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Abstract The class imbalance problem is a pervasive issue in many real-
world domains. Oversampling methods that inflate the rare class by gener-
ating synthetic data are amongst the most popular techniques for resolving
class imbalance. However, they concentrate on the characteristics of the mi-
nority class and use them to guide the oversampling process. By completely
overlooking the majority class, they lose a global view on the classification
problem and, while alleviating the class imbalance, may negatively impact
learnability by generating borderline or overlapping instances. This becomes
even more critical when facing extreme class imbalance, where the minority
class is strongly underrepresented and on its own does not contain enough
information to conduct the oversampling process. We propose a framework for
synthetic oversampling that, unlike existing resampling methods, is robust on
cases of extreme imbalance. The key feature of the framework is that it uses
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the density of the well-sampled majority class to guide the generation process.
We demonstrate implementations of the framework using the Mahalanobis dis-
tance and a radial basis function. We evaluate over 25 benchmark datasets,
and show that the framework offers a distinct performance improvement over
the existing state-of-the-art in oversampling techniques.

Keywords Machine learning · Imbalanced classification · Extreme imbal-
ance · Synthetic oversampling · SMOTE

1 Introduction

In this paper, we address classification problems involving extreme class imbal-
ance. We define extreme imbalances as having both an exceptional imbalanced
ratio between the classes (over 1:1000), as well as a very low absolute number
of minority class instances in the training set (often fewer than 20). These
challenging properties appear in many important classification domains, such
as gamma-ray spectral classification [17], fraud detection,[21], failure predic-
tion [18], etc. In general, synthetic oversampling has shown to be very effective
for managing class imbalance, and as a result, has received a large portion of
the research focus in recent years [6,7,4]. These algorithms, however, fail on
domains involving extreme imbalance. In spite of the importance of domains
involving extreme imbalance, there remains a dearth of research into means of
ameliorating performance on extremely imbalanced classification problems.

In our previous work, we postulated that in cases of extreme imbalance,
there is insufficient information encoded in the minority class to employ stan-
dard techniques for synthetic oversampling. Under these circumstances, we
demonstrated that superior performance improvements are achieved by em-
ploying a majority-focused strategy for generating synthetic minority training
examples. We denote this majority focused strategy by the moniker SWIM:
Sampling WIth the Majority [16]). In particular, we proposed an algorithm
that generates synthetic minority training examples that are a) near to their
minority seed, and b) have the same Mahalanobis distance to the mean of the
majority class as their seed. This ensures that the synthetic instances do not
spread into denser regions of the majority class where there is no statistical
evidence that they should be.

The intuition behind SWIM is that a) the synthetic minority instances
should be generated in regions of the data-space that have similar densities
with respect to the majority class as the real minority instances, and b) that
they should be generated in regions that neighbour the real minority instances.
Specifically, instead of asking: given the minority class data, where should the
new minority class instances be generated, we ask: given the majority class
data and the relative position of the minority class instances, where should
new minority class instances be generated. In this work, we generalize SWIM
by offering a non-parametric alternative to the Mahalanobis distance, which
uses radial basis functions. Moreover, we discuss how SWIM and SMOTE can
be formed into a pipeline to combine their relative strengths.
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Fig. 1: Illustration of the SMOTE procedure generating synthetic minority instances (red
squares) inside the majority class (blue circles) on the left, and the SWIM framework using
the relative density of the minority class instances (grey circles) to guide the generation
process and avoid erroneous regions of the majority class (right).

The SWIM framework is presented on the left in Figure 1 and contrasted
with SMOTE on the right. SMOTE is the standard approach to synthetic
oversampling. It generates new minority instances by interpolating points at
random distances between nearest neighbours in the minority class [6]. In
this sense, SMOTE is a minority-focused approach, which we contrast with
our majority-focused approach. The minority-focused approach ignores the
majority class, thereby rendering it susceptible to generating samples far from
the local neighbourhood of the minority class seeds, and in high-density regions
deep inside the majority class. This risk increases with the severity of the
imbalance. Post-hoc cleaning by removing Tomek links and the Edit Nearest
Neighbour Rule have been proposed to deal with this [19,22]. In practice, their
effectiveness can be limited and hard to predict. This is exacerbated in cases
of extreme imbalance.

Alternatively, the image on the right in Figure 1 demonstrates that the
instances generated by SWIM (red squares) are in the same neighbourhood
as their minority class seeds (grey circles), and that they are in regions of
the data-space with the same density with respect to the majority class as
their minority class seeds (p̂+(GENERATED) = p̂+(SEED))1. The density
contours are shown as black rings in the image.

We evaluate SWIM and five other state-of-the-art methods for resampling
on 24 benchmark datasets of extreme imbalance. Our performance analysis
shows that SWIM provides greater performance enhancements, in terms of the
geometric mean (g-mean), than the existing state-of-the-art in oversampling
techniques on extremely imbalanced domains.

2 Related Work

In this work, we focus on supervised binary classification problems over highly
imbalanced domains. The process of binary classification utilizes a training set

1 In practice, we soften the equality to be less than or equal to.
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Xn×m ∈ R and corresponding labels Yn ∈ {0, 1}. The objective is to induce
a function, f(xi) → yi, that maps the training instances xi ∈ X to their
corresponding class labels yi ∈ Y . This problem is made more challenging in
imbalanced domains where there are far fewer examples of the minority class
Xmin, y = 1 than of the majority class, Xmaj y = 0. This has been shown
to cause the induced classifier f(·) to become biased towards the larger class,
thus leading to poor performance [11].

Two paradigms exist for dealing with imbalanced classification problems.
When the minority class is rare or unavailable, one-class classification is ap-
plied. However, binary learning quickly becomes advantageous as the number
of instances increases [5]. This has motivated research into extending the use-
fulness of binary classifiers to increasingly imbalanced domains. This is done
via re-sampling the training data, cost-adjustment and/or algorithm modifi-
cation [8,20]. Re-sampling is the most commonly applied of these techniques;
it is often favoured because it has been shown to produce robust performance
gains, and can be applied with any classifier. In this paper, we focus on re-
sampling approaches.

The most basic re-sampling strategies are Random UnderSampling (RUS),
and Random OverSampling (ROS). These balance class distributions in the
training set by randomly discarding instances of the majority class, and/or by
randomly replicating instances of the minority class. These strategies, however,
suffer from the loss of information and the risk of overfitting, respectively.

