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Abstract

Multi-label emotion classification is an impor-
tant task in NLP and is essential to many
applications. In this work, we propose
a sequence-to-emotion (Seq2Emo) approach,
which implicitly models emotion correlations
in a bi-directional decoder. Experiments on
SemEval’18 and GoEmotions datasets show
that our approach outperforms state-of-the-art
methods (without using external data). In
particular, Seq2Emo outperforms the binary
relevance (BR) and classifier chain (CC) ap-
proaches in a fair setting.1

1 Introduction

Emotion classification from text (Yadollahi et al.,
2017; Sailunaz et al., 2018) plays an important role
in affective computing research, and is essential to
human-like interactive systems, such as emotional
chatbots (Asghar et al., 2018; Zhou et al., 2018;
Huang et al., 2018; Ghosal et al., 2019).

Early work treats this task as multi-class classi-
fication (Scherer and Wallbott, 1994; Mohammad,
2012), where each data instance (e.g., a sentence)
is assumed to be labeled with one and only one
emotion. More recently, researchers relax such
an assumption and treat emotion analysis as multi-
label classification (MLC, Mohammad et al., 2018;
Demszky et al., 2020). In this case, each data in-
stance may have one or multiple emotion labels.
This is a more appropriate setting for emotion anal-
ysis, because an utterance may exhibit multiple
emotions (e.g., “angry” and “sad”, “surprise” and
“joy”).

The binary relevance approach (BR, Godbole
and Sarawagi, 2004) is widely applied to multi-
label emotion classification. BR predicts a binary
indicator for each emotion individually, assuming
that the emotions are independent given the in-
put sentence. However, evidence in psychotherapy

1Our code is available at https://github.com/
chenyangh/Seq2Emo

suggests strong correlation among different emo-
tions (Plutchik, 1980). For example, “hate” may
co-occur more often with “disgust” than “joy.”

An alternative approach to multi-label emotion
classification is the classifier chain (CC, Read et al.,
2009). CC predicts the label(s) of an input in an
autoregressive manner, for example, by a sequence-
to-sequence (Seq2Seq) model (Yang et al., 2018).
However, Seq2Seq models are known to have the
problem of exposure bias (Bengio et al., 2015), i.e.,
an error at early steps may affect future predictions.

In this work, we propose a sequence-to-emotion
(Seq2Emo) approach, where we consider emotion
correlations implicitly. Similar to CC, we also build
a Seq2Seq-like model, but predict a binary indica-
tor of an emotion at each decoding step of Seq2Seq.
We do not feed predicted emotions back to the de-
coder; thus, our model does not suffer from the
exposure bias problem. Compared with BR, our
Seq2Emo model implicitly considers the correla-
tion of emotions in the hidden states of the decoder,
and with an attention mechanism, our Seq2Emo is
able to focus on different words in the input sen-
tence that are relevant to the current emotion.

We evaluate our model for multi-label emo-
tion classification on SemEval’18 (Mohammad
et al., 2018) and GoEmotions (Demszky et al.,
2020) benchmark datasets. Experiments show that
Seq2Emo achieves state-of-the-art results on both
datasets (without using external data). In particular,
Seq2Emo outperforms both BR and CC in a fair,
controlled comparison.

2 Related work

Emotion classification is an activate research area
in NLP. It classifies text instances into a set of
emotion categories, e.g., angry, sad, happy, and
surprise. Well-accepted emotion categorizations
include the six basic emotions in Ekman (1984)
and the eight primary emotions in Plutchik’s wheel
of emotions (1980).
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Early work uses manually constructed emo-
tion lexicons for the emotion classification
task (Tokuhisa et al., 2008; Wen and Wan, 2014;
Shahraki and Zaiane, 2017). Such lexicon re-
sources include WordNet-Affect (Strapparava and
Valitutti, 2004), EmoSenticNet (Poria et al., 2014),
and the NRC Emotion Intensity Lexicon (Moham-
mad, 2018).

Distant supervision (Mintz et al., 2009) has been
applied to emotion classification, as researchers
find existing labeled datasets are small for training
an emotion classifier. For example, Mohammad
(2012) finds that social media users often use hash-
tags to express emotions, and thus certain hashtags
can be directly regarded as the noisy label of an ut-
terance. Likewise, Felbo et al. (2017) use emojis as
noisy labels for emotion classification. Such distant
supervision can also be applied to pretrain emotion-
specific embeddings and language models (Tang
et al., 2014; Ghosh et al., 2017).

