑒 · 𝑗 associated the 𝑖-th node
and 𝑗-th node), while the locality in the graph refers to the
global connectivity structure associated with each node.

1 5

2

3

4

6

7

8

1 5

2

3

4

6

7

8

Figure 4: Comparison of local connectivity and global con-
nectivity. The orange arrows represent the message passing
from local neighbor nodes. The blue arrows represent the
interrelated connections for generating the edge embeddings
by considering the explicit topology patterns, and then the
edge embeddings are aggregated into the node embedding
globally (red arrows).

are interrelated and learned from each other. The edge sets asso-
ciated with two nodes of 𝑛1 and 𝑛5 contain potential topology. To
sufficiently leverage the edge set, the edge convolution operation
globally exploits the topological association in the connectivities
and enhances the useful edge embeddings.

Therefore, with the temporal-aware encoder, we obtain the tem-
poral shift embedding 𝐹 𝑡𝑠 = 𝐻𝑡

𝑙,𝑠
+ 𝐻𝑡

𝑔,𝑠 and temporal consistency
embedding 𝐹 𝑡𝑐 = 𝐻𝑡

𝑙,𝑐
+ 𝐻𝑡

𝑔,𝑐 .

3.2.3 Cross decoder. The purpose of the cross decoder is to re-
construct the graph structure at 𝑡 with the combination of the
temporal shift and temporal consistency embeddings. We assume
that the disentangled representation satisfies the following condi-
tions: 1) An original graph can be reconstructed by its disentangled
temporal shift and temporal consistency embeddings at the cur-
rent time point. 2) An original graph can be reconstructed by its
disentangled temporal shift embedding at the current point and
the temporal consistency embedding disentangled from the origi-
nal graph at the previous time point, as the temporal consistency
embedding captures the evolution mode that changes slowly or
remains consistent. Therefore, the cross decoder receives two in-
puts, e.g., the temporal shift embedding and the temporal consis-
tency embedding at 𝑡 , or the temporal shift embedding at 𝑡 and
the temporal consistency embedding at 𝑡 − 1, and produces the hy-
brid embeddings 𝐻 {𝑡,𝑡 } or 𝐻 {𝑡,𝑡−1} , which is defined as: 𝐻 {𝑡,𝑡 } =

MLP(𝐹 𝑡𝑠 + 𝐹 𝑡𝑐); 𝐻 {𝑡,𝑡−1} = MLP(𝐹 𝑡𝑠 + 𝐹 𝑡−1𝑐). Finally, we obtain the
reconstructed graph adjacency matrices 𝐴{𝑡,𝑡 } = 𝐻 {𝑡,𝑡 } (𝐻 {𝑡,𝑡 })𝑇
and 𝐴{𝑡,𝑡−1} = 𝐻 {𝑡,𝑡−1} (𝐻 {𝑡,𝑡−1})𝑇 .

3.2.4 Loss. (1) Temporal disentangling loss. We assume that
the temporal consistency embedding of graphs at two consecutive
time points are similar, while the temporal shift embedding are
dissimilar. Hence, we design a temporal disentangling loss:

L𝑡 =

𝑇∑︁
𝑡=2

[
𝑑𝑖𝑠 (𝐹 𝑡𝑐 , 𝐹 𝑡−1𝑐) − 𝑑𝑖𝑠 (𝐹 𝑡𝑠 , 𝐹 𝑡−1𝑠) + 𝛽

]
(2)

where 𝑑𝑖𝑠 (𝑥,𝑦) = ∥𝑥 − 𝑦∥2 is the distance function, and 𝛽 is the
toleration value.

(2) Topology reconstruction loss. In order to learn meaningful
embedding of graphs, we propose a reconstruction loss to constrain
the topology consistency of the original and reconstructed graphs.
The topology reconstruction loss is defined as:

L𝑟𝑒𝑐 =

𝑇∑︁
𝑡=1

𝑑𝑖𝑠 (𝐴{𝑡,𝑡 } , 𝐴𝑡) +
𝑇∑︁
𝑡=2

(𝑑𝑖𝑠 (𝐴{𝑡,𝑡−1} , 𝐴𝑡) + 𝑑𝑖𝑠 (𝐴{𝑡−1,𝑡 } , 𝐴𝑡−1))

(3)
(3) Discrepancy loss. From the graph structural similarity as-

pect, we assume that the reconstructed graph 𝐴{𝑡,𝑡−1} from the
combination embedding 𝐻 {𝑡,𝑡−1} should be consistent with 𝐴{𝑡,𝑡 }

from𝐻 {𝑡,𝑡 } . Hence, we propose a discrepancy loss to regularize the
disentanglement process as follow:

L𝑑 =
1

N𝑡 (N𝑡 − 1)
∑︁
𝑢

∑︁
𝑘≠𝑢

k
(
𝐴
{𝑡,𝑡 }
𝑢 , 𝐴

{𝑡,𝑡 }
𝑘

)
− 2

1
N𝑡 · N𝑡

∑︁
𝑢

∑︁
𝑘

k
(
𝐴
{𝑡,𝑡 }
𝑢 , 𝐴

{𝑡,𝑡−1}
𝑘

)
+ 1
N𝑡 (N𝑡 − 1)