To avoid these shortcomings, and to expand the regions of the data-space
occupied by the minority training instances, the Synthetic Minority Oversam-
pling TEchnique was proposed (SMOTE) [6]. It produces a balanced training
set by interpolating synthetic instances between nearest neighbours in the set
of minority class instances in the training set. This procedure relies entirely
on the minority class training instances; the outcome is that the resulting syn-
thetic data is situated within the convex-hull formed by the minority class.
Because the majority class is disregarded, the convex-hull may overlap ma-
jority class. In such circumstances, applying SMOTE can actually degrade
performance. This outcome becomes increasingly likely with greater class im-
balance.

In order to address this weakness in SMOTE, more recent methods have
incorporated the majority class into the re-sampling process, or used it to clean
the re-sampled training data after SMOTE is applied. Cleaning techniques in-
clude the removal of Tomek links and the Edit Nearest Neighbour rule [19]. The
re-sampling process has been altered to account for the class density around
the minority class instances. This is the case with Adaptive Synthetic Over-
sampling (ADASYN), borderline SMOTE, and Majority Weighted Minority
Oversampling Technique [9,10,3]; the only majority class information used is
that which is present within the local neighbourhood of the generated sam-
ple. In these methods, the distribution of the minority class remains the key
component of the generative process. Consequently, an insufficient number of
minority samples will negatively impact the generative process.
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In addition to the SMOTE-based methods that rely on the Euclidean dis-
tance to the k -nearest neighbours, Abdi et. al [1] proposed the use of the
Mahalanobis distance (MD) for synthetic minority oversampling. The funda-
mental distinction with our method is that they do not utilize the majority
class information. Rather, they generate synthetic samples using the MD cal-
culated on the small, and potentially error prone, minority class training set;
new samples are generated at the same MD as a reference minority point from
the minority class mean. Therefore, this method is susceptible to failure due
to the limitations of the dearth of minority class data in the training set,
as the estimated mean and covariance matrix would be unrepresentative of
the latent minority distribution. Radial basis functions have previously been
demonstrated to work well for oversampling in case of moderate class im-
balance [12]. This approach utilizes the difference between the density in the
minority and majority classes to identify safe locations from which to generate
samples. As with the previously discussed methods, this method limited due
to its reliance on the minority class.

At their core, all current state-of-the-art oversampling methods still rely
on the representativeness of the minority class instances to produce a benefi-
cial synthetic set. Alternatively, our method does not make any assumptions
regarding what the minority class represents, except where existing samples
are positioned with respect to the majority class. The information for generat-
ing synthetic samples comes from the populous majority class, and thus, our
method is effective for classification problems in which the minority class is
rare, a situation that is both common and of great importance [13].

3 SWIM Framework

Instead of relying on the position and distance between minority class in-
stances, the SWIM framework utilizes the density of each minority class in-
stance with respect to the distribution of the majority class in order to de-
termine where to generate synthetic instances. This is abstractly described in
Algorithm 1. The key components of SWIM are the density estimation and
the shift procedures. Any appropriate method for density estimation can be
applied. In the subsequent sections we present the use of the Mahalanobis dis-
tance and the radial basis function for this purpose. The shift function takes a
minority seed and serves to generate a synthetic instances that is close to the
seed and has approximately the same density.
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Fig. 2: Illustration of the Mahalanobis distance between two points A and B from the mean.
Both points have the same Mahalanobis distance, but different Euclidean distances from the
mean.

Algorithm 1 SWIM Framework(A,B,n)
Input:
A, Majority class instances.
B, Minority class instances.
n, Number of minority samples to generate.
Output:
B′, n synthetic minority samples.
Method:

1: p̂dfA ← A: Estimate a density function from A.

2: d← p̂dfA(B): Record the minority class densities.
3: while more samples do
4: b← Bi: select a random minority instance.
5: d← di: get its density w.r.t. A.
6: b′ ← shift(b, d): shift b to a neighbouring region with density d.
7: B′ ← [B′, b′]: add b′ to B′

return B‘

3.1 Mahalanobis Oversampling

The Mahalanobis distance (MD) provides a fast and efficient means of imple-
menting the SWIM framework. The MD calculates the distance between the
mean of the majority class distribution, and a minority class seed point. The
calculation accounts for the density along the path between the mean and
seed points. Thus, two points have the same MD from the mean if they lie
on the same hyperelliptical density contour. This is contrasted with Euclidean
distance in Fig. 2. Given a minority seed, according to the SWIM framework,
any point in the nearby regions of the data-space with the same MD can be
sampled as a synthetic minority training instance.

The calculation of the MD involves knowing the mean µ and the covari-
ance matrix Σ of the distribution. In practice, however, the parameters are
estimated as µ and Σ on a sample population. Larger, more representative
sets, such as is typical in the majority class training data, produce better
estimates of these parameters.

Line 1 of Algorithm 1 for SWIMMD involves applying some preprocessing
steps to simplify the data generation procedure and the estimation of µ and
Σ from the majority class instances. The steps are as follows:
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Step 1 Centre the majority and minority classes: Centring the data
simplifies the calculation of the distances; this will be evident in the first
step of the generation process. Let µa be the feature mean vector of the
majority class A. We centre the majority class to have 0 mean, and then
centre the minority class with mean vector of the majority class:

Ac = A− µa

Bc = B − µa

(1)

Step 2 Whiten the minority class: Let Σ denote the estimated covariance
matrix of Ac, and Σ−1 denote its inverse. Σ−

1
2 is the square root of Σ−1.

We whiten the centred minority class as:

Bw = BcΣ
− 1

2 (2)

The MD is equivalent to the Euclidean distance in the whitenend space of
a distribution. Thus, by whitening, we simplify the calculations for gener-
ating synthetic data. This simplifies the shift procedure.

Step 3 Find feature bounds: These are used to bound the spread of the
synthetic samples. For each feature f in Bw, we find its mean µf and
standard deviation σf . We then calculate an upper and lower bound on its
value, uf and lf , as follows:

uf = µf + ασf

lf = µf − ασf
(3)

α ∈ R controls the number of standard deviations we want the bounds to
be. Therefore, larger α values cause a greater amount of spread along the
corresponding density contour.