In addition, Yu et al. (2018) apply multi-task
learning to combine polarity sentiment analysis
and multi-label emotion classification with dual
attention.

Different from the above studies that use extra
emotional resources, our work focuses on mod-
eling the correlations among emotions. This im-
proves multi-label emotion classification without
using additional data. A similar paper to ours is
the Sequence Generation Model (SGM, Yang et al.,
2018). SGM accomplishes multi-label classifica-
tion by an autoregressive Seq2Seq model, and is an
adaptation of classifier chains (Read et al., 2009)
in the neural network regime. Our paper models
emotion correlation implicitly by decoder hidden
states and does not suffer from the drawbacks of
autoregressive models.

3 Methodology

Consider a multi-label emotion classification prob-
lem. Suppose we have K predefined candidate
emotions, and an utterance or a sentence x can be
assigned with one or more emotions. We represent
the target labels as y = (y1, · · · , yK) ∈ {0, 1}K
with yi = 1 representing that the ith emotion is on.

Our Seq2Emo is a Seq2Seq-like framework,
shown as Figure 1. It encodes x with an LSTM,
and iteratively performs binary classifications over
yi with another LSTM as the decoder.

Encoder. We use a two-layer bi-directional
LSTM to encoder an utterance. Specifically, we

use both token-level and contextual pretrained em-
beddings to represent a word in the sentence.

Formally, let a sentence be x = (x1, · · · , xM ).
We first encode each word xi with GloVe em-
beddings (Pennington et al., 2014), denoted by
GloVe(xi). We further use the ELMo contextual
embeddings (Peters et al., 2018), which processing
the entire sentence x by a pretrained LSTM. The
corresponding hidden state is used as the embed-
ding representation of a word xi in its context. This
is denoted by ELMo(x)i.

We use a two-layer bi-directional LSTM on the
above two embeddings. The forward LSTM, for
example, has the form

h
−→
E
t = LSTM

−→
E ([GloVe(xt); ELMo(x)t],h

−→
E
t−1)

where the superscript E denotes the encoder. Like-
wise, the backward LSTM yields the representation
h
←−
E
t . They are concatenated as hE

t = [h
−→
E ;h

←−
E ].

Here, we use BiLSTM for simplicity, follow-
ing Sanh et al. (2019) and Huang et al. (2019).
Other pretrained models, such as the Tranformer-
based BERT (Devlin et al., 2019), may also be
adopted. This, however, falls out of the scope
of our paper, as we mainly focus on multi-label
emotion classification. Empirical results on the
GoEmotions dataset shows that, by properly ad-
dressing multi-label classification, our model out-
performs a Transformer-based model (Table 2).

Decoder. In Seq2Emo, an LSTM-based decoder
is used to make sequential predictions on every
candidate emotion. Suppose a predefined order of
emotions is given, e.g., “angry,” “joy,” and “sad.”
The decoder will perform a binary classification
over these emotions in sequence. The order, in fact,
does not affect our model much, as it is the same for
all training samples and can be easily learned. In
addition, we feed a learnable emotion embedding
as input at each step of the decoder. This enhances
the decoder by explicitly indicating which emotion
is being predicted at a step.

Different from a traditional Seq2Seq decoder, we
do not feed previous predictions back as input, so as
to avoid exposure bias. This also allows Seq2Emo
to use a bi-directional LSTM as the decoder, which
implicitly model the correlation among different
emotions.

Without loss of generality, we explain the for-
ward direction of the decoder LSTM, denoted by
LSTM

−→
D . The hidden state at step j is given by

h
−→
D
j = LSTM

−→
D ([ej ; h̃

−→
D
j−1],h

−→
D
j−1) (1)



Attention

Encoder Decoder

sad angry happy

Figure 1: Overview of the Seq2Emo model.

where ej is the embedding for the jth emotion,

and h̃
−→
D
j−1 is calculated by the attention mechanism

in Luong et al. (2015).
Here, the attention mechanism dynamically

aligns source words when predicting the specific
target emotion at a decoding step. Let α→j,i be the
attention probability of the jth decoder step over
the ith encoder step, computed by

s→j,i = (h
−→
D
j )>W→a hE

i (2)

α→j,i =
exp(s→j,i)∑M
i=1 exp(s

→
j,i)

(3)

where M is the number of encoder steps, and s→j,i
computes an unnormalized score for each pair of
h
−→
D
j and hE

i with a learnable parameter matrix
W→a . Then, we compute an attention-weighted
sum of encoder hidden states as the context vector
c→j :

c→j =

M∑
i=1

α→j,ih
E
i (4)

The context vector is concatenated with the LSTM
hidden state as h̃

−→
D
j = [c→j ;h

−→
D
j ]. Likewise, we

compute h̃
←−
D
j for the backward decoder LSTM.