∑︁
𝑢

∑︁
𝑘≠𝑢

k
(
𝐴
{𝑡,𝑡−1}
𝑢 , 𝐴

{𝑡,𝑡−1}
𝑘

) (4)

where k(·) is the Gaussian kernel function.
Overall loss. With the above defined losses, the overall loss of

the pre-training stage can be defined as:L𝑝𝑡 = L𝑡+𝜆𝑟𝑒𝑐L𝑟𝑒𝑐+𝜆𝑑L𝑑

where 𝜆𝑟𝑒𝑐 denotes the weight of L𝑟𝑒𝑐 , and 𝜆𝑑 denotes the weight
of L𝑑 . In this paper, we set 𝜆𝑟𝑒𝑐 = 0.01, 𝜆𝑑 = 0.05.

After the pre-training stage, we leverage the cross-entropy loss
to supervise the link prediction, node classification and edge classi-
fication tasks. Besides, We found that incorporating the pre-training
loss of representation disentanglement as an auxiliary objective
to the fine-tuning downstream tasks facilitates improving the gen-
eralization of the supervised model and accelerates convergence.
Hence, we preserve the loss L𝑝𝑡 used during the pre-training stage
by a ratio of 𝜆𝑝𝑡 , we set 𝜆 = 0.5 in this paper. This allows the model
to further learn the temporal shift information under the guidance
of the graph-related tasks.

4 EXPERIMENTS
In this section, we aim to answer the following three questions to
analyze dynamic node embedding quality:

• Q1: How does only the disentangled temporal shift embed-
ding behave on link prediction, edge classification and node
classification tasks?

WSDM ’24, March 4–8, 2024, Merida, Mexico Lingwen Liu et al.

Table 2: Summary of datasets and task split. lp: link predic-
tion. ec: edge classification. nc: node classification

Name #Edges #Nodes #Snapshots train(%)/val(%)/test(%)
Reddit-B 286,561 35,776 178 lp: 80/10/10
Reddit-T 571,927 54,075 178 lp: 80/10/10
UCI-M 59,835 1,899 29 lp: 80/10/10

Bitcoin-OTC 35,592 5,881 279 lp: 80/10/10; ec: 70/10/20
Bitcoin-Alpha 24,186 3,783 274 lp: 80/10/10; ec: 70/10/20

Elliptic 234,355 203,769 49 nc: 65/10/25

• Q2: Can STDGL learn the potential and transferable tempo-
ral node embedding via pre-training, which is beneficial for
various graph analysis tasks?

• Q3: How does our self-supervised learning paradigm assist
in understanding dynamic graphs via disentanglement?

4.1 Datasets and Evaluation Metrics
We evaluate our model on six different datasets. Concretely, Reddit-
T and Reddit-B are networks of hyperlinks in titles and bodies of
Reddit posts, respectively [12]. UCI-M dataset consists of private
messages sent on an online social network system among students
[24]. Bitcoin-OTC and Bitcoin-Alpha contain who-trusts-whom
networks of people who trade on the OTC and Alpha platforms
[13, 14]. Elliptic is a bitcoin transaction network, where each node
represents one transaction and the edges indicates the payment
flows. The aim is to categorize the unlabeled transactions. Table 2
provides summary statistics of the above-mentioned datasets.

We choose mean reciprocal rank (MRR) and AUC as evaluation
metrics for link prediction. For each node 𝑣 with a positive (real)
edge (𝑣,𝑢) at 𝑡 + 1, we randomly sample 100 negative (nonexistent)
edges emitting from 𝑣 and predict the rank of edge (𝑣,𝑢)’s score
among all other negative edges. MRR score is the mean of reciprocal
ranks over all nodes 𝑢. We run each experiment with 3 random
seeds following the experimental setting in [31]. We choose the F1
score for both edge classification and node classification tasks to
evaluate the model performance.

4.2 Methods for Comparison
To comprehensively evaluate the performance of multiple tasks, we
compare our STDGL with state-of-the-art models. Specifically, the
comparable methods can be grouped into three categories: static
graph embedding learning (i.e., Graph Attention Networks (GAT)
[29] and GraphSAGE [6]), supervised dynamic graph embedding
learning (i.e., Graph Convolutional Recurrent Networks (GCRN)
[27], Evolving Graph Convolutional Networks (EvolveGCN) [25],
Temporal Graph Convolutional network (TGCN) [33], DGCRN [15],
CAW-N [30] and DySAT [26]) and self-supervised dynamic graph
embedding leaning (i.e., Debiased Dynamic Graph Contrastive
Learning (DDGCL) [28]).We compare our STDGLwith GCN, GCRN,
EvolveGCN and DDGCL on edge or node classification tasks.