Lines 3 - 7 of Algorithm 1 are repeated until the user-specified number of
synthetic samples are generated. In practice, we repeat this until the classes are
balanced. Within the loop, we select a minority staple bi at random and apply
the shift procedure which returns a synthetic instances. The shift procedure
for SWIMMD is carried out as follows:

Step 1 Generate new samples: For each feature f , we generate a random
number between uf and lf . Thus, we obtain a sample point, b′i in the
whitened space, where each feature b′i,f is lf ≤ b′i,f ≤ uf . We generate
a sample that is at the same Euclidean distance from the mean of the
majority class2. Since we centred the data, this implies that the new sample
will have the same Euclidean norm as the minority seed bi. Therefore, we
transform b′i as:

bnormi = s
‖bi‖2
‖b′i‖2

(4)

2 This takes advantage of the whitening done in the preprocessing, as instead of dealing
with the MD, we can use the Euclidean distance.
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Step 2 Scale sample back to original space: bnormi exists in the whitened
space of the minority class, with the same Euclidean distance from the
mean vector 0 as bi in the whitened space. We now have to transform the
point back into the original space. This is done as:

b′′i = (Σ−
1
2 )−1bnormi , (5)

where the synthetic sample b′′i will be in the same density contour as its mi-
nority seed instances bi.

As the method involves the computation of matrix inverses, if there are
linearly dependent columns, the calculations will fail. To handle this case, we
check the rank r of the majority class A. If r < d, where d is the dimensionality
of A, then we calculate the QR-decomposition of A. The non-zero values of
the resulting upper-triangular matrix correspond to the linearly independent
columns of A. Using the steps outlined above, we can then oversample and
classify the data in the sub-space defined by the features represented by these
columns.

3.2 Radial Basis Oversampling

To implement a non-parametric form of SWIM, we propose the use of a radial
basis function (RBF) with a Gaussian kernel to estimate the local density of
the minority class samples with respect to the majority class. The Gaussian
kernel takes a distance r and a smoothing parameter ε and is computed as:

φ(r) = exp−(εr)2 (6)

For ε values closer to zero, the result is a flatter, wider basis function, whereas
as ε → ∞ all of the weight is placed at the sample points. The latter results
in a distribution with density spikes at each majority class point. Typically,
the optimal choice of ε is a value close to zero.

As a reasonable default, we set the shape parameter, ε to be ε = ασd,
where d and σ are the mean and standard deviation of the distance between
points in A, and α = −0.5. This keeps the parameter relatively small, and
ensures it to be increasingly small for increasingly sparse data. This causes
the function to be smoothing, leading to better generalization in practice.

To estimate a score for minority instance b ∈ B with respect to the majority
class A that is analogous to a density, we sum over the RBFs between b and
each ai ∈ A instance in the majority class:

rbf score(b) =

|A|∑
i=1

φ(||ai − b||2) (7)

For sample generation, the rbf score can be used to find regions of the
data-space that neighbour the minority seed b and have similar estimated
densities. In practice, we consider any region of the data-space with an equal
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Fig. 3: Example of potential regions from which to draw synthetic minority samples

or lower rbf score as being a candidate location for a synthetic minority in-
stances.

The regions of the data-space that are shaded white in Figure 3 have the
same density as the seed, and the areas shaded red have lower densities. The
white and red regions form the set of potential points from which to generate
synthetic minority samples. We constrain this by dictating that the samples
be dawn from close to the seed.

The SWIMRBF implementation of Algorithm 1 does not require learning a
model of the majority class instances A in line 1. However, we do apply some
initial processing that is worth noting. In particular, we standardize the data
to have mean zero and unit standard deviation, and calculate the mean and
standard deviation of the distances between majority class instances. These
are utilized in setting the ε parameter and the step size in the Gaussian jitter
used in the shift function. At this point, a ball or KD Tree can also be construct
to improve the efficiency of estimating the density.

The values of the vector d in line 2 of Algorithm 1 are calculated with the
RBF approach by applying the rbf score to each minority instance bi ∈ B.
Given a minority seed bi, the shift procedure for the RBF implementation of
SWIM is shown in Algorithm 2. The process involves sampling the data-space
around the seed to find points with approximately the same density as the seed.
In particular, for a given seed, bi, a synthetic sample b′i is produced by applying
Gaussian jitter to the seed in line 2, and calculating the RBF density at the
candidate sample point in line 3. This is repeated until a candidate sample
with b′score ≤ bscore is found. However, we limit the number of attempts to
a fixed size. If after maxAttempt = 5 tries no point is sampled from in the
neighbourhood of the seed with equal or lower density than the seed, then the
seed itself is replicated. In practice, however, the max will not be reached if
the step size is small and ε is sufficiently small.

The generation process is repeated by randomly selecting minority in-
stances and generating a new synthetic instance until classes are balanced
or a user-specified number of instances are produced.
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Algorithm 2 shiftRBF (b, bscore A, σ)
Input:
A, Majority class instances.
σ, Standard deviation for Gaussian jitter.
b, Minority seed instance.
bscore, Estimated density of the seed, b, w.r.t A.
Output:
b′, A synthetic minority sample.
Method:

1: repeat
2: b′ ← b+N (0, σ): Apply random jitter to b.
3: b′score ← rbf scoreA(b′): Estimated density of b′ w.r.t. A
4: until b′score ≤ bscore & attempts ≤ maxAttempts
5: if attempts ≤ maxAttempts then
6: b′ ← b
7: return b′

3.3 SWIM Demonstration

3.3.1 RBF Density Estimation

As previously discussed, the ε parameter of radial basis function controls the
smoothness of the density distribution. As a result, ε is the parameter that
impacts where SWIMRBF draws its set of penitential synthetic samples from.
Although we find that setting the ε value based on the euclidean distance be-
tween majority class instances works well in practice, it is possible to optimize
this using cross-validation.

We provide Figure 4 in order to assist readers in understanding the impact
of setting the ε parameter. This figure shows the resulting density distribu-
tions estimated from the majority class samples (red squares) for ε values
{1, 1.25, 1.5, 1.75, 2}. The effect is that the density distribution is smoother
and less moon-shaped for ε = 1, whereas, ε = 2 has more variation in the
density and a more exaggerated moon-shape.

By qualitatively examining these plots it appears that a good ε value
is likely between 1.5 and 1.753. The density distribution for this range of ε
matches the moon-shape well, whilst the density drops off a moderate rate
away from dense regions of the majority class. Alternatively, with the smaller
ε values the shape is not well matched, and with a larger ε density scores
quickly drops away from the majority class samples.

3.3.2 Resampling and Classification

Figure 6 presents a comparison of the decision surfaces produced by SVM clas-
sifiers on the moon-shaped imbalanced dataset without resampling (top left),
with SMOTE (top right), with SWIMMD (bottom right) and with SWIMRBF

3 Using our default setting based on the mean distance between majority class samples,
ε is set to 1.68.
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Fig. 4: This figure demonstrates how the increase in the epsilon parameter affects the smooth-
ness of the density function on a toy dataset.

