
An Associative Classifier For Uncertain Datasets

Metanat Hooshsadat and Osmar R. Zäıane

University of Alberta
Edmonton, Alberta, Canada

{hooshsad,zaiane}@cs.ualberta.ca

Abstract. The classification of uncertain datasets is an emerging re-
search problem that has recently attracted significant attention. Some
attempts to devise a classification model with uncertain training data
have been proposed using decision trees, neural networks, or other ap-
proaches. Among those, the associative classifiers have inspired some of
the uncertain classification algorithms given their promising results on
standard datasets. We propose a novel associative classifier for uncertain
data. Our method, Uncertain Associative Classifier (UAC) is efficient
and has an effective rule pruning strategy. Our experimental results on
real datasets show that in most cases, UAC reaches better accuracies
than the state of the art algorithms.

1 Introduction

Typical relational databases or databases in general hold collections of records
representing facts. These facts are observations with known values stored in the
fields of each tuple of the database. In other words, the observation represented
by a record is assumed to have taken place and the attribute values are assumed
to be true. We call these databases “certain database” because we are certain
about the recorded data and their values. In contrast to “certain” data there is
also “uncertain data”; data for which we may not be sure about the observation
whether it really took place or not, or data for which the attribute values are
not ascertained with 100% probability.

Querying such data, particularly computing aggregations, ranking or discov-
ering patterns in probabilistic data is a challenging feat. Many researchers have
focused on uncertain databases, also called probabilistic databases, for managing
uncertain data [1], top-k ranking uncertain data [2], querying uncertain data [3],
or mining uncertain data [4, 5]. While many approches use an existancial uncer-
tainty attached to a record as a whole, our model targets uncertain databases
with probabilities attached to each attribute value.

This paper addresses the problem of devising an accurate rule-based classi-
fier on uncertain training data. There are many classification paradigms but the
classifiers of interest to our study are rule-based. We opted for associative clas-
sifiers, classifiers using a model based on association rules, as they were shown
to be highly accurate and competitive with other approaches [6].

After briefly reviewing related work for associative classification as well as
published work on classifying in the presence of uncertainty, we present in Section

3 our novel classification method UAC. Finally in Section 4 we present empirical
evaluations comparing UAC with other published works.

2 Related Works

Recently, a considerable amount of studies in machine learning are directed to-
ward the uncertain data classification, including: TSVC [7] (inspired by SVM),
DTU [8] (decision tree), UNN [9] (based on Neural Network), a Bayesian clas-
sifier [10], uRule [11] (rule based), uHARMONY [12] and UCBA [13] (based
on associative classifiers). However, models suggested by the previous work do
not capture some possible types of uncertainty. In previous studies, numerical
attributes are only modeled by intervals, while they may exist in other forms
such as probability vectors. Categorical attributes are modeled by a probability
distribution vector over their domain where the vector is unrealistically assumed
to be completely known. We use a probability on each attribute value.

High accuracy and strong flexibility are some of the advantageous characteris-
tics of the rule based classifiers. Investigating rule based uncertain data classifiers
has been the theme of many studies. One of these studies is uRule [11], which
defines the information gain metric in presence of uncertainty. The probability
of each rule classifying the instance is computed based on the weighting system
introduced by uRule.

Associative classification is a large category of rule based classification in
which the rule induction procedure is based on the association rule mining tech-
nique. Some of the prominent associative classifiers are CBA [14], ARC [15], and
CMAR [16]. In this paper, we introduce an associative classifier for uncertain
datasets, which is based on CBA. CBA is highly accurate, flexible and efficient
both in time and memory [14].

CBA directly adopts Apriori to mine the potential classification rules or
strong ruleitems from the data. Ruleitems are those association rules of form
a → c, where the consequence (c) is a class label and the antecedent (a) is a
set of attribute assignments. Each attribute assignment consists of an attribute
and a value which belongs to the domain of that attribute. For example, if A1

and A2 are two attributes and c is a class label, r = (A1 : u1, A2 : u2 → c) is
a ruleitem. r implies that if A1 and A2 have values of u1 and u2 respectively,
the class label should be c. A ruleitem is strong if its support and confidence are
above the predefined thresholds.