4.3 Results analysis (Answer for Q1)
We evaluate four models: STDGL -w/o Pre-training , STDGL-s (uti-
lizing temporal shift embedding), STDGL-c (utilizing temporal con-
sistency embedding) and STDGL-both (utilizing both embeddings).
The results in Table 3 and 4 show that STDGL-s performs better
than the comparable methods, achieving a new state-of-the-art in

most cases, which demonstrates that the proposed self-supervised
learning paradigm can provide a promising solution to model com-
plex and nonlinearly evolving processes of the dynamic graph,
leading to improved performance among graph-related tasks. In
addition, we highlight the following observations:

Link prediction.We can observe that STDGL-s and STDGL-both
perform generally better than other supervised and self-supervised
graph learning models across all datasets except the UCI-M dataset.
Especially, STDGL-s outperforms STDGL-c and STDGL-both across
all datasets, which suggests the importance of temporal shift infor-
mation in understanding dynamic graphs for link prediction. How-
ever, STDGL-c does not yield better performance, and STDGL-both,
which utilizes both embeddings, also performs inferior to STDGL-s,
indicating that the learned temporal consistency embedding does
not contribute to the link prediction. The reason is that the tem-
poral consistency embedding fails when nodes exhibit significant
and complicated evolutionary behaviors in the dynamic graphs.
Moreover, STDGL-s significantly outperforms the self-supervised
method, DDGCL, across all the datasets, notably on the Bitcoin-
OTC dataset, achieving improvements of 9.9% and 14.1% in terms
of MRR and AUC, respectively. This demonstrates the benefits and
potential of a well-designed pretext task that explores temporal in-
formation components for dynamic graph learning. Since the MRR
score evaluates the dynamic graph model across all time points,
it fails to reflect the model performance in modeling short-term
evolution patterns [31]. Thus, to evaluate the model performance
of modeling embeddings with short-term data, we report MRR@10
and MRR@20, which calculate the MRR score at only the earliest
10% and 20% time points, respectively. It is a more challenging task
due to the limited available samples and insufficient temporal corre-
lation. The results show that STDGL-s outperforms other methods
in terms of MRR@10 and MRR@20, indicating that temporal shift
embedding is robust for the short-term link prediction.

Node classification. We perform the task of node classifica-
tion on the Elliptic dataset. Following the setting in [25], we only
report the minority F1 value here. We can see that all the three
version methods outperform the compared models, and STDGL-
Both achieves the best result, indicating the effectiveness of STDGL
on the node classification task. Besides, we can see that with the
only temporal shift embedding, our model can achieve better per-
formance than the temporal consistency embedding on the node
classification task, which further validates our assumptions.

Edge classification. From the results shown in Table 4, we
can observe that STDGL-c obtains the best F1 score (87.6%) on
the Bitcoin-Alpha dataset, and slightly underperform STDGL-s on
the Bitcoin-OTC dataset, indicating that STDGL-c is effective in
edge classification. Interestingly, on the same Bitcoin-Alpha dataset,
STDGL-c performs well in edge classification but behaviors poorly
in link prediction, while STDGL-s performs better for link predic-
tion than edge classification. It demonstrates the distinct contri-
butions of temporal shift and consistency embeddings to different
tasks on the same dataset. Moreover, STDGL-s yields the best per-
formance on the Bitcoin-OTC dataset but performs inferior to the
other two versions on the Bitcoin-Alpha dataset, demonstrating that
various dynamic graph datasets exhibit different graph evolution
modes, which have distinct impacts on temporal graph learning.

Capturing Temporal Node Evolution via Self-supervised Learning: A New Perspective on Dynamic Graph Learning WSDM ’24, March 4–8, 2024, Merida, Mexico

Table 3: Comparison with the state-of-the-art link prediction methods on the five datasets in terms of MRR and AUC. The best
results are bold in red and the second best results are bold in blue. Pre: Pre-training.

Model Reddit-T Reddit-B UCI-M Bitcoin-OTC Bitcoin-Alpha

MRR@10MRR@20 MRR AUC MRR@10MRR@20 MRR AUC MRR@10MRR@20 MRR AUC MRR@10MRR@20 MRR AUC MRR@10MRR@20 MRR AUC
GAT [29] 25.1±1.4 24.4±1.5 27.1±1.4 65.5±1.7 17.8±1.0 17.0±1.4 19.8±1.7 61.4±0.9 6.8±1.0 8.9±1.1 8.8±0.9 65.6±1.5 3.8±0.9 4.5±1.6 7.6±1.7 54.7±0.9 13.2±1.6 13.5±1.2 14.5±1.4 57.3±1.4

GraphSAGE [6] 30.9±1.4 27.8±1.0 33.1±1.8 68.1±1.7 19.2±1.6 22.9±1.8 24.3±1.5 63.3±0.9 8.2±1.7 9.4±1.5 10.3±1.4 68.8±1.9 7.1±1.8 7.5±1.8 8.8±1.1 56.6±1.6 15.9±1.7 16.3±1.5 15.1±0.7 60.3±2.1
GCRN [27] 31.6±1.7 32.9±0.8 33.8±1.4 72.9±1.5 19.0±1.6 19.3±1.6 21.7±0.9 67.9±0.8 10.4±0.9 8.8±1.5 8.9±0.7 71.2±1.6 19.1±0.8 17.1±1.9 17.3±1.5 64.1±1.6 16.5±0.9 18.8±1.5 21.0±1.4 64.8±0.7

