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Abstract
We present our novel community mining algorithm that

uses only local information to accurately identify commu-
nities, outliers, and hubs in social networks. The main
component of our algorithm is the T metric, which eval-
uates the relative quality of a community by considering
the number of internal and external triads (3-node cliques)
it contains. Furthermore we propose an intuitive statistical
method based on our T metric, which correctly identifies
outlier and hub nodes within each discovered community.
Finally, we evaluate our approach on a series of ground-
truth networks and show that our method outperforms the
state-of-the-art in community mining algorithms.

I. INTRODUCTION

Data can often be expressed in the form of an Information
Network that stores the entities, represented as nodes, and the
relationships between them, represented as edges. One can
mine these networks by employing a variety of techniques that
identify communities, which are tightly-knit groups of nodes
that interact more within the group than outside of the group.

The challenge of how to detect such communities has
been a central problem studied in the field of social network
analysis in the past two decades. To this end, researchers have
proposed a variety of techniques that discover communities by
considering the entire network structure, that is, they require
global knowledge of the network [1], [2], [3]. Unfortunately,
they realized that these global techniques do not scale well
when considering extremely large information networks, such
as Facebook or the World Wide Web, which are becoming
increasingly popular and contain hundreds of millions or
billions of nodes [1].

To remedy this problem, researchers have recently proposed
local methods that detect communities by only considering
local information and therefore are not sensitive to the size
of the network [4], [5], [6]. These local methods generally
require some metric that determines the relative quality of
a community, and indeed, many such metrics have been
proposed. However, the existing metrics often suffer from
poor outlier detection [4], [7] and the discovery of incorrect
communities in simple ground truth networks [5], [8].

In this paper we aim to solve both of these problems by
presenting our T metric, which defines the relative quality of a
community by considering the number of internal and external
triads it contains. We apply our T metric within a modified
version of Clauset’s local framework [4] to greedily discover
communities while achieving more accurate outlier and hub

detection when compared to previous approaches. We also
show that our framework, combined with the T metric, leads
to increased accuracy on a variety of ground truth networks
when compared to the existing techniques.

II. RELATED WORK

A variety of community mining techniques have been
proposed that employ either the divisive or agglomerative
framework to detect communities using global information [9].
The most well-known of these approaches is Newman’s Q-
Modularity [2] metric which considers the number of edges
within a community minus the expected number of such edges
in a random network. However, Fortunato and Barthelemy
[10] have shown that Modularity-based metrics suffer from a
resolution limit, in that they cannot detect communities smaller
than some threshold. Furthermore, it is unclear how to detect
outlier nodes with Modularity-based methods.

In addition, researchers have realized that it is computation-
ally intractable to consider global information for many of the
large scale networks that they wish to analyze [1]. To address
this concern, Clauset [4] introduced his local community
mining framework that explores the network through local
expansion and thus is not sensitive to the network size. His
method requires a metric to determine the quality of each
discovered community and a variety of such metrics have been
proposed, including Clauset’s own R metric, the M metric
from Luo et al., and the L metric from Chen et al. [4], [7], [5].
All of these metrics evaluate a community by considering how
edges are distributed within the community relative to outside
of the community. These metrics, however, fail to accurately
identify outliers and achieve low scores on many ground truth
networks, as shown in our evaluation section.

Palla et al. [6] have also proposed their Clique Percolation
Method which identifies communities by rolling a k-clique
around the network until it is unable to reach any unexplored
nodes. The nodes covered while rolling are considered the
discovered community and then the process continues on a
different section of the network. Although their algorithm
benefits from being local and intuitive, it is also very sensitive
to the parameter choice for k -i.e. the size of the clique, and
thus the algorithm can be difficult to apply in practice.

We find that our approach lies somewhere between Clauset’s
Local Framework and the Clique Percolation Method, in that
our T metric favours communities that contain triads (cliques



of size 3), but it discovers these communities through local
expansion making it scalable for very large networks.