(bottom left). This figure depicts both the training, testing and synthetic in-
stances. This is done in order to paint a clear picture of whether each re-
sampling method generates synthetic instances in regions that are reflective
of the underlying distribution. In addition, this enables the reader to see if
the synthetic samples have a positive impact on the induced decision surface
(i.e., is the decision surface learned on the training data a good match to the
test data?) The minority instances are blue and the majority instances are
red in each plot. The training instances are plotted as squares and the testing
instances are plotted as circles. The score in the bottom right corner of each
figure shows the geometric mean on a test set.

This overlay provides evidence regarding the merit of each resampling
method. The plots highlight how the different means of generating synthetic
samples impact the learned decision surfaces. In particular, they demonstrate
that SWIM produces a smoother synthetic minority distribution than SMOTE
and that the distribution spreads in directions that have a more beneficial im-
pact on the learned decision boundary.

4 Experiments

4.1 Set-up

We compare the SWIMMD and SWIMRBF implementations of the SWIM
framework to the state-of-the-art resampling methods for class imbalance. The
latter includes SMOTE, SMOTE with the removal of Tomek links (SMOTE+TL),
SMOTE with edit nearest neighbours (SMOTE+ENN), borderline SMOTE
(Bord), adaptive synthetic sampling (ADASYN), and no resampling (None).
For each of the SMOTE-based methods K=5 and K=7 were used.
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Fig. 6: This figure demonstrates how the decision surface (shown as the red-blue gradient) of
an SVM classifier changes as a result of resampling with SMOTE, SWIMMD and SWIMRBF

on a toy dataset.

We set α = 0.5 and test ε = {0.5, 1, 3, 5} for SWIMRBF . SWIMMD has a
single parameter α ∈ R, which controls the potential step size from the seed.
We tested α = {0.25, 0.5, 1}.

In each experiment, we test the following base classifiers: näıve Bayes, k -
nearest neighbours, decision trees, support vector machines, and multi-layer
perceptron classifiers. For each classifier, the default settings from the Python
Scikit-learn [15] are used. From the list base classifiers, we select the best
coupling in classifier with each of resampling method for each domain and
perform our analysis is performed using these sets ups.

The evaluation is performed on 24 benchmark datasets (see Table 1) from
the KEEL repository [2]. From each KEEL dataset, D, we created 6 sub-
problems in which the minority class size is artificially down-sampled to 3, 5,
10, 15, 20, 30. Therefore, we ran experiments on 24 × 6 = 156 imbalanced
classification problems. This down-sampling strategy enables us to study the
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Table 1: This table lists the dimensionality of each dataset used in the evaluation, along
with the number average number of majority class training instances, and the imbalance
ratio for training sets with 5,15 and 30 minority class instances.

Dataset Dimensions |Maj| 5/|Maj| 15/|Maj| 30/|Maj|
abalone9-18 8 342 0.015 0.043 0.058
bands 19 114 0.044 0.133 0.263
coil2000 85 4621 0.001 0.003 0.006
ecoli1 7 131 0.038 0.114 0.236
ecoli3 7 142 0.035 0.098 0.113
glass1 9 68 0.074 0.234 0.405
heart 13 82 0.061 0.190 0.380
ionosphere 33 116 0.043 0.134 0.283
mammographic 5 207 0.024 0.068 0.141
new-thyroid1 5 90 0.056 0.165 0.163
poker 8,9 vs 6 10 733 0.007 0.019 0.021
ring 20 1860 0.003 0.008 0.016
segment0 19 987 0.005 0.015 0.031
sonar 60 55 0.091 0.288 0.517
spambase 57 1383 0.004 0.011 0.021
spectfheart 44 102 0.049 0.138 0.267
vehicle0 18 322 0.016 0.047 0.091
vehicle1 18 316 0.016 0.047 0.092
vehicle3 18 315 0.016 0.047 0.094
vowel0 13 446 0.011 0.033 0.067
wdbc 30 180 0.028 0.088 0.164
wisconsin 9 214 0.023 0.070 0.134
yeast3 8 660 0.008 0.023 0.044
yeast4 8 660 0.008 0.023 0.044

behaviour of each resampling algorithm on increasingly extreme levels of ab-
solute and relative imbalance. We randomly repeat each sub-problem 30 times
and record the average performance in terms of the g-mean.

The g-mean provides a combined assessment of accuracy on the target and
the outlier class in a single value [14]. Given the accuracy on the target class
a+ and the accuracy on the outlier class a−, the g-mean for a classification
model f on test set X is calculated as: g −meanf(X) =

√
a+ × a−.

4.2 Results

4.3 Rank Analysis

Table 2 shows the number of times each resampling method led to the best
performing classifier for experiments with increasingly extreme levels of im-
balance. The resampling methods are listed in the first column. Each of the
remaining columns correspond to the sub-problems of training on 3, 5, 10, 15,
20, and 30 minority instances for each of the 24 datasets. The table shows
that the SWIM framework (particularly SWIMRBF ) dominates on the more
extreme levels of imbalance. For minority training sizes 20 and 30, the SWIM
framework remains competitive, but the results are more mixed.
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Table 2: Number of times each resampling method was best across all datasets on each
minority training set size.

Minority Training Size
Method 3 5 10 15 20 30

SWIMRBF 12 13 12 12 6 7
SWIMMD 7 3 1 1 5 5
ADASYN 3 2 3 3 4 2
Bord 0 0 1 1 2 1
SMOTE 1 2 2 2 4 1
SMOTE+TL 1 3 2 2 3 6
SMOTE+ENN 1 1 2 2 0 2
None 0 1 2 2 1 1

Figure 7 presents box plots of the ranks of each resampling method on
the six imbalanced sub-problems. These plots provide additional evidence of
the superiority of the SWIM framework on highly imbalanced problems. In
particular, they show that SWIMRBF and SWIMMD have the best average
ranks, and that low variances in their ranks relative to the other methods.
This is most notably the cases for up to minority training sizes of 15.

We employed the Friedman test to asses the statistical significance of the
rankings for each sub-problem and found that the null hypothesis can be reject
at an α value of 0.05 for minority training sizes of 3,5,10,15. The Nemenyi post-
hoc test finds a statistical significance between SWIMRBF and all methods
except SWIMMD for minority training sizes 3,5,10.

4.4 Relative Performance Analysis

The bar plot in Figure 8 shows the relative difference in g-mean produced
by the best SWIM system versus the best alternative for each data set with
minority training sizes 3,5,10 and 20. We have left out sizes 15 and 30 to
ensure the presentation remains clear. Nonetheless, the trend is consistent
across the omitted sizes. The dataset names are stated on the y-axis and
the difference g-mean(SWIM) − g-mean(Alt) are plotted against the x -axis.
Bars to the right show better performance for SWIM, and those to the left
indicate better performance for the alternative resampling method. In order
to clarify the performance trends, the datasets are sorted according to the
relative differences over minority training sets of size 3.