After mining the strong ruleitems, a large number of them are eliminated
by applying the database coverage approach. This method of filtering rules is
applied by all rule-based classifiers, particularly associative classifiers. However,
in the case of uncertain data, database coverage presents a significant challenge.
Rule based classifiers often need to evaluate various rules to pick the best ones.
This level is critical in maintaining a high accuracy. The evaluation often involves
the answer to the following question: To which training instances can a rule be
applied? Yet, the answer is not obvious for uncertain datasets. Many uncertain
dataset instances may satisfy the antecedent of a rule, each with a different

probability. Existing uncertain data rule based classifiers have suggested various
answers to this problem.

uHARMONY suggested a lower bound on the probability by which the in-
stance satisfies the rule antecedent. This approach is simple and fast, but the
difficulty or even impossibility of setting the threshold is a problem. This is ex-
plained in more detail in Section 3.2. uRule suggested to remove the items in the
antecedent of the rule from the instance, to leave only the uncovered part of the
instance every time. In contrast to uHARMONY, this method uses the whole
dataset but it may cause sensitivity to noise which is undesirable. UCBA, wich
is based on CBA, does not include the uncertainty in the rule selection process;
they select as many rules as possible. This method does not filter enough rules;
so may decrease the accuracy.

In UAC, we introduce a new solution to the coverage problem. This compu-
tation does not increase the running time complexity and needs no extra passes
over the dataset.

3 UAC Algorithm

In this section, we present our novel algorithm, UAC. Before applying UAC
to uncertain numerical attributes in the train sets, they are first transformed
into uncertain categorical attributes using U-CAIM [10], assuming the normal
distribution on the intervals. After discretization, the value of the i-th attribute
for the j-th instance is a list of value-probability pairs, as shown in Equation 1.

Aj,i = {(xj,i,1 : pj,i,1), (xj,i,2 : pj,i,2), .., (xj,i,k : pj,i,k)}
∀q ≤ k ;Aj .l ≤ xj,i,q ≤ Aj .uΣ

k
q=1 pj,i,q = 1.

(1)

Building an associative classifier consists of two distinct steps: 1- Rule Ex-
traction, 2- Rule Filtering. In this section each step of UAC is explained. Later,
the procedure of classifying a new test instance is described.

3.1 Rule Extraction

In uncertain datasets, an association rule is considered strong if it is frequent and
its confidence (Conf) is above a user defined threshold called minimum confi-
dence. A ruleitem is frequent if its Expected Support (ES) is above a user defined
threshold called minimum expected support. The definitions of the expected sup-
port and the confidence are as follows.

Definition If a is an itemset and c is a class label, expected support (ES)
and confidence (Conf) of a ruleitem are calculated by Equation 2. Here, the
ruleitem is denoted by r = a→ c and T is the set of all transactions.

ES(a) = Σ∀t∈TΠ∀i∈aP (i ∈ t)
ES(a→ c) = Σ∀t∈T,t.class=cΠ∀i∈aP (i ∈ t).
Conf(a→ c) = ES(a→c)

ES(a) .
(2)

Some studies have criticized expected support and defined another measure
which is called probabilistic support [17] [18]. Probabilistic support is defined as
the probability of an itemset to be frequent with respect to a certain minimum
expected support. However, probabilistic support increases the time complexity
significantly. Therefore to be more efficient, UAC uses the expected support.

uHARMONY defines another measure instead of confidence which is called
expected confidence. The computation of this measure takes O(|T |2) time where
|T | is the number of instances. Computing confidence is only O(1), thus we use
confidence for efficiency reasons. Our experimental results in Section 4 empiri-
cally shows that our confidence based method can reach high accuracies.

Our rule extraction method is based on UApriori [4]. The candidate set is
first initialized by all rules of form a→ c where a is a single attribute assignment
and c is a class label. After removing all infrequent ruleitems, the set of can-
didates is pruned by the pessimistic error rate method [19]. Each two frequent
ruleitems with the same class label are then joined together to form the next
level candidate set. The procedure is repeated until the generated candidate set
is empty, meaning all the frequent ruleitems have been found. Those ruleitems
that are strong (their confidence is above the predefined threshold) are the po-
tential classification rules. In the next section, the potential ruleitems are filtered
and the final set of rules is formed.