EvolveGCN [25] 29.5±0.8 34.0±1.3 35.1±1.9 69.7±1.7 27.7±0.8 35.6±1.3 43.1±1.5 87.9±0.8 9.2±1.5 13.3±0.9 14.6±1.6 76.9±1.4 15.3±0.9 14.9±1.5 14.2±1.4 65.1±0.8 20.4±1.4 27.1±1.6 23.4±0.8 79.3±1.0
TGCN [33] 43.1±1.1 46.2±1.2 49.1±1.4 65.3±0.8 51.0±1.5 53.7±0.9 55.1±1.6 82.1±1.8 10.3±1.1 13.9±1.5 13.0±1.6 74.0±0.9 14.4±0.7 14.9±1.4 18.3±1.6 63.0±0.9 20.4±1.7 18.8±0.8 16.9±1.5 75.0±0.7
DGCRN [15] 49.4±0.6 56.6±0.5 66.1±0.9 95.8±0.8 48.5±1.8 54.3±1.4 57.3±1.3 95.1±0.8 19.1±0.7 22.6±1.4 23.9±0.9 86.5±1.5 24.1±0.8 19.9±1.6 19.4±0.9 77.9±1.4 27.7±0.7 30.4±1.6 35.1±1.0 85.9±1.1
CAW-N [30] 46.4±1.8 46.7±1.9 46.8±2.3 94.1±1.6 45.9±1.5 45.4±1.7 46.0±0.8 93.1±1.3 28.4±0.9 28.8±0.7 28.4±1.7 92.7±0.8 23.8±1.6 23.3±0.9 24.9±1.8 80.1±1.5 26.2±1.5 27.3±0.8 29.2±1.8 75.0±0.9
DySAT [26] 48.1±0.9 51.8±1.7 60.2±1.5 92.8±1.1 54.6±2.1 57.4±0.7 60.2±1.9 90.7±0.7 19.1±1.6 21.3±1.8 29.3±0.9 83.9±1.3 27.1±1.4 27.6±0.4 26.2±1.4 82.7±1.7 25.3±0.8 23.9±1.5 26.8±0.8 87.3±0.7
DDGCL [28] 51.2±1.6 55.7±0.8 64.3±1.7 96.3±1.9 57.1±0.6 59.9±1.8 64.1±1.8 95.5±1.4 23.1±1.5 24.8±1.9 27.1±1.6 85.8±1.8 18.4±1.8 19.3±1.5 18.8±0.9 71.3±0.8 27.0±1.3 28.1±1.9 35.4±1.688.2±0.9

STDGL -w/o Pre 50.1±1.3 56.5±0.7 66.3±0.6 95.8±0.5 50.4±1.3 56.6±1.5 61.2±1.7 96.6±1.4 20.1±0.8 23.9±0.8 23.9±0.7 86.8±0.6 24.4±1.7 21.5±1.8 24.1±1.4 80.9±0.8 27.6±1.4 25.8±1.1 31.0±0.7 83.3±1.5
STDGL-c 51.0±1.4 56.7±1.3 66.2±1.3 95.9±0.6 50.5±1.1 56.6±0.9 61.7±0.9 96.7±1.0 21.3±1.2 24.1±1.1 23.9±0.4 87.4±0.7 25.1±0.9 21.6±0.5 24.5±0.8 81.1±1.6 27.9±1.2 25.7±1.1 31.5±0.7 84.5±0.8
STDGL-s 58.0±0.7 61.9±0.8 69.0±0.998.0±0.6 58.8±0.7 63.1±0.8 67.8±0.697.2±0.7 24.3±1.4 26.5±0.8 29.5±0.390.3±0.5 29.7±1.5 28.0±0.7 28.7±0.685.4±0.8 29.4±0.9 25.7±1.7 36.0±1.687.4±0.9

STDGL-both 57.1±0.8 60.3±1.5 68.1±0.897.2±0.7 54.4±0.8 57.8±0.6 63.8±0.8 97.1±0.9 22.0±0.9 24.8±0.7 25.3±0.6 89.1±0.8 26.9±0.7 23.3±0.7 25.5±0.9 84.1±1.5 28.9±0.8 24.5±1.4 32.8±0.9 84.5±1.1

Table 6: Comprehensive ablation experiments to verify the
effectiveness of each proposed component.

Model Reddit-T Reddit-B
MRR AUC MRR AUC

STDGL -w/o 𝐸𝑙 65.8 94.7 65.1 97.0
STDGL -w/o 𝐸𝑔 67.1 96.2 67.2 97.1
STDGL -w/o Pre-training 66.3 95.8 61.2 96.6
STDGL-s - Pre-training on Reddit-T - - 64.2 97.1
STDGL-s - Pre-training on Reddit-B 67.1 97.5 - -
DDGCL (linear probing) 45.3 62.1 43.9 61.8
DDGCL (fine-tuning) 66.3 95.8 61.2 96.6
STDGL-s (linear probing) 50.4 63.3 45.9 62.6
STDGL-s (fine-tuning) 69.0 98.0 67.8 97.2

Table 4: Comparison of node/edge classification performance
on three datasets in terms of F1. The two best results are bold
in red and blue, respectively.