These results once again demonstrate that SWIM performs well on all
training sizes, but has a stronger advantage over more extreme imbalance.
In addition to the number of wins, it also wins by a larger margin on these
datasets. The tables showing the g-mean scores for each method are included
in the appendix.

In the comparison between the use of MD versus RBF implementations
of SWIM, the trend is that RBF has an advantage over MD on the more
extreme cases of imbalance. This is demonstrated in Figure 8. It shows the
performance of the best classification systems involving SWIMRBF , SWIMMD
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Fig. 7: Boxplots showing rank of each resampling method over all of the datasets in each
sub-problem of minority training sizes 3,5,10,15,20 and 30. In these figures SW indicates
SWIM and SM indicates SMOTE. The y-axis shows the ranks over which each method is
distributed and the x -axis specifies the resampling method.

and None on the sub-problems with minority training sizes 20 and 3. In general,
preprocessing with either SWIM beats the baseline on all cases for size 3 and
all but one cases for size 20. With respect to the SWIM implementations,
SWIMRBF is best on 17 out of 25 datasets for minority training size 3, and
13 out of 25 times for minority training size 5.
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Fig. 8: Bar plots highlighting the difference in g-mean for the best SWIM system versus
the best alternative resampling system (Alt best) on each dataset with minority training
sizes 3, 5, 10 and 20. The differences are calculated as g-mean(SWIM)− g-mean(Alt) and
displayed on the x -axis. Each dataset is specified on the y-axis, and the colours of the bars
indicate the minority training size. Positive values indicate better performance by SWIM,
where as negative values indicate better performance by the alternative method.

4.5 Performance Curves

Figure 9 displays the performance curves for each resampling method on the
monk-2 and vowel0 datasets. The plots show the minority training size on the
x -axis and the average g-mean on the y-axis. These represent typical examples
of how the relative performances of the resampling method evolve with the
changing level of imbalance. In particular, we see that SWIM generally has a
strong advantage on the extreme levels of imbalance, and the performances of
the resampling methods begin to converge around 20 or 30 minority samples.

5 Discussion

Using PCA analysis, we are able to identify categories of datasets where SWIM
works best, and others where the SMOTE-based alternatives are strong. Fig-
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Fig. 9: Performance curves showing the relationship between g-mean and the number of mi-
nority training instances on the monk-2 (left) and vowel0 (right) datasets for each resampling
method.

Fig. 10: PCA plots for the Band and Sonar datasets.

ure 8 reveals that the SMOTE-based alternative is better on the Bands and
Sonar datasets at all levels of imbalance. The PCA plots for these datasets are
presented in Figure 10.

Through our empirical analysis, we have found that The SMOTE-based
strategy (particularly with some cleaning) have an advantage over datasets
in which the minority class has a single cluster of points that are close to-
gether. In these cases, linear interpolation is an effective sampling bias. Heavy
overlap of the single minority cluster with the majority class is also a prop-
erty that appears in the datasets where SMOTE is generally strong. In these
cases, generating in dense regions of the majority space that neighbour the
minority seeds is essential to improving the classification performance. Alter-
natively, the SWIM methods avoid higher density areas of the majority class
space. Therefore,on domains with these properties, classifiers induced on data
from SWIM undergeneralize. It is possible to relax this property of the SWIM
algorithm, but we expect that this would often be harmful.

SWIM produces good results on most datasets that do not have the afore-
mentioned properties. These represent a large majority of the datasets in our
study, and in real-world applications. During our analysis, we have identified,
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Fig. 11: PCA plots for the Ionosphere and heart datasets.

Fig. 12: Comparison of using RBF versus Mahalanobis implementations of SWIM. The plot
shows the g-mean for datasets with minority training sizes 20 and the right plot is for
minority training sizes of 3.

however, that SWIM is particularly strong on datasets in which the minor-
ity class data is spread out, and potentially has many clusters. We also note
that SWIM performs well when the majority class density is non-uniform be-
tween the minority class instances. This is the case in the Ionosphere and heart
datasets. The PCA plots of these are presented in Figure 11.

We compare the performance of SWIMMD to SWIMRBF in Figure 12.
These show that on certain cases, SWIMMD has a strong advantage of SWIMRBF .
In conjunction with these results, we preformed the same empirical analysis
using PCA plots to examine the properties of the datasets where SWIMMD
works better that SWIMRBF . This confirmed our hypothesis that SWIMRBF
would have a strategic advantage on datasets with more complex, non-Gaussian
majority classes, such as Segment0 and spambase. Alternatively, SWIMMD
performs very will on datasets, such as Coil2000 and Monk-2 and Glass, where
the distribution is closer to a Gaussian. We present an example of PCA plot
for each of these in Figure 13.
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Fig. 13: PCA plots for the coil2000 and spambase datasets.

5.1 Resampling Parameter

The parameters in many resampling methods can have a significant impact on
the performance of the induced classifiers. SMOTE, SWIMMD and SWIMRBF

each have parameters (K, α, σ) that impact the spread of the synthetic in-
stance through the data-space. With respect to SMOTE, K is an integer in the
range of 1 and one minus the size of the minority class (K ∈ {1, |B| − 1}). In-
creasing value of K allows synthetic samples to be generated between minority
class seed and more of its distant minority class neighbours. Larger K-values
cause the induced classifier to generalize a larger area of the data-space for
the minority class. Setting K too large, however, can lead to synthetic in-
stances being generated deep inside the majority class space (as we previously
demonstrated in Figure 1.)

Similarly to the K value in SMOTE, increasing α parameters in SWIMMD

and the σ value in SWIMRBF increases the spread of the synthetic samples,
and therefore the generalization of the induced classifier. The key difference is
that the SWIM algorithm will only generate synthetic instances in regions of
the data-space with similar densities as the minority seeds. Therefore, unlike
SMOTE, there is no risk of spreading synthetic samples deep inside the major-
ity class. Because the SWIM algorithm will not generate samples in harmful
regions, using a naive setting of it is less likely to have a negative impact on
classifier performance than the K parameter in SMOTE.