III. OUR APPROACH

Our approach is a two stage algorithm that first detects com-
munities by applying our T metric within the local community
framework and then employs an additional stage to identify
outliers/hubs in the discovered community.

The local community framework we apply in this paper
has been adapted from Clauset’s local framework [4] and can
be summarized as follows. First, we initialize the community
with a single node and place all of its neighbours into the
shell set. Then, for each iteration, we greedily select the node
from the shell set that, when included in the community,
maximizes the T metric. We add this selected node to the
community and all of its neighbours to the shell set. This
process continues until there are no nodes in the shell set
which would further maximize the T metric. At this point,
a community is discovered and the algorithm restarts on
another node in the network. In order to prevent overlapping
communities we ensure that all nodes which are assigned to
one community cannot belong to any other community. A
depiction of the shell set is shown in Figure 1. Our major
deviation from Clauset’s original framework is that we do
not keep track of the boundary set. Also, as we will explain
later, we have added an additional stage to the framework that
detects both outliers and hubs.

Fig. 1. A depiction of the local algorithm.

It is important to note that the selection of the starting
node for the local framework can have a dramatic effect on
the accuracy of the algorithm. In particular, our evaluation
in Section 4 shows that randomly selecting the starting node
can result in very poor community structure and accuracy. We
hypothesize that a good starting node will have a high degree
because it allows for a large neighbourhood to be considered
in the first iteration of the framework. However without global
knowledge it is impossible to select the optimal starting node,
as we do not know the degree of every node. To remedy this we
propose a local approach, that first chooses a node at random
and then explores its immediate neighbourhood and selects the
node with the highest degree. This node becomes our starting

node. Note that we have used the degree metric, instead of
PageRank or Betweenness, because it can be computed locally
without consulting the entire network. We briefly considered
other metrics, such as Estimated Closeness [11], but they did
not outperform the degree metric in our test cases.

A. Local Community Metric T

Given the local community framework we can see that
the role of the T metric is to determine whether or not
a node should be included in the community. Intuitively,
our metric favours nodes that form many triads with nodes
within the community and few triads with nodes outside of
the community. We define these quantities as Tin and Tex,
respectively. We define a triad as a collection of three nodes
that are fully connected, aka, a 3-node clique. Our intuition
is that all members of a triad are tightly bonded together and
thus are more likely to belong to the same community. More
formally, we present our T metric as:

T = Tin ∗ Tdiff

Where

Tdiff =

{
Tin − Tex if Tin ≥ Tex

0 otherwise

Tin =
1

6
∗

∑
i∈C,j∈C,k∈C

Ai,j ∗Aj,k ∗Ai,k

Tex =
1

2
∗

∑
i∈C,j∈S,k∈S

Ai,j ∗Ai,k ∗Aj,k

Where C is the set of nodes in the community, S is the set
of nodes in the shell set, and A is the adjacency matrix such
that Ai,j is 1 if nodes i and j share an edge. We divide the
Tin score by 6 to prevent double counting all permutations
of the same triad, for example, ‘ABC’, ‘ACB’,‘’BCA’, ‘BAC’,
‘CAB’, and ‘CBA’ all refer to the same triad between nodes A,
B, and C. For Tex we only divide by 2 because the limitation
that i ∈ C reduces the number of permutations.

We have bounded Tdiff , and thus T , to be non-negative
because all of the nodes in the initial stages of the community
will belong to more external triads than internal ones. If left
unbounded, this would result in a negative Tdiff score that
would penalize well connected nodes; yet these are the very
nodes that we believe should be included first. Thus, we set
the Tdiff score to zero in these cases and let the tie-breaking
step determine the best node.

This tie-breaking step is a critical part of the metric because
there are many cases where multiple nodes result in the same
T score, yet are qualitatively different. For example, consider
a node X that when included in the community has a Tin

score of 49, Tex score of 48, and thus a T score of 49. Also
consider a node Y that has a Tin score of 7, Tex score of 0, and
thus also a T score of 49. Clearly, node Y is a better choice
to include in the community because it directly contributes to
the internal score without a negative influence on the external



score. We capture this intuition by always selecting the node
with the lowest Tex score in the event of a tie.