Model Node classification Edge classification

Elliptic Bitcoin-OTC Bitcoin-Alpha
GCN [11] 42.9±1.9 80.1±1.3 77.3±1.6
GCRN [27] 60.9±1.4 82.2±1.7 68.1±1.2
EvolveGCN [25] 57.3±1.2 86.2±0.9 81.0±1.4
DDGCL [28] 60.3±1.8 88.1±1.2 82.3±1.1
STDGL-c 61.5±0.8 88.9±0.4 87.6±0.6
STDGL-s 61.8±1.1 89.2±0.7 86.5±0.5
STDGL-both 62.5±0.9 88.6±0.8 86.9±0.3

Table 5: Effectiveness of the proposed components in STDGL.
The best results are bold. Pre: Pre-training. Bit-O: Bitcoin-
OTC. Bit-A: Bitcoin-Alpha.

Model Losses
𝑆

Reddit-T Reddit-B UCI-M Bit-O Bit-A
L𝑡 L𝑟𝑒𝑐 L𝑑 MRR AUC MRR AUC MRR AUC MRR AUC MRR AUC

STDGL -w/o Pre - - - - 66.3 95.8 61.2 96.6 23.9 86.8 24.1 80.9 31.0 83.3

STDGL-s

✓ 66.5 96.0 61.6 96.7 24.4 86.1 25.5 81.8 33.4 84.7
✓ ✓ 67.4 96.9 63.8 96.9 26.1 87.7 27.1 82.2 35.0 84.8

✓ ✓ ✓ 68.2 97.4 65.4 97.0 27.9 89.4 27.6 83.1 35.1 85.1
✓ ✓ ✓ ✓ 69.0 98.0 67.8 97.2 28.0 89.5 28.7 85.4 36.0 87.1

4.4 Ablation Study
We show an ablation analysis of different losses and the seman-
tic augmentation matrix 𝑆 in STDGL-s in Table 5. Compared with
STDGL -w/o pretraining, STDGL-s with L𝑡 achieves improved per-
formance, validating its advantages for the various downstream
tasks. The improvement achieved by STDGL-s using L𝑟𝑒𝑐 and L𝑑

indicates the capability of encoder-decoder framework in capturing
the hidden embeddings. STDGL-s with all three losses performs
a higher result than using only L𝑡 or both L𝑟𝑒𝑐 and L𝑑 , indi-
cates these multiple losses can collaborate boosts the disentangled
representation learning. Besides, we observed that semantic aug-
mentation matrix 𝑆 yields a significant improvement to our model,
especially improvements of 0.8% MRR and 0.6% AUC obtained by
incorporating the semantic matrix on Reddit-T dataset, respectively.

In addition, to justify the effectiveness of the local connectivity
and global connectivity encoders, a careful ablation study is con-
ducted on the Reddit-T and Reddit-B datasets (the first part of Table
6). It corroborates that the local connectivity and global connectiv-
ity encoders are both effective and necessary for node embedding
learning. This result also demonstrates that modeling the node con-
nectivity from the local and global perspectives is complementary.
In other words, modeling global connectivity provides a powerful
complement to the common graph convolution operation.

4.5 Discussion
4.5.1 Partial fine-tuning. Weevaluate the pre-training performance
of STDGL-s and DDGCL [28] with two strategies including fine-
tuning and linear probing. The results in Table 6 demonstrate that
our STDGL-s surpasses DDGCL on Reddit-T and Reddit-B datasets
in both fine-tuning and linear probing, which indicates that STDGL-
s is capable of capturing the critical embedding of the data itself
in the pre-training and yield better generalized representations
regardless of linear probing and fine-tuning.

4.5.2 Transfer learning (Answer for Q2). To further investigate the
generalization ability of STDGL in representation learning, we
compare the pre-trained models from pre-trained individually on
the same and different datasets with the model from scratch, the
results are shown in the second part of Table 6. We can find that the
model pre-trained from the Reddit-T/Reddit-B for link prediction on
Reddit-B/Reddit-T achieves better performance than themodel from
scratch, demonstrating that STDGL-s can learn more transferable
representations to achieve better generalization and robustness via
pre-training. The results again demonstrate that self-supervised
learning enables the model to learn more generalized informative
knowledge through well-designed pretext tasks from the data itself
to achieve better performance.

WSDM ’24, March 4–8, 2024, Merida, Mexico Lingwen Liu et al.