Another advantage of the real-valued spread parameter in SWIM in com-
parison to SMOTE is that small adjustments in the parameters of SWIM cause
smooth, small changes in the distribution of the synethetic samples. Alterna-
tively, increasing or decreasing the K vale of SMOTE by one can have a drastic
impact on the distribution of the synthetic instances. This is particularly the
case in domains with extreme imbalance. As a result, the performance of clas-
sifiers induced on data including synthetic instances from SWIM is consistent
across small changes in the spread parameters, whereas classifier performance
may change drastically with the value of K.
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5.2 Run-time Complexity

An advantage of the SMOTE algorithm is that it has a relatively low run-
time complexity. For the basic algorithm, it requires finding the k-nearest
minority class neighbours of each minority class instance. For a single minority
class instance, its k-nearest neighbours can be found in O(kn), where n is the
number of sample, and k is the number of neighbours. This is repeated n
times (once for each minority class seed), and then synthetic samples can be
generated a between the seed and a random neighbour in constant time.

In comparison, the SWIM algorithms are composed of two algorithms; the
modelling step (Algorithm 1) and the shift step (Algorithm 2), which generates
a sample from a minority seed.

To efficiently implement SWIMRBF , the first step involves constructing a
ball tree from the majority class instances. This can be done in O(n log n).
Conversely to SMOTE, the n in this case represents the number of instances
in the majority class, which is much larger. Once the tree is constructed, each
rbfscore of each candidate synthetic sample is calculated in O(n log n) time.
In the the worst case, this is repeat for m×maxAttempts times, where m is
the number of synthetic samples needed, and maxAttempts is the maximum
number of times we can attempt to satisfy the condition b′score ≤ bscore in line
4 of Algorithm 2.

The run-time complexity of SWIMMD is dictated by the matrix inversion
and multiplication operations. Let a be the number of instances in the majority
class, and b be the number of instances in the minority class. Let d be the
dimensionality of the data, and n = a + b be the total number of instances
available for training. The complexities of the computation of the mean vector,
covariance matrix and the inverse of the covariance matrix are O(ad), O(ad2)
and O(d2.37) respectively. The centring step has a complexity of O(n), whereas
the computation of the square root and the whitening operation have O(d3)
and O(bd2) time complexity. Finding the feature bounds has O(d) complexity,
and sample generation hasO(btd) complexity, where t is the number of samples
to generate for each minority class sample. Finally, scaling back the generated
samples to the original space involves matrix multiplication with the square
root of the inverse, and thus the operation has a complexity of O(btd2).

Although the run-time complexities of the SWIM algorithms are slightly
greater than SMOTE, they come with the benefit of better results on case of
extreme imbalance. We argue that it is a necessary trade-off to achieve good
result on highly imbalanced problems. Moreover, it is only performed once
during the preprocessing stage, and thus, has a relatively minor impact on the
overall learning cost.

5.3 SWIM-SMOTE Cascade Ensemble

Given that SWIM has an advantage on the more extreme cases of imbalance,
and SMOTE is strong on the less extreme imbalance, a natural question is
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Table 3: Number of times each resampling method was best across all datasets on each
minority training set size.

Minority Training Size
Method 3 5 10 15 20 30

SWIM 13 10 10 10 8 8
SMOTE 3 4 5 5 6 6
SWIM+SMOTE 9 11 10 10 11 11

whether they can be applied as a cascade ensemble to produce better overall
results. We are specifically interested in if we can achieve performance gains by
applying SWIM to address the extreme imbalance, and then applying SMOTE
to the combined set of real and synthetic minority training examples. The
bottom row of Table 3 shows the number of times the the ensemble cascade
of SWIMMD+SMOTE was superior to just applying SWIMMD or SMOTE.

The combination leads to improved performance on approximately 10 of
the 25 datasets. Interestingly, these results appears to be independent of the
minority class training size. This is counter to our hypothesis that the combi-
nation would be most helpful on cases of more extreme imbalance. However,
more research is required on exactly how to optimize ensembles of resampling
systems. We set this out as a future direction for research in class imbalance.

6 Conclusion

Extreme class imbalance occurs in a wide variety of important domains. Re-
search related to it, however, has largely failed to design synthetic oversampling
methods that are effective on such domains. To address this, we introduce a
framework for synthetic oversampling, SWIM (Sampling WIth the Majority).
The key advantage of SWIM versus existing methods on extreme imbalance
is that SWIM utilizes the information offered by the majority class data to
generate synthetic minority class instances. This enables SWIM to generate
synthetic data in a manner that leads to a more general decision boundary
without encroaching too deeply into the majority class. Alternatively, tradi-
tional methods, such as SMOTE, apply a minority-focused resampling strat-
egy. This causes them to be heavily impacted by extreme imbalance, and often
leads to harmful encroachments into the majority class space.

We evaluate our proposed parametric and non-parametric implementations
of SWIM (SWIMMD and SWIMRBF ) against the state-of-the-art resampling
methods on 24 benchmark datasets of extreme imbalance. Our results, based
on the g-mean evaluation metric, show that classifiers trained on datasets
preprocessed with SWIM generally rank better than those trained with any
other method in cases of extreme imbalance, i.e. when datasets have fewer
than 20 minority samples. In comparison between SWIMMD and SWIMRBF ,
our results suggest that SWIMRBF robust on each of the evaluated minority
class sizes (3 - 50). However, SWIMMD is comparable or better on the larger
minority class sizes (30-50).
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Future work will explore other methods and aim to derive insights into the
relationships between their efficacy for generating samples, and the properties
of the dataset. Furthermore, the integration of both SWIM and SMOTE is an
exciting avenue for future work, as it harnesses the powers of both methods,
with SWIM generating enough data to rectify the extreme imbalance, and then
SMOTE generating more instances over a less extremely imbalanced dataset.
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A Tabulated Results

Table 4: G-Means for minority training size 3.