It is important to note that we are not considering triads that
have two nodes in the community and one node in the shell
set. This is because such a triad could be classified as either
external or internal depending on whether the target node is
chosen to be included in the community, or placed back into
the shell set. Thus it does not make intuitive sense to assign
this triad to either set.

Furthermore we are aware that our metric is dissimilar
from many of the existing approaches in that it does not try
to maximize a ratio of internal to external scores. This is
because we feel that the difficulty associated with dividing
by zero results in a biased metric that favours nodes with no
external relations. For example, consider a metric that counts
the number of edges. Also consider two nodes in the shell
set: one with 2 internal edges, 0 external edges, and one with
10 internal edges, 1 external edge. If the ratio of internal to
external edges of the community is 100:10, then the first node
will be included, but the second will not. We find this approach
to be counter-intuitive, especially given that as the ratio score
of the community increases, so does the idiosyncrasy of such
examples.

B. Incremental Formula

Although the formulae given above are relatively simple, it
would be computationally demanding to count the number of
triads every time a node is considered, thus we also present
an incremental formula for computing the Tin and Tex scores
based on the previous scores. More formally:

Tin′ = Tin +
1

2

∑
i∈N(X)
j∈N(X)

i 6=j

Aj,i ∗ Ci ∗ Cj

Tex′ = Tex

+
1

2

∑
i∈N(X)
j∈N(X)

i 6=j

Aj,i ∗ (1− Ci) ∗ (1− Cj)

−
∑

i∈N(X)
j∈N(X)

i6=j

Aj,i ∗ (1− Ci) ∗ Cj

Where Tin and Tex are the scores before including node
X in the community, N(X) is the neighbourhood of node
X , Ai,j is the adjacency matrix, and Cn is 1 if n is in the
community, 0 otherwise. Here, the last term in Tex′ represents
the number of triads that contain one node in the community
and one node outside of the community. These triads are
discounted because they were considered external triads prior
to node X being included in the community, but now are
considered uncounted triads. Note that we divide the second

term in Tex′ by 2 to avoid double counting both permutations
of the same triad. A visual example of the incremental formula
can be seen in Figure 2.

(a) Before including node A.
Tin = 2, Tex = 1.

(b) After including node A.
Tin′ = 2 + 2 = 4, Tex′ = 1 + 2
- 1 = 2.

Fig. 2. An example of the incremental T calculation. Nodes within the circle
are part of the community.

C. Outlier and Hub Detection

Although our T metric is used to identify communities,
it does not directly solve the problems of pruning outliers
from these communities or detecting hubs. The notion of
an outlier can be summarized as a node that is weakly
connected to the community but does not belong to any other
community. Whereas a hub refers to a node that is strongly
connected to many communities, without truly belonging to
any individual community. To identify such nodes we have
added an additional stage to the local framework that further
processes each community after it has been discovered. In
particular, we iterate through the entire community and record
the number of internal triads that each node belongs to. We
then compute the average, TinAvg , and standard deviation,
TinStd, of this score.

While iterating through the community we label a node as
a hub if it participates in more external than internal triads;
which follows from the observation that this node may belong
to many other communities. However, it is not sufficient to
detect a hub by only considering a single community. Thus,
we allow nodes with the ’hub’ label to join more than one
community. This way if two or more communities label the
same node as a hub, then it must be a true hub. On the other
hand, if only a single community labels it as a hub then, by
definition, it cannot be a hub and we remove its label.

To detect outliers we rely on the statistical distribution of
the internal triads in the community. More specifically, a node
is an outlier if it satisfies the following criteria:

Tin(X) < bTinAvg − TinStdc
Tex(X) = 0

Where Tin(X) is the number of internal triads that node
X participates in and likewise for Tex(X). We believe that
this definition best captures the intuitive understanding of an
outlier, in that any node participating in significantly fewer
triads than the average must be a weak member of that
community. We have opted to use only one standard deviation



based on our empirical analysis. We should point out that there
are a variety of well-known statistical approaches to determine
outliers, such as those proposed by Chauvenet, Grubbs, or
Peirce [12], [13], [14]. Unfortunately we could not apply
these methods as their assumption that the data is distributed
normally does not hold in our scale-free social networks.