Reconstructed
temporal consistency

graph

Original graph

Reconstructed
temporal shift

graph

Time Points

0 1 2 3 4 5 6 7 8 9 10

The difference of
graph structure

Denser

Sparser

0.753
3.406

8.197

4.11
0.741

5.023
1.236

9.326
3.449

1.126
0

4

8

Figure 5: Visualization of the graph evolution on the Bitcoin-OTC dataset. The temporal graph evolution is shown wrt. the
difference of graph structure. We also visualize the original graph𝐺𝑡 , the graph 𝐴𝑡

𝑠 reconstructed by temporal shift embedding
𝐹 𝑡𝑠 , and the graph 𝐴𝑡

𝑐 reconstructed by temporal consistency embedding 𝐹 𝑡𝑐 to better analyze the graph evolution trend. The 𝐴𝑡
𝑠

and 𝐴𝑡
𝑐 are obtained by the consecutive graph 𝐺𝑡−1 and 𝐺𝑡 with temporal shift and consistency embeddings, respectively.

Table 7: Results of various disentangling by number of con-
secutive graphs.

Model Consecutive Reddit-B Bitcoin-OTC Elliptic
MRR AUC F1 F1

STDGL-s
2 67.8 97.2 89.2 61.8
3 64.9 96.4 84.9 58.0
4 62.2 96.1 83.1 58.1

4.5.3 The effect of the number of consecutive graphs. Our goal is
to investigate whether more successive graphs engaged can better
disentangle the embeddings and improve the performance by better
modeling the temporal correlation. We conducted experiments on
the three downstream tasks, as shown in Table. 7. We find that using
three or four successive graphs becomes worse compared to only
two consecutive graphs, which suggests that the most recent infor-
mation is more influential than the earlier ones. This observation is
also consistent with the Markov assumption, which also suggests
that the current state is mainly influenced by the nearest state [7].
Moreover, involving more successive graphs leads to introducing
irrelevant information and noise to the disentanglement process,
limiting the model’s ability to capture the evolution dependencies of
graphs. Besides, if leveraging more than two successive graphs, the
amount of available nodes which simultaneously exist across the
multiple adjacent graphs becomes limited, resulting in insufficient
data for training our model.

4.5.4 Visualization of temporal shift and temporal consistency graphs
(Answer for Q3). In order to verify that temporal shift embedding
can reflect the critical temporal evolution mode, we provide a qual-
itative analysis showing that the reconstructed temporal shift and
consistency graphs through the disentangled latent embeddings
are consistent with the evolution of the original temporal graphs.
In this study, the original temporal graph evolution is intuitively
reflected by the structural difference between graphs 𝐺𝑡 and 𝐺𝑡+1.
From Fig. 5, We observe a global trend where a larger structural
difference corresponds to a higher density of temporal shift graphs,
e.g., 𝐴4

𝑠 and 𝐴9
𝑠 , demonstrating that the temporal shift embedding

can capture significant characteristics of graph evolution. Interest-
ingly, the temporal shift graphs are more sparse than the original

graphs and temporal consistency graphs, and there is a significant
difference between the two consecutive temporal shift graphs. It is
obvious that the reconstructed temporal shift graphs are consistent
with the perceptual difference in graph structure. The temporal shift
information provides insight into the inherent evolving patterns
and allows us to understand the natural mechanisms of dynamic
graph analysis task By disentangling the temporal shift informa-
tion from temporal consistency information, we can make a deeper
analysis of the dynamic graph’s evolution nature.

5 CONCLUSION
Traditional dynamic graph embedding learning models have the
limitations of insufficient consideration of complex temporal char-
acteristics and their impacts on graph dynamics. In this study, we
design a Self-supervised Temporal-aware Dynamic Graph represen-
tation Learning framework named STDGL for dynamic graph learn-
ing to address the mentioned limitations. Since dynamic graphs
evolve in terms of node and edge attributes over time, STDGL
learns dynamic node embeddings from both the node local as well
as global connectivity perspectives and disentangles the graph prop-
erties into temporal shift and temporal consistency parts during
pre-training. To constrain the disentangling, we introduce temporal
disentangling loss, topology reconstruction loss and discrepancy
loss to ensure the identification of temporal shift and temporal con-
sistency embeddings. Then, the disentangled temporal embeddings
are used for the dynamic graph tasks including link prediction, edge
classification and node classification. Our experiment results on
real-world datasets indicate significant performance over existing
static and dynamic graph embedding learning methods, and sug-
gest self-supervised learning based on well-designed representation
disentangling pretext task is essential for dynamic graph learning.

6 ACKNOWLEDGMENTS
This research was supported by the National Key Research and
Development Program of China (No.2020YFC0833302), the National
Natural Science Foundation of China under Grant 62076059 and
in part by the Science Project of Liaoning province under Grant
2021-MS-105.

Capturing Temporal Node Evolution via Self-supervised Learning: A New Perspective on Dynamic Graph Learning WSDM ’24, March 4–8, 2024, Merida, Mexico

REFERENCES
[1] Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V Chawla. 2022. Attre2vec: Unsu-

pervised attributed edge representation learning. Information Sciences 592 (2022),
82–96.