3.2 Rule Filtering

The outcome of the rule extraction is a set of rules called rawSet. Usually the
number of ruleitems in rawSet is excessive. Excessive rules may have negative
impact on the accuracy of the classification model. To prevent this, UAC uses
the database coverage method to reduce the set of rules while handling the
uncertainty. The initial step of the database coverage method in UAC is to sort
rules based on their absolute precedence to accelerate the algorithm. Absolute
precedence in the context of uncertain data is defined as follows:

Definition: Rule ri has absolute precedence over rule rj or ri � rj , if a) ri
has higher confidence than rj ; b) ri and rj have the same confidence but ri has
higher expected support than rj ; c) ri and rj have the same confidence and the
same expected support but ri have less items in its antecedent than rj .

When data is not certain, confidence is a good and sufficient measure to
examine whether a rule is the best classifier for an instance. But when uncertainty
is present, there is an additional parameter in effect. To illustrate this issue,
assume rules r1 : [m, t→ c1] and r2 : [n→ c2] having confidences of 0.8 and 0.7,
respectively. It is evident that r1 � r2. However, for a test instance like I1 : [(m :
0.4), (n : 0.6), (t, 0.3)→ x] where x is to be predicted, which rule should be used?
According to CBA, r1 should be used because its confidence is higher than that
of r2. However, the probability that I1 satisfies the antecedent of r1 is small,
so r1 is not likely to be the right classifier. We solve this problem by including
another measure called PI. PI or probability of inclusion, denoted by π(ri, Ik),
is described as the probability by which rule ri can classify instance Ik. PI is

defined in Equation 3. In the example above π(r1, I1) is only 0.3 × 0.4 = 0.12,
While π(r2, I1) is 0.6.

π(ri, Ik) = Πw∈ri P (w ∈ Ik). (3)

Next, we define applicability, denoted by α(ri, Ik) in Equation 4. Applicability
is the probability by which rule ri correctly classifies instance Ik and is used as
one of the main metrics in UAC. For the previous example, α(r1, I1) = 0.096
and α(r2, I1) = 0.42. Thus, it is more probable that I1 is correctly classified by
r2 than r1.

α(ri, Ik) = ri.Conf × π(ri, Ik). (4)

Now based on the applicability, we define the concept of relative precedence
of rule ri over rule rj with respect to Ik. This is denoted by ri �[Ik] rj and is
defined as follows:

Definition: Rule ri has relative precedence over rule rj with respect to
instance Ik denoted by ri �[Ik] rj , if: a) α(ri, Ik) > α(rj , Ik) b) ri and rj have
the same applicability with respect to Ik but ri has absolute precedence over rj .

Having ri �[Ik] rj implies that ri is “more reliable” than rj in classifying
Ik. It is evident from the definition, that the concept of “more reliable” rule in
an uncertain data classifier is relative. One rule can be more reliable than the
other when dealing with an instance, and the opposite may be true for another
instance. In the previous example, r2 has relative precedence over r1, even though
r1 has absolute precedence over r2.

UAC uses the relative precedence as well as the absolute precedence to filter
rawSet. The database coverage algorithm of UAC has 3 stages that are explained
below.

Stage 1: Finding ucRules and uwRules After sorting rawSet based on the
absolute precedence, we make one pass over the dataset to link each instance i in
the dataset to two rules in rawSet: ucRule and uwRule. ucRule is the rule with
the highest relative precedence that correctly classifies i. In contrast, uwRule
is the rule with the highest relative precedence that wrongly classifies i. The
pseudocode for the first stage is presented in Algorithm 1.

In Algorithm 1, three sets are declared. U contains all the rules that clas-
sify at least one training instance correctly. Q is the set of all ucRules which
have relative precedence over their corresponding uwRules with respect to the
associated instances. If i.uwRule has relative and absolute precedence over the
corresponding ucRule, a record of form < i.id, i.class, ucRule, uwRule > is put
in A. Here, i.id is the unique identifier of the instance and i.class represents the
class label.