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

abalone9-18 0.274 0.619 0.606 0.515 0.288 0.637 0.497 0.495
bands 0.247 0.407 0.322 0.449 0.166 0.275 0.409 0.351
coil2000 0.143 0.174 0.422 0.385 0.155 0.135 0.110 0.095
ecoli1 0.609 0.862 0.808 0.852 0.764 0.815 0.879 0.805
ecoli3 0.706 0.881 0.800 0.868 0.811 0.861 0.877 0.872
glass1 0.320 0.491 0.590 0.528 0.403 0.458 0.424 0.526
heart 0.362 0.715 0.678 0.560 0.610 0.705 0.693 0.579
ionosphere 0.603 0.602 0.636 0.528 0.447 0.449 0.513 0.436
mammographic 0.519 0.794 0.807 0.712 0.667 0.690 0.745 0.668
monk-2 0.758 0.847 0.875 0.714 0.815 0.711 0.744 0.725
new-thyroid1 0.734 0.919 0.925 0.953 0.817 0.875 0.880 0.820
poker-8-9 vs 6 0.208 0.715 0.648 0.497 0.246 0.598 0.602 0.690
ring 0.154 0.513 0.482 0.541 0.228 0.170 0.219 0.131
segment0 0.648 0.929 0.686 0.913 0.721 0.909 0.878 0.889
sonar 0.278 0.530 0.376 0.427 0.458 0.570 0.543 0.593
spambase 0.293 0.692 0.556 0.441 0.266 0.437 0.503 0.482
spectfheart 0.132 0.732 0.744 0.643 0.506 0.674 0.668 0.678
vehicle0 0.330 0.776 0.686 0.644 0.382 0.657 0.765 0.666
vehicle1 0.198 0.545 0.530 0.440 0.188 0.527 0.483 0.490
vehicle3 0.201 0.538 0.550 0.459 0.099 0.441 0.396 0.530
vowel0 0.573 0.772 0.731 0.603 0.582 0.713 0.515 0.643
wdbc 0.721 0.909 0.895 0.875 0.835 0.821 0.844 0.832
wisconsin 0.758 0.960 0.917 0.955 0.896 0.883 0.837 0.923
yeast3 0.557 0.871 0.832 0.840 0.568 0.779 0.825 0.860
yeast4 0.628 0.819 0.801 0.692 0.466 0.713 0.714 0.645
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Table 5: G-Means for minority training size 5.

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

abalone9-18 0.459 0.690 0.664 0.621 0.543 0.665 0.613 0.713
bands 0.458 0.485 0.447 0.422 0.376 0.531 0.447 0.466
coil2000 0.508 0.476 0.503 0.389 0.430 0.412 0.418 0.394
ecoli1 0.784 0.893 0.806 0.856 0.841 0.874 0.875 0.863
ecoli3 0.757 0.881 0.827 0.875 0.867 0.875 0.872 0.860
glass1 0.523 0.568 0.578 0.632 0.612 0.631 0.584 0.592
heart 0.655 0.769 0.763 0.744 0.749 0.756 0.724 0.741
ionosphere 0.695 0.808 0.757 0.695 0.626 0.681 0.654 0.622
mammographic 0.696 0.828 0.833 0.804 0.749 0.776 0.820 0.809
monk-2 0.882 0.922 0.917 0.840 0.817 0.844 0.874 0.896
new-thyroid1 0.942 0.976 0.948 0.977 0.906 0.879 0.917 0.949
poker-8-9 vs 6 0.254 0.822 0.768 0.683 0.760 0.844 0.854 0.847
ring 0.612 0.896 0.887 0.853 0.655 0.410 0.483 0.474
segment0 0.797 0.947 0.833 0.917 0.908 0.944 0.918 0.950
sonar 0.384 0.648 0.417 0.499 0.552 0.683 0.676 0.656
spambase 0.522 0.724 0.630 0.620 0.431 0.576 0.670 0.693
spectfheart 0.527 0.710 0.786 0.729 0.712 0.684 0.681 0.704
vehicle0 0.543 0.815 0.812 0.788 0.639 0.785 0.747 0.827
vehicle1 0.424 0.651 0.653 0.602 0.400 0.570 0.579 0.612
vehicle3 0.352 0.656 0.631 0.563 0.416 0.547 0.557 0.544
vowel0 0.751 0.883 0.811 0.789 0.593 0.775 0.742 0.805
wdbc 0.924 0.938 0.933 0.928 0.922 0.912 0.885 0.904
wisconsin 0.910 0.967 0.955 0.961 0.923 0.950 0.942 0.951
yeast3 0.630 0.901 0.891 0.815 0.793 0.885 0.859 0.837
yeast4 0.545 0.828 0.805 0.721 0.602 0.808 0.813 0.787

Table 6: G-Means for minority training size 10.

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

abalone9-18 0.611 0.718 0.709 0.698 0.635 0.703 0.705 0.686
bands 0.412 0.541 0.507 0.438 0.549 0.587 0.538 0.563
coil2000 0.413 0.452 0.468 0.433 0.483 0.440 0.426 0.419
ecoli1 0.726 0.892 0.843 0.864 0.879 0.877 0.877 0.884
ecoli3 0.802 0.887 0.857 0.863 0.873 0.882 0.875 0.876
glass1 0.551 0.605 0.686 0.662 0.682 0.696 0.689 0.681
heart 0.684 0.814 0.787 0.783 0.778 0.785 0.775 0.793
ionosphere 0.782 0.837 0.827 0.792 0.777 0.797 0.808 0.822
mammographic 0.645 0.831 0.816 0.822 0.784 0.779 0.773 0.801
monk-2 0.921 0.960 0.947 0.929 0.911 0.939 0.953 0.928
new-thyroid1 0.988 0.974 0.975 0.976 0.964 0.973 0.970 0.981
poker-8-9 vs 6 0.339 0.867 0.865 0.844 0.918 0.920 0.950 0.930
ring 0.886 0.968 0.960 0.950 0.755 0.865 0.883 0.877
segment0 0.880 0.962 0.885 0.969 0.958 0.957 0.953 0.958
sonar 0.626 0.677 0.660 0.641 0.686 0.722 0.744 0.705
spambase 0.659 0.776 0.726 0.692 0.643 0.727 0.748 0.767
spectfheart 0.766 0.763 0.763 0.742 0.685 0.708 0.718 0.704
vehicle0 0.709 0.837 0.863 0.870 0.823 0.827 0.840 0.840
vehicle1 0.546 0.645 0.676 0.650 0.574 0.665 0.630 0.676
vehicle3 0.555 0.641 0.641 0.665 0.572 0.631 0.609 0.630
vowel0 0.791 0.924 0.914 0.881 0.845 0.887 0.899 0.877
wdbc 0.922 0.945 0.935 0.946 0.941 0.922 0.929 0.951
wisconsin 0.958 0.972 0.961 0.966 0.951 0.961 0.958 0.969
yeast3 0.529 0.904 0.895 0.892 0.855 0.893 0.891 0.908
yeast4 0.440 0.831 0.820 0.825 0.806 0.819 0.817 0.816
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Table 7: G-Means for minority training size 15.