[2] Hongxu Chen, Hongzhi Yin, WeiqingWang, HaoWang, Quoc Viet Hung Nguyen,
and Xue Li. 2018. PME: Projected Metric Embedding on Heterogeneous Net-
works for Link Prediction. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (London, United Kingdom)
(KDD ’18). Association for Computing Machinery, New York, NY, USA, 1177–1186.
https://doi.org/10.1145/3219819.3219986

[3] Ke-Jia Chen, Jiajun Zhang, Linpu Jiang, Yunyun Wang, and Yuxuan Dai. 2022.
Pre-training on dynamic graph neural networks. Neurocomputing 500 (2022),
679–687.

[4] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (Anchorage, AK, USA) (KDD
’19). Association for Computing Machinery, New York, NY, USA, 257–266. https:
//doi.org/10.1145/3292500.3330925

[5] Shuyun Gu, Xiao Wang, Chuan Shi, and Ding Xiao. 2022. Self-supervised Graph
Neural Networks for Multi-behavior Recommendation. In Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22,
Lud De Raedt (Ed.). International Joint Conferences on Artificial Intelligence Or-
ganization, Vienna, Austria, 2052–2058. https://doi.org/10.24963/ijcai.2022/285
Main Track.

[6] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representa-
tion Learning on Large Graphs. In Advances in Neural Information Process-
ing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc., Long
Beach, CA, USA. https://proceedings.neurips.cc/paper_files/paper/2017/file/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

[7] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-Based
Recommendation. In Proceedings of the Eleventh ACM Conference on Recommender
Systems (Como, Italy) (RecSys ’17). Association for Computing Machinery, New
York, NY, USA, 161–169. https://doi.org/10.1145/3109859.3109882

[8] Tingsong Jiang, Tianyu Liu, TaoGe, Lei Sha, Baobao Chang, Sujian Li, and Zhifang
Sui. 2016. Towards Time-Aware Knowledge Graph Completion. In Proceedings
of COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers, Yuji Matsumoto and Rashmi Prasad (Eds.). The COLING 2016
Organizing Committee, Osaka, Japan, 1715–1724. https://aclanthology.org/C16-
1161

[9] Tingsong Jiang, Tianyu Liu, TaoGe, Lei Sha, Sujian Li, Baobao Chang, and Zhifang
Sui. 2016. Encoding Temporal Information for Time-Aware Link Prediction. In Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Process-
ing, Jian Su, Kevin Duh, and Xavier Carreras (Eds.). Association for Computational
Linguistics, Austin, Texas, USA, 2350–2354. https://doi.org/10.18653/v1/D16-1260

[10] Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. 2020. Multi-
Behavior Recommendationwith GraphConvolutional Networks. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (Virtual Event, China) (SIGIR ’20). Association for ComputingMa-
chinery, New York, NY, USA, 659–668. https://doi.org/10.1145/3397271.3401072

[11] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations. arXiv, Palais des Congrès Neptune, Toulon, France, 1–14.

[12] Srijan Kumar, William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2018. Com-
munity Interaction and Conflict on the Web. In Proceedings of the 2018 World
Wide Web Conference (Lyon, France) (WWW ’18). International World Wide Web
Conferences Steering Committee, Republic and Canton of Geneva, CHE, 933–943.
https://doi.org/10.1145/3178876.3186141

[13] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and
V.S. Subrahmanian. 2018. REV2: Fraudulent User Prediction in Rating Platforms.
In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining (Marina Del Rey, CA, USA) (WSDM ’18). Association for Comput-
ing Machinery, New York, NY, USA, 333–341. https://doi.org/10.1145/3159652.
3159729

[14] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.
2016. Edge weight prediction in weighted signed networks. In 2016 IEEE 16th
International Conference on Data Mining (ICDM). IEEE, IEEE, Barcelona, Spain,
221–230.

[15] Fuxian Li, Jie Feng, Huan Yan, Guangyin Jin, Fan Yang, Funing Sun, Depeng Jin,
and Yong Li. 2023. Dynamic graph convolutional recurrent network for traffic
prediction: Benchmark and solution. ACM Transactions on Knowledge Discovery
from Data 17, 1 (2023), 1–21.

[16] Yu Li, Yuan Tian, Jiawei Zhang, and Yi Chang. 2020. Learning Signed Network
Embedding via Graph Attention. Proceedings of the AAAI Conference on Artificial
Intelligence 34, 04 (2020), 4772–4779. https://doi.org/10.1609/aaai.v34i04.5911

[17] Siyuan Liao, Shangsong Liang, Zaiqiao Meng, and Qiang Zhang. 2021. Learning
Dynamic Embeddings for Temporal Knowledge Graphs. In Proceedings of the 14th
ACM International Conference on Web Search and Data Mining (Virtual Event,
Israel) (WSDM ’21). Association for Computing Machinery, New York, NY, USA,
535–543. https://doi.org/10.1145/3437963.3441741

[18] Kai Lin, Biao Jie, Peng Dong, Xintao Ding, Weixin Bian, and Mingxia Liu. 2022.
Convolutional recurrent neural network for dynamic functional mri analysis and
brain disease identification. Frontiers in Neuroscience 16 (2022), 933660.

[19] Jiaying Liu, Feng Xia, Xu Feng, Jing Ren, and Huan Liu. 2022. Deep graph
learning for anomalous citation detection. IEEE Transactions on Neural Networks
and Learning Systems 33, 6 (2022), 2543–2557.