To find the corresponding ucRule and uwRule for each instance, the proce-
dure starts at the first rule of the sorted rawSet and descends. For example, if
there is a rule that correctly classifies the target instance and has applicability
of α, we pass this rule and look for the rules with higher applicabilities to assign
as ucRule. Searching continues only until we reach a rule that has a confidence

of less than α. Clearly, this rule and rules after it (with less confidence) have no
chance of being ucRule. The same applies to uwRule. Also as shown in Algo-
rithm 1 lines 4 and 6, the applicability values of ucRule and uwRule are stored
to expedite the process for the next stages.

The purpose of the database coverage in UAC is to find the best classifying
rule (coverage) for each instance in the dataset. The covering rules are then
contained in the final set of rules and others are filtered out. The best rule,
that is the covering rule, in CBA is the highest precedence rule that classifies an
instance. This definition is not sufficient for UAC because the highest precedence
rule may have a small PI.

To solve the aforementioned problem, uHARMONY sets a predefined lower
bound on the PI value of the covering rule, a method with various disadvantages.
Clearly, not only estimating the suitable lower bound is critical, but it is also
intricate, and even in many cases impossible. When predicting a label for an
instance, rules that have higher PI than the lower bound are treated alike. To
improve upon this, it is necessary to set the lower bound high enough to avoid low
probability rules covering the instances. However, it remains that it is possible
that the only classifying rules for some of the instances are not above that lower
bound and are removed. Additionally, setting a predefined lower bound filters
out usable information, while the purpose of the uncertain data classifiers is to
use all of the available information. Moreover, having a single bound for all of
the cases is not desirable. Different instances may need different lower bounds.

Given all the above reasons, we need to evaluate the suitable lower bound
for each instance. The definition of the covering rule in UAC is as follows, where
we use the applicability of i.ucRule as our lower bound for covering i.

Definition: Rule r covers instance i if: a) r classifies at least one instance
correctly; b) π(r, i) > 0; c) α(r, i) > α(i.ucRule, i) = cApplic. d) r � i.ucRule

cApplic represents the maximum rule applicability to classify an instance
correctly. Thus, it is the suitable lower bound for the applicability of the covering
rules. This will ensure that each instance is covered with the best classifying rule
(ucRule) or a rule with higher relative and absolute precedence than ucRule. In
the next two stages, we remove the rules that do not cover any instance from
rawSet.

Stage 2: Managing Replacements In this stage (Algorithm 2), cases that
were stored in A at Stage 1 are managed. A contains all cases where i.uwRule
has relative and absolute precedence over i.ucRule, thus i.ucRule may not cover
i. If i.uwRule is flagged in Stage 1, i is covered by i.uwRule (lines 3, 4, and 5).
Otherwise based on the definition of the covering rule in Stage 1, i may get the
coverage by the other rules such as w which have the following characteristics:
a) w classifies i incorrectly; b) w has relative precedence over i.ucRule with
respect to i; c) w has absolute precedence over i.ucRule.

Function allCoverRules (line 7) finds all such rules as w within U , which
are called the replacements of i.ucRule. The replacement relation is stored in a
DAG (directed acyclic graph) called RepDAG. In RepDAG, each parent node

Algorithm 1 UAC Rule Filtering: Stage 1

1: Q = ∅;U = ∅;A = ∅
2: for all i ∈ Dataset do
3: i.ucRule = firstCorrect(i)
4: i.cApplic = α(i.ucRule, i)
5: i.uwRule = firstWrong(i)
6: i.wApplic = α(i.uwRule, i)
7: U.add(ucRule)
8: ucRule.covered[i.class] + +
9: if (ucRule �[i] uwRule) and ucRule � uwRule then

10: Q.add(ucRule)
11: flag(ucRule)
12: else
13: A.add(< i.id, i.class, ucRule, uwRule >)
14: end if
15: end for

has a pointer to each child node via the replace set (line 12). The number of
incoming edges is stored in incom (line 14). Each node represents a rule and
each edge represents a replacement relation.

Each rule has a covered array in UAC where r.covered[c] is used to store the
total number of instances covered by r and labeled by class c. If r.covered[r.class] =
0, then r does not classify any training instance correctly and is filtered out.
Starting from line 22, we traverse RepDAG in its topologically sorted order to
update the covered array of each rule. Rule ri comes before rj in the sorted
order, if ri � rj and there is no instance such as Ik where rj �[Ik] ri. If a rule
fails to cover any instance correctly (line 26), it does not have any effect on the
covered array of the rules in its replace set. At the end of this Stage, enough
information has been gathered to start the next stage, which finalizes the set of
rules.