They are further concatenated for predicting the
emotion in question:

P (yj = 1|x) = σ(w>j [h̃
−→
D
j ; h̃

←−
D
j ] + bj) (5)

where σ is a sigmoid function; wj and bj are the
parameters for predicting the jth emotion. Notice
that wj and bj are different at decoding different
steps, because we are predicting different emotions.
This treatment is similar to the binary relevance
approach (BR, Godbole and Sarawagi, 2004).

Our Seq2Emo implicitly models the correla-
tions among emotions through the decoder’s bi-
directional LSTM hidden states, which is more

suited to multi-label classification than BR’s in-
dividual predictions. Our Seq2Emo also differs
from the classifier chain approach (CC, Read et al.,
2009), which uses softmax to predict the next plau-
sible emotion from all candidates. Thus, CC has
to feed the previous predictions as input, and suf-
fers from the exposure bias problem. By contrast,
we predict the presence of all the emotions in se-
quence. Hence, feeding back previous predictions
is not necessary, and this prevents the exposure
bias. In this sense, our model combines the merits
of both BR and CC.

4 Experimental Setup

Datasets. We conduct experiments on two multi-
labeled emotion datasets: SemEval’18 (Affect
in Tweets: Task E-c, Mohammad et al., 2018)
and GoEmotions (Demszky et al., 2020). Com-
pared with GoEmotions, SemEval’18 has fewer
emotion categories, and is smaller in size. Both
datasets come with standard train-dev-test splits.
Appendix A shows the statistics of these datasets.

Metrics. Following Yang et al. (2018) and
Mohammad et al. (2018), we use Jaccard Index
(Rogers and Tanimoto, 1960), Hamming Loss
(Schapire and Singer, 1999), Macro- and Micro-
averaged F1 scores (Chinchor, 1992) as the evalu-
ation metrics. Among them, Jaccard, Macro- and
Micro-F1 are different ways of counting correctly
predicted labels (the higher, the better); Hamming
Loss (HL) counts the misclassifications (the lower,
the better).

Baselines. On SemEval’18, we compare our
system with the top submissions from the SemEval-
2018 competition and recent development. NTUA-
SLP (Baziotis et al., 2018) uses large amount of
external emotion-related data to pretrain an LSTM-
based model. TCS Research’s system (Meish-
eri and Dey, 2018) uses the support vector ma-



chine with mannually engineered features: out-
put from LSTM models, emotion lexicons (Mo-
hammad and Kiritchenko, 2015), and SentiNeural
(Radford et al., 2017). PlusEmo2Vec (Park et al.,
2018) combines neural network models, which
are pretrained by using emojis as labels (Felbo
et al., 2017). Apart from the competition, Yu et al.
(2018) propose DATN, which introduces sentiment
information through dual-attention. These afore-
mentioned systems are based on the BR approach.
SGM (Yang et al., 2018), however, is a CC-based
model for multi-label classification. We include it
as a baseline by using its publicly released code.2

Since GoEmotions dataset is fairly recent, we
only include the results originally reported by Dem-
szky et al. (2020).

Settings. For the encoder, we set the two-layer
bi-directional LSTM’s dimension to 1200. Given
the small number of emotions to embed, we set the
dimension of decoder LSTM to 400. The GloVe
embedding is 300 dimensional, and the ELMo em-
bedding is 1024 dimensional. We use the Adam
optimizer (Kingma and Ba, 2015), where the learn-
ing rate is set to 5e-4 initially and decayed with
cosine annealing. The batch size is set to 16 for
SemEval’18, and set to 32 for GoEmotions for effi-
ciency concerns.

We perform 5-fold cross-validation on the com-
bined train-dev split for each experiment. Within
each fold, we apply early stopping to prevent over-
fitting and return the best model based on Jaccard
accuracy for testing. We then merge the predicted
results over the test set by majority voting. Addi-
tionally, we repeat each 5-fold experiment 5 times
to further improve reduce noise.