[20] Lingwen Liu, GuangqiWen, Peng Cao, TianshunHong, Jinzhu Yang, Xizhe Zhang,
and Osmar R. Zaiane. 2023. BrainTGL: A dynamic graph representation learning
model for brain network analysis. Computers in Biology and Medicine 153 (2023),
106521. https://doi.org/10.1016/j.compbiomed.2022.106521

[21] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. 2020. Dynamic Joint
Variational Graph Autoencoders. In Machine Learning and Knowledge Discovery
in Databases, Peggy Cellier and Kurt Driessens (Eds.). Springer International
Publishing, Cham, 385–401.

[22] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. 2016. Holographic Em-
beddings of Knowledge Graphs. Proceedings of the AAAI Conference on Artificial
Intelligence 30, 1 (Mar. 2016). https://doi.org/10.1609/aaai.v30i1.10314

[23] Andreas Nugaard Holm, Barbara Plank, Dustin Wright, and Isabelle Augenstein.
2022. Longitudinal Citation Prediction using Temporal Graph Neural Networks.
In AAAI 2022 Workshop on Scientific Document Understanding (SDU 2022). AAAI
Press, United States.

[24] Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. 2009. Patterns and
dynamics of users’ behavior and interaction: Network analysis of an online
community. Journal of the American Society for Information Science and Technology
60, 5 (2009), 911–932.

[25] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hi-
roki Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. 2020. EvolveGCN:
Evolving Graph Convolutional Networks for Dynamic Graphs. Proceedings
of the AAAI Conference on Artificial Intelligence 34, 04 (Apr. 2020), 5363–5370.
https://doi.org/10.1609/aaai.v34i04.5984

[26] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.
DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-
Attention Networks. In Proceedings of the 13th International Conference on Web
Search and Data Mining (Houston, TX, USA) (WSDM ’20). Association for Com-
putingMachinery, New York, NY, USA, 519–527. https://doi.org/10.1145/3336191.
3371845

[27] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.
2018. Structured Sequence Modeling with Graph Convolutional Recurrent Net-
works. In Neural Information Processing, Long Cheng, Andrew Chi Sing Leung,
and Seiichi Ozawa (Eds.). Springer International Publishing, Cham, 362–373.

[28] Sheng Tian, Ruofan Wu, Leilei Shi, Liang Zhu, and Tao Xiong. 2021. Self-
Supervised Representation Learning on Dynamic Graphs. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management (Vir-
tual Event, Queensland, Australia) (CIKM ’21). Association for ComputingMachin-
ery, New York, NY, USA, 1814–1823. https://doi.org/10.1145/3459637.3482389

[29] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. stat 1050 (2017), 20.

[30] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. In International Conference on Learning Representations. Association for
Computing Machinery, New York, NY, USA.

[31] Jiaxuan You, Tianyu Du, and Jure Leskovec. 2022. ROLAND: Graph Learning
Framework for Dynamic Graphs. In Proceedings of the 28th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (Washington DC, USA) (KDD
’22). Association for Computing Machinery, New York, NY, USA, 2358–2366.
https://doi.org/10.1145/3534678.3539300

[32] Jiasheng Zhang, Shuang Liang, Yongpan Sheng, and Jie Shao. 2022. Tempo-
ral knowledge graph representation learning with local and global evolutions.
Knowledge-Based Systems 251 (2022), 109234.

[33] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2019. T-gcn: A temporal graph convolutional network for traffic
prediction. IEEE Transactions on Intelligent Transportation Systems 21, 9 (2019),
3848–3858.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://doi.org/10.1145/3219819.3219986
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.24963/ijcai.2022/285
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://doi.org/10.1145/3109859.3109882
https://aclanthology.org/C16-1161
https://aclanthology.org/C16-1161
https://doi.org/10.18653/v1/D16-1260
https://doi.org/10.1145/3397271.3401072
https://doi.org/10.1145/3178876.3186141
https://doi.org/10.1145/3159652.3159729
https://doi.org/10.1145/3159652.3159729
https://doi.org/10.1609/aaai.v34i04.5911
https://doi.org/10.1145/3437963.3441741
https://doi.org/10.1016/j.compbiomed.2022.106521
https://doi.org/10.1609/aaai.v30i1.10314
https://doi.org/10.1609/aaai.v34i04.5984
https://doi.org/10.1145/3336191.3371845
https://doi.org/10.1145/3336191.3371845
https://doi.org/10.1145/3459637.3482389
https://doi.org/10.1145/3534678.3539300

	Abstract
	1 Introduction
	2 Related work
	2.1 Dynamic Graph Embedding Learning
	2.2 Self-supervised Dynamic Graph Learning

	3 Methodology
	3.1 Notation and Problem Statement
	3.2 Method

	4 Experiments
	4.1 Datasets and Evaluation Metrics
	4.2 Methods for Comparison
	4.3 Results analysis (Answer for Q1)
	4.4 Ablation Study
	4.5 Discussion

	5 Conclusion
	6 Acknowledgments
	References