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

abalone9-18 0.611 0.718 0.709 0.698 0.635 0.703 0.705 0.686
bands 0.412 0.541 0.507 0.438 0.549 0.587 0.538 0.563
coil2000 0.413 0.452 0.468 0.433 0.483 0.440 0.426 0.419
ecoli1 0.726 0.892 0.843 0.864 0.879 0.877 0.877 0.884
ecoli3 0.802 0.887 0.857 0.863 0.873 0.882 0.875 0.876
glass1 0.551 0.605 0.686 0.662 0.682 0.696 0.689 0.681
heart 0.684 0.814 0.787 0.783 0.778 0.785 0.775 0.793
ionosphere 0.782 0.837 0.827 0.792 0.777 0.797 0.808 0.822
mammographic 0.645 0.831 0.816 0.822 0.784 0.779 0.773 0.801
monk-2 0.921 0.960 0.947 0.929 0.911 0.939 0.953 0.928
new-thyroid1 0.988 0.974 0.975 0.976 0.964 0.973 0.970 0.981
poker-8-9 vs 6 0.339 0.867 0.865 0.844 0.918 0.920 0.950 0.930
ring 0.886 0.968 0.960 0.950 0.755 0.865 0.883 0.877
segment0 0.880 0.962 0.885 0.969 0.958 0.957 0.953 0.958
sonar 0.626 0.677 0.660 0.641 0.686 0.722 0.744 0.705
spambase 0.659 0.776 0.726 0.692 0.643 0.727 0.748 0.767
spectfheart 0.766 0.763 0.763 0.742 0.685 0.708 0.718 0.704
vehicle0 0.709 0.837 0.863 0.870 0.823 0.827 0.840 0.840
vehicle1 0.546 0.645 0.676 0.650 0.574 0.665 0.630 0.676
vehicle3 0.555 0.641 0.641 0.665 0.572 0.631 0.609 0.630
vowel0 0.791 0.924 0.914 0.881 0.845 0.887 0.899 0.877
wdbc 0.922 0.945 0.935 0.946 0.941 0.922 0.929 0.951
wisconsin 0.958 0.972 0.961 0.966 0.951 0.961 0.958 0.969
yeast3 0.529 0.904 0.895 0.892 0.855 0.893 0.891 0.908
yeast4 0.440 0.831 0.820 0.825 0.806 0.819 0.817 0.816

Table 8: G-Means for minority training size 20.

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

abalone9-18 0.728 0.737 0.650 0.738 0.688 0.751 0.743 0.728
bands 0.557 0.522 0.456 0.539 0.580 0.589 0.584 0.589
coil2000 0.539 0.422 0.368 0.531 0.429 0.558 0.522 0.536
ecoli1 0.885 0.841 0.772 0.887 0.877 0.878 0.874 0.876
ecoli3 0.876 0.860 0.811 0.861 0.869 0.878 0.871 0.875
glass1 0.664 0.692 0.651 0.706 0.732 0.729 0.688 0.703
heart 0.842 0.827 0.805 0.809 0.805 0.806 0.805 0.797
ionosphere 0.869 0.849 0.829 0.821 0.841 0.840 0.824 0.854
mammographic 0.823 0.810 0.763 0.804 0.806 0.798 0.817 0.803
monk-2 0.988 0.982 0.979 0.974 0.976 0.972 0.957 0.973
new-thyroid1 0.974 0.975 0.984 0.973 0.968 0.975 0.982 0.980
poker-8-9 vs 6 0.876 0.880 0.476 0.856 0.933 0.943 0.940 0.960
ring 0.974 0.985 0.945 0.953 0.634 0.954 0.958 0.957
segment0 0.985 0.920 0.922 0.972 0.981 0.967 0.983 0.967
sonar 0.693 0.681 0.680 0.709 0.751 0.740 0.729 0.760
spambase 0.802 0.770 0.746 0.774 0.762 0.814 0.815 0.837
spectfheart 0.745 0.753 0.762 0.715 0.766 0.750 0.764 0.752
vehicle0 0.836 0.875 0.724 0.890 0.860 0.857 0.852 0.867
vehicle1 0.662 0.663 0.639 0.658 0.662 0.663 0.654 0.652
vehicle3 0.663 0.664 0.597 0.665 0.647 0.663 0.655 0.663
vowel0 0.950 0.957 0.891 0.939 0.915 0.934 0.932 0.924
wdbc 0.946 0.944 0.930 0.956 0.948 0.939 0.943 0.950
wisconsin 0.971 0.965 0.963 0.969 0.969 0.968 0.964 0.963
yeast3 0.905 0.905 0.661 0.901 0.891 0.881 0.904 0.901
yeast4 0.841 0.849 0.498 0.821 0.821 0.820 0.818 0.820
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Table 9: G-Means for minority training size 30.

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

abalone9-18 0.731 0.727 0.643 0.737 0.694 0.736 0.750 0.727
bands 0.573 0.545 0.526 0.558 0.599 0.590 0.606 0.608
coil2000 0.545 0.504 0.318 0.542 0.426 0.610 0.620 0.582
ecoli1 0.890 0.838 0.817 0.886 0.877 0.873 0.873 0.876
ecoli3 0.883 0.858 0.797 0.866 0.868 0.866 0.869 0.876
glass1 0.704 0.723 0.670 0.734 0.725 0.726 0.700 0.716
heart 0.838 0.822 0.821 0.819 0.800 0.818 0.809 0.815
ionosphere 0.881 0.884 0.859 0.805 0.855 0.864 0.851 0.875
mammographic 0.817 0.809 0.791 0.808 0.787 0.795 0.804 0.811
monk-2 0.997 0.993 0.989 0.996 0.980 0.986 0.968 0.981
new-thyroid1 0.977 0.979 0.986 0.976 0.968 0.978 0.977 0.973
poker-8-9 vs 6 0.882 0.890 0.490 0.846 0.935 0.955 0.934 0.965
ring 0.967 0.980 0.955 0.952 0.610 0.969 0.970 0.967
segment0 0.987 0.945 0.950 0.976 0.984 0.982 0.982 0.980
sonar 0.715 0.695 0.693 0.710 0.763 0.767 0.722 0.752
spambase 0.813 0.801 0.774 0.787 0.794 0.814 0.817 0.825
spectfheart 0.736 0.774 0.752 0.723 0.763 0.764 0.766 0.764
vehicle0 0.862 0.891 0.785 0.877 0.896 0.875 0.879 0.874
vehicle1 0.657 0.676 0.642 0.662 0.659 0.665 0.664 0.683
vehicle3 0.671 0.671 0.660 0.663 0.657 0.658 0.663 0.669
vowel0 0.960 0.969 0.915 0.961 0.957 0.965 0.969 0.976
wdbc 0.943 0.947 0.916 0.962 0.953 0.951 0.948 0.950
wisconsin 0.970 0.969 0.964 0.970 0.967 0.969 0.964 0.964
yeast3 0.906 0.909 0.715 0.894 0.899 0.895 0.904 0.909
yeast4 0.834 0.842 0.493 0.838 0.820 0.832 0.833 0.810