5 Results

Overall performance. Table 1 presents the re-
sults on the SemEval’18 dataset. The proposed
Seq2Emo outperforms the top submissions of the
SemEval-2018 shared task in general. Compared
with the median submission, Seq2Emo outper-
forms over 10% in the Jaccard accuracy. Ad-
mittedly, Seq2Emo performs slightly lower (but
comparably) with NTUA-SLP and DATN, both
introducing extra emotion/sentiment information
through transfer learning. Our work, however, fo-
cuses on modeling the multi-label classification
problem for emotion analysis and achieves high
performance.

2https://github.com/lancopku/SGM

Jaccard ↑ Micro F. ↑ Macro F. ↑ HL ↓
Random 18.50 30.70 28.50 –
SVM-Unigrams 44.20 57.00 44.30 –
SGM 45.14 55.11 – 0.1668
Median∗ 47.10 59.90 46.40 –
[+] PlusEmo2Vec 57.60 69.20 49.70 –
[+] TCS Research 58.20 69.30 53.00 –
[+] NTUA-SLP 58.80 70.10 52.80 –
[+] DATN 58.30 – 54.40 –
BR† 57.64 68.89 50.32 0.1262
BR-att† 58.13 69.49 51.60 0.1237
CC† 58.16 69.19 51.07 0.1381
Seq2Emo (uni)† 58.22 69.60 50.98 0.1229
Seq2Emo† 58.67 70.02 51.92 0.1214
t-test p < 0.1 p < 0.01 p < 0.1 p < 0.01

Table 1: Results on the SemEval’18 dataset. ∗Median
refers to the median score reported among the submis-
sions. [+] denotes additional emotion/sentiment infor-
mation is used. † denotes the results obtained by our
implementations.

While both NTUA-SLP and DATN are based on
the BR approach, we implement additional base-
lines for fair comparison. In particular, we imple-
ment BR and BR-att variants, where the latter uses
an attention mechanism when predicting the emo-
tions, similar to our Seq2Emo. In the same spirit,
we also implement a CC-based baseline, which is a
Seq2Seq model predicting the next emotion among
all candidates. For fair comparison, all of the BR,
BR-att, and CC variants are trained with the same
setting as our Seq2Emo. In this controlled setting,
we observe that the proposed Seq2Emo consistently
outperform BR, BR-att, and CC on the SemEval’18
dataset in all metrics.

For the GoEmotions dataset, we show the results
in Table 2. Since it is a very new dataset, we can
only find previous reported results from Demszky
et al. (2020). In addition, we include BR, BR-att,
and CC for fair comparison. Results show that
Seq2Emo outperforms other models on most of the
metrics, except that Seq2Emo is worse than CC on
Jaccard accuracy. This is understandable, as we
have quite a few metrics with different datasets.

It is worth noting that the model of Demszky
et al. (2020) is based on BERT (Devlin et al., 2019).
We replicate their approach to obtain all the eval-
uation metrics. We observe that our replication
achieves a similar Macro-F1 to Demszky et al.
(2020), and thus our replication is fair. The re-
sults show that our Seq2Emo achieves comparable
or higher performance than the BERT-based model.

We run one-sided t-tests to compare Seq2Emo
with the best competing model that does not use ad-
ditional data, shown in Tables 1 and 2. Results ver-

https://github.com/lancopku/SGM


# Model Jaccard ↑ Micro F. ↑ Macro F. ↑ HL ↓
1 BERT (Demszky et al., 2020) – – 46.00 –
2 BERT (our implementation)† 53.06 58.49 46.23 0.0312
3 BR† 52.76 58.21 45.38 0.0312
4 BR-att† 53.35 58.53 45.11 0.0310
5 CC† 55.61 58.38 43.92 0.0352
6 Seq2Emo (uni)† 53.07 58.76 45.30 0.0306
7 Seq2Emo† 53.79 59.57 47.28 0.0302

t-test p < 0.05 p < 0.05 p < 0.01 p < 0.01

Table 2: Results on the GoEmotions dataset. † denotes the results obtained by our implementations. t-test compares
Row 7 with the best model in Rows 3–6 in each metric.

ify that most of the comparisons are statistically sig-
nificant (although some are more significant than
others). The two experiments provide consistent
evidence on the effectiveness of our Seq2Emo.