Stage 3: Finalizing Rules At stage 3 (Algorithm 3), the set of rules is finalized.
In this Stage, UAC filters the rules based on a greedy method of error reduction.
Function computeError counts the number of instances that are covered by rule
r but have a different class label than r.class. The covered instances are then
removed from the dataset. Function addDefaultClass finds the most frequent
class label among the remaining instances (line 6). In line 8, the number of
instances correctly classified by the default class is calculated. totalError is the
total errors made by the current rule r and the default class. In fact, each rule
with positive coverage over its class, is associated with a particular totalError,
defClass, and defAcc (line 10). After processing the rules, we break the set of
rules from the minimum error and assign default and defApplic. defApplic is
used in rule selection as an estimate of applicability of the default class.

Our rule filtering algorithm has a runtime of O(|T | × |R|) in the worst case
scenario, where |T | is the number of instances in the dataset and |R| is the size

Algorithm 2 UAC Rule Filtering: Stage 2

1: RepDAG = ∅
2: for all < i.id, y, ucRule, uwRule >∈ A do
3: if flagged(uwRule) then
4: ucRule.covered[y]−−
5: uwRule.covered[y] + +
6: else
7: wSet = allCoverRules(U, i.id, ucRule)
8: if !RepDAG.contains(ucRule) then
9: RepDAG.add(ucRule)

10: end if
11: for all w ∈ wSet do
12: w.replace.add(< ucRule, i.id, y >)
13: w.covered+ +
14: ucRule.incom+ +
15: if !w ∈ RepDAG then
16: RepDAG.add(w)
17: end if
18: end for
19: Q = Q.add(wSet)
20: end if
21: end for
22: S ← set of all nodes with no incoming edges
23: while S 6= ∅ do
24: r = S.next() {next removes a rule from the set}
25: for all < ucRule, id, y >∈ r.replace do
26: if (r.covered[r.class] > 0) then
27: if id is covered then
28: r.covered[y]−−
29: else
30: ucRule.covered[y]−−
31: Mark id as covered.
32: end if
33: end if
34: ucRule.incom−−
35: if ucRule.incom = 0 then
36: S.add(ucRule)
37: end if
38: end for
39: end while

of rawSet. The worst case scenario is when at Stage 1, at least one ucRule or
uwRule is the last rule in the sorted rawSet. This case rarely happens because
the rules are sorted based on their absolute precedence. UAC also makes slightly
more than one pass over the dataset in the rule filtering step. Passes are made in
Stage 1 and 2. Note that array A is usually small, given that most of the instances
are usually classified by the highest ranked rules. The number of passes is an

important point, because the dataset may be very large. Specially for datasets
that can not be loaded into memory at once, it is not efficient to make multiple
pases. This is an advantage for UAC over UCBA, which passes over the dataset
once for each rule in rawSet. Next section explains the rule selection that is the
procedure of classifying test instances based on the set of rules.

Algorithm 3 UAC Rule Filtering: Stage 3

1: C = ∅
2: for all r ∈ Q do
3: if r.covered[r.class] > 0 then
4: finalSet.add(r)
5: ruleErrors+ = computeError(r)
6: defClass = addDefaultClass()
7: defErrors = computeDefErr(defClass)
8: defAcc = addDefAcc(uncovered(D)− defErrors)
9: totalError = defErrors+ ruleErrors

10: C.add(r, totalError, defClass, defAcc)
11: end if
12: end for
13: Break C from the rule with minimum error
14: C contains the final set of rules
15: default = defClass.get(C.size)

16: defApplic = defAcc.get(C.size)
|T |

3.3 Rule Selection

Rule selection is the procedure of classifying a test instance. In the previous
sections, excessive rules were filtered out from rawSet. The remaining set of rules
is called finalSet and classifies the test instances. UAC selects one classifying rule
for each instance. The selected classifying rule has the highest relative precedence
with respect to the test instance.