IV. EVALUATION

To rigorously evaluate our proposed framework we have
compared it to a variety of popular community mining algo-
rithms on a series of well-known ground truth networks. We
have employed the Adjusted Rand Index (ARI) to compute
a quantitative score that indicates how closely the results
returned by each algorithm match that of the ground truth.
More specifically, this index compares two sets of results
and returns a score that ranges from 0, which indicates a
completely random match, and 1, which indicates a perfect
match.

We performed an evaluation against all known ground-truth
networks, which are summarized in Table I.

Of particular interest to us are the NCAA Football network,
which contains many small communities and the Political
Blogs network, which contains over 1000 nodes in two very
large communities. We expect that many algorithms will have
difficulty capturing both the small and large scale communi-
ties. Furthermore, we note that the Strike and Karate networks
each contain one node that shares a single edge with both
ground truth communities. Thus, using only the information
in the network it is impossible to assign these nodes to the
correct community every time. To prevent ‘lucky’ selections
from biasing the results we have allowed these two nodes to
belong to either of the communities without any penalty to the
Adjusted Rand Index (ARI) score. The algorithms we compare
our T metric against include:

MaxMin Modularity This is an agglomerative algorithm
proposed by Chen et al. [3] as an improvement over Newman’s
Q-Modularity-based approach in that it also considers the
number of unrelated node pairs within the community.

Clique Percolation Modularity (CPM) Please see the section
on Related Work. For our evaluation we have selected the best
result between the parameter value of K = 3, 4, and 5.

Local L This is a local algorithm proposed by Chen et al.
[5] that employs Clauset’s local framework and the L metric
to discover communities by maximizing the ratio of internal
average degree over external average degree.

Local R This is the original local algorithm proposed by
Clauset [4] that tries to maximize the number of edges leading
from the boundary set of a community to its core and minimize
the number of external edges. There is no outlier detection.

Local M This is also a local algorithm proposed by Luo
et al. [7] that employs Clauset’s framework and the M metric
to discover communities by maximizing the ratio of internal
edges over external edges. There is no outlier detection.

When evaluating our T metric we also want to determine
what the optimal strategy is for selecting a starting node in the
local framework. Thus we present two evaluations. In the first,

our framework selects the starting node by exploring the local
neighbourhood of a randomly selected node and choosing the
one with highest degree. In the second, our framework simply
selects a starting node at random. To mitigate the effects of
this randomness we have run each local algorithm ten times
and reported the average score of these runs. We hope to
show our proposed approach for selecting the starting node
is significantly better than the current random approach.

The results of our evaluation are summarized in Table II,
which contains the Adjusted Rand Index (ARI) scores, and
Table I, which contains the number of detected communities.

As we can see in Table II, our T metric matches or
outperforms the existing algorithms on nearly every ground
truth network, with the exception of the Mexican Politics
network. In fact we notice that all of the algorithms perform
very poorly on this network.

Furthermore, in Table I we notice that our algorithm is
the only method which identifies the correct number of com-
munities for a majority of the ground truth networks. We
feel that this is an important evaluation tool in that ARI
score can often be misleading when we don’t consider the
number of communities. This is exemplified by the fact that
the M metric achieved a reasonably high ARI score in the
Political Blogs network, even though it detected a multitude
of extraneous communities. Additionally, we can see that our
outlier detection method performed exceptionally well given
that it accurately identified all of the outliers and all but one of
the hubs in the NCAA Football Network. More importantly,
contrary to Local L, our method did not identify any outliers
or hubs in the other outlier-free networks.