Seq2Emo with an uni-directional decoder.
One of the virtues of Seq2Emo is that it can
use a bi-directional LSTM decoder. To show
its effectiveness, we perform experiments on
Seq2Emo with an uni-directional decoder, de-
noted as “Seq2Emo (uni).” We show the results
in Tables 1 and 2 for SemEval’18 and GoEmo-
tions datasets, respectively. We first observe that
Seq2Emo performs better than Seq2Emo (uni),
which in turn is better than BR-att that predicts
emotions individually. This confirms that our
Seq2Emo is able to implicitly model the correla-
tion of different emotions, and that a bi-directional
decoder is better than a uni-directional one.

Order of emotions. Both Seq2Emo and the
classifier chain (CC) predict emotions sequentially.
The difference is that our Seq2Emo predicts the
presence (or not) of an emotion in a predefined
order. CC predicts the next salient emotion au-
toregressively, it learns the emotion order from the
training data. We try different orders, including
the original order in the dataset and the ascend-
ing/descending order based on emotion frequency.
We also try an order where the emotion frequency
first increases and then decreases (concave-down),
and vice versa (concave-up). We perform experi-
ments on SemEval’18 and report the Jaccard accu-
racy and the standard deviations in Table 3.

The results show that Seq2Emo is the least af-
fected by the order of the emotions, whereas the
performance of CC varies largely. This verifies that
the emotion order does not affect Seq2Emo much
as it can be easily learned. CC is more sensitive
to emotion order and has a larger variance, as it
suffers from the exposure bias problem.

Case study. We conduct case studies in Ap-

Seq2Emo Seq2Emo (uni) CC
Dataset order 58.67 58.22 58.16
Desending 58.42 58.23 57.86
Ascending 58.54 58.14 58.11
Concave-up 58.48 58.12 57.58
Concave-down 58.40 57.93 58.49
STD 0.110 0.120 0.341

Table 3: Analysis on the order of emotions. The results
are the Jaccard accuracy on SemEval’18.

pendix B. Results show that our Seq2Emo can at-
tend to relevant words when predicting the emotion
of interest.

6 Conclusion

In this work, we propose Seq2Emo for multi-label
emotion classification. Our approach implicitly
models the relationship of different emotions in its
bi-directional decoder, and is shown to be better
than an individual binary relevance (BR) classifier.
Our model does not suffer from the exposure bias
problem and also outperforms the classifier chain
(CC). In general, we achieve state-of-the-art per-
formance for multi-emotion classification on the
SemEval’18 and GoEmotions datasets (without us-
ing additional emotion labels).
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A Dataset Statistics

Table 4 shows the statistics of both SemEval’18
and GoEmotions datasets. Noticeably, the majority
of the data samples in SemEval’18 are labeled with
at least two emotions. The GoEmotions dataset is
mostly annotated with one label for an utterance,
although multiple emotions do exist. This suggests
that SemEval’18 may contain more correlated emo-
tions on average.

Dataset # emo. # sample % multi-emo. # avg. emo.
SemEval’18 11 10690 86.1 2.37
GoEmotions 24 54263 16.2 1.17

Table 4: Data statistics: the number of the emotion cat-
egories, the number of data samples, the percentage of
multi-labeled samples, and the average number of emo-
tions per utterance.

B Case Study

In Figure 2, we visualize the attention layer of
Seq2Emo by plotting the heat map over the atten-
tion scores. The emotions shown in each example
are the groundtruth labels of the corresponding ut-
terance.

We observe that Seq2Emo is able to focus on
relevant words when predicting the emotion of in-
terest. In Case 3, for example, the emotions joy and
love highly resemble each other, both focusing on
the word “laughter.” On the other hand, the decoder
of Seq2Emo can focus on entirely different words
if the emotions are different. In Case 1, we see the
emotion anticipation mainly focuses on “see free,”
whereas the emotion optimism mainly focuses on
“is lining up volunteers.”

Case 1: shriekfest is lining up volunteers ! date -
number , only serious inquiries please ! email see
free films !
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Case 2: parish elongated + sad song = prefect
night feeling alone
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Case 3: treat joy and laughter as a form of worship
and spiritual warfare ! laughter live victory worship
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Case 4: user ’ operation echoes ’ is gathering
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Figure 2: Case study.