The role of the default class (default in Algorithm 3 line 15) is to reduce the
number of rules. The default class predicts the labels of those instances that are
not classified by the rules in the finalSet. So the best predicting label for some of
the test instances may be default class. But UAC may prefer rules with small PI
values to the default class if we follow the procedure of “certain” data classifiers.
To prevent this, defApplic is used as an estimate for applicability of the default
rule. This value shows the number of training instances that were expected to
be classified by the default rule. For example, when two classes, such as a and b,
have the same population in the dataset but no rule labeled b exists, default rule
has a very important role. Consequently, the value of the default applicability is
high. As a result, if the highest precedence rule with respect to a test instance
has less applicability than the default rule, the default rule will predict the label
for that.

4 Experiments and Results

We use an empirical study to compare UAC against the existing rule based meth-
ods. In all of the reported experiments on UAC, the minimum support is set to
1%, the minimum confidence to 0.5 and the maximum number of mined associ-
ation rules to 80, 000. Each reported number is an average over 10 repetitions of
10-fold cross validations.

Since there is no public repository of uncertain datasets, we synthetically
added uncertainty to 28 well known UCI datasets. This method was employed
by all the studies in the field including uHARMONY, DTU and uRule, uncertain
svm, UCBA, etc. and gives a close estimation of the classifier performance in the
real world problems. We selected the same datasets as in [12] to compare our
method with the results reported in their paper for uHARMONY, uRule and
DTU. This also ensures that we did not choose only the datasets on which our
method performs better.

To compare our method against other classifiers, we employ averaging tech-
nique and case by case comparison [20]. The same method was employed by
many other studies including CBA, uHARMONY, DTU and uRule to prove the
better performance of their algorithms. Table 1 provides a comparison between
UAC and other existing rule based methods in terms of accuracy. The reported
accuracies for uHARMONY (#3), DTU (#4) and uRule (#5) are reproduced
from [12]. We applied UAC (#2) to the same datasets generated by the same
procedure of adding uncertainty as [12] to make the comparison meaningful.
Value N/A, existing in the experiments reported by [12], shows that the classi-
fier has run out of resources in their experiments. In Table 1, uncertainty level
is U10@4 meaning that datasets have 10 percent uncertainty, where only four of
the attributes with the highest information gain are uncertain. To add a level 10
uncertainty to an attribute, it is attached with a 0.9 probability and the remain-
ing 0.1 is distributed randomly among the other values present in the domain.
The accuracies in this table are reported on already discretized versions of the
dataset that are available online and referenced in [12].

The accuracies reported show that in most cases UAC has reached higher
accuracies. For some datasets the improvement is significantly high, such as
wine dataset with 36.79% and bands dataset with 19.77% improvement over the
existing maximum accuracy. UAC reaches higher accuracies on the average too.

We have conducted further extensive experiments comparing UAC and UCBA
since both stem from CBA. Due to lack of space we report here only the summary
and refer the reader to [21] for further details. Using a new and more general
uncertainty model that we propose [21], we compared the accuracy of UAC and
UCBA on all 28 datasets as in the previous experiments in Table 1 and show
that UAC outperforms UCBA. On average, over the 28 datasets, the accuracy of
UAC was 74.7% while UCBA averaged 67.5% if a sampled-based model is used
when a numerical attribute is assigned a set of possible values; and respectively
70.3% versus 66.7% if an interval-based model is used [21]. In short, for a nu-
merical attribute, the sampled-based model considers the attribute value to be
expressed by a set of values with their respective probabilities, while the interval-

#1 Dataset #2 UAC #3 uHAR #4 DTU #5 uRule

australian 80.2 85.37 83.62 84.35
balance 84.9 89.3 56.32 62.88
bands 78.4 58.63 N/A N/A
breast 94.3 65.52 91.27 94.56

car 89.3 77.72 70.02 70.02
contracep 43.6 47.59 50.1 44.26

credit 78.1 85.95 84.35 74.35
echo 92 93.29 92.37 87.02
flag 45.7 52.42 59.28 44.85

german 71.9 69.6 72.3 70.1
heart 77.3 56.64 53.04 52.39

hepatitis 81.5 82.52 80 79.35
horse 72.4 82.88 85.33 N/A

monks-1 99 91.36 74.64 70.68
monks-2 75.5 65.72 65.72 65.72
monks-3 98.1 96.4 79.96 68.05

mushroom 100 97.45 100 99.98
pima 73.8 65.11 65.1 67.32

post oper 58 69.75 70 70
promoters 66 69 71.7 61.32

spect 81.8 80.19 79.03 81.65
survival 74 73.53 73.53 72.55
ta eval 50.4 45.04 48.34 33.77

tic-tac-toe 90.8 76.2 72.65 81.52
vehicle 69.8 63.44 64.78 N/A
voting 91.1 92.86 94.48 94.94
wine 87.9 51.11 42.13 41.57
zoo 92.3 88.76 92.08 89.11