Finally, our method of selecting the starting node appears to
be somewhat better than the random approach when applied
to our T metric. We can see noticeable improvements when
using our approach on denser networks such as Political Blogs
and Political Books. In addition to this evaluation we have
also applied the L metric within our proposed framework to
determine if it is our framework that provides the increased
accuracy, or if it is the T metric itself. We hypothesized that
perhaps our outlier and hub detection stage was responsible
for our excellent results. This was not the case, and our results,
which we do not present here for the sake of brevity, indicate
that the L metric performs very poorly in our framework. Thus,
we are more confident in claiming that the performance of our
algorithm is largely attributable to our T metric.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a modified local framework
that employs our novel T metric, which considers the number
of internal and external triads in a community. In addition,
we detailed our modifications to Clauset’s local framework in
order to achieve improved outlier detection and better starting
node selection when compared to previous approaches. We
performed a rigorous evaluation against a variety of existing
community mining algorithms and showed that our method
outperforms all of these algorithms on a variety of ground
truth networks. Furthermore we showed that our starting



TABLE I
AN OVERVIEW OF THE GROUND TRUTH NETWORKS USED IN OUR EVALUATION AND THE NUMBER OF COMMUNITIES DETECTED BY EACH ALGORITHM.

Ground Truth Network Number Number Number of MaxMin CPM Local L Local R Local M Local T
of Nodes of Edges Communities

Zachary’s Karate Club [15] 34 78 2 2 3 6 3 3 2
Strike [16] 24 38 3 3 6 5 5 3 3

Political Blogs [17] 1224 19087 2 - - 94 20 66 3
Political Books [18] 105 441 3 2 4 10 7 4 3

Mexican Politics [19] 35 117 2 3 1 3 3 2 1
NCAA Football [20] 180 788 11 + 5 12 12 13 11 11+

outliers + hubs outliers + hubs

TABLE II
EVALUATION RESULTS. FOR THE X/Y CELLS, X INDICATES THE AVERAGE SCORE WHEN SELECTING THE STARTING NODES WITH THE MAXIMUM LOCAL
DEGREE, AND Y INDICATES THE AVERAGE SCORE WHEN RANDOMLY SELECTING THE STARTING NODES. A DASH INDICATES THAT THE ALGORITHM DID

NOT COMPLETE WHEN PROCESSING THE NETWORK.

MaxMin CPM Local L Local R Local M Local T
Zachary’s Karate Club 1 0.15 0.32 0.52 0.47 1 / 0.9

Strike 1 0.36 0.37 0.71 0.76 1 / 1
Political Blogs - - 0.06 0.62 0.66 0.88 / 0.65
Political Books 0.64 0.63 0.22 0.55 0.57 0.66 / 0.57

Mexican Politics 0.36 0.14 0.09 0.19 0.3 0
NCAA Football 0.15 0.983 0.96 0.28 0.28 0.996 / 0.94

node selection method is superior to the current practice of
randomly selecting a node, and that our outlier detection can
correctly detect outliers, or the absence of, in all of the ground
truth networks we evaluated.

Future work includes investigating how our metric can be
applied to weighted networks by, for example, computing the
weight of a triad as the average of its edge weights. One could
also consider signed networks by utilizing the signed triads
approached proposed by Leskovec et al. [21]. Alternatively,
our metric could be applied to directed networks, although it
is currently unclear what a directed triad would mean in this
context. We also believe that our work can easily be extended
to support the detection of overlapping communities by adding
nodes back into the network after they have been placed into a
community. Unfortunately there is no overlapping ground truth
and thus such an approach can only be evaluated in theory.

Finally, as discussed in the paper, we believe that deciding
how to select a starting node in the local framework is an
entirely open problem that warrants further study. In particular,
we are interested in discovering what structural properties of
node result in it being a good seed node for a community and
how these properties are related to existing metrics, such as
PageRank, Degree, or Betweenness. Perhaps possible insights
can be gained by studying how database researchers have
solved the similar problem of selecting cluster centroids; but it
is not immediately obvious that these techniques could easily
be applied within the context of community mining.
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