Average 78.5 74.05 73.04 70.49

Table 1. %Accuracy, reported by rule based classifiers on datasets modeled based on
[12] at level of uncertainty of U4@10.

based model considers the attribute value to be an interval with a probability
distribution function. Moreover, comparing the training time, UAC was in many
cases about 2 orders of magnitude faster (i.e. X100) than UCBA and produced
significantly less rules for all tested uncertainty levels. This demonstrates the
efficacy of the rule pruning startegy managing to preserve a better set of rules
than UCBA.

5 Conclusion

In this paper we propose an effective way to prune associative classification rules
in the presence of uncertainty and present a complete associative classifier for
uncertain data that encompasses this pruning. Empirical results show that our
algorithm outperforms 4 existing rule-based methods in terms of accuracy on
average for 28 datasets and also show that UAC outperforms UCBA signifi-
cantly for these 28 datasets in terms of accuracy even though UAC produces
less classification rules and has a smaller runtime than UCBA.

References

1. P. Sen and A. Deshpande, “Representing and querying correlated tuples in prob-
abilistic databases,” in IEEE ICDE, pp. 596–605, 2007.

2. C. Wang, L.-Y. Yuan, J. H. You, O. R. Zaiane, and J. Pei, “On pruning for top-k
ranking in uncertain databases,” in international conference on Very Large Data
Bases (VLDB), PVLDB Vol.4, N.10, 2011.

3. M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei, “Probabilistic reverse
nearest neighbor queries on uncertain data,” IEEE Transactions on Knowledge
and Data Engeneering (TKDE), vol. 22, pp. 550–564, April 2010.

4. C. C. Aggarwal, Y. Li, J. Wang, and J. Wang, “Frequent pattern mining with
uncertain data,” in ACM SIGKDD, pp. 29–38, 2009.

5. B. Jiang and J. Pei, “Outlier detection on uncertain data: Objects, instances, and
inference,” in IEEE ICDE, 2011.

6. M.-L. Antonie, O. R. Zaiane, R. Holte, “Learning to use a learned model: A two-
stage approach to classification,” in IEEE ICDM, pp. 33–42, 2006.

7. J. Bi and T. Zhang, “Support vector classification with input data uncertainty,” in
Advances in Neural Information Processing Systems (NIPS), pp. 161–168, 2004.

8. B. Qin, Y. Xia, and F. Li, “DTU: A decision tree for uncertain data,” in PAKDD,
pp. 4–15, 2009.

9. J. Ge, Y. Xia, and C. Nadungodage, “UNN: A neural network for uncertain data
classification,” in PAKDD, pp. 449–460, 2010.

10. B. Qin, Y. Xia, and F. Li, “A bayesian classifier for uncertain data,” in ACM
Symposium on Applied Computing, pp. 1010–1014, 2010.

11. B. Qin, Y. Xia, S. Prabhakar, and Y. Tu, “A rule-based classification algorithm
for uncertain data,” in IEEE ICDE, 2009.

12. C. Gao and J. Wang, “Direct mining of discriminative patterns for classifying
uncertain data,” in ACM SIGKDD, pp. 861–870, 2010.

13. X.Qin, Y. Zhang, X. Li, and Y. Wang, “Associative classifier for uncertain data,”
in international conference on Web-age information management (WAIM), pp.
692–703, 2010.

14. B. Liu, W. Hsu, and Y. Ma, “Integrating Classification and Association Rule
Mining,” in ACM SIGKDD, pp. 80–86, 1998.

15. O. Zaiane and M.-L. Antonie, “Classifying text documents by associating terms
with text categories,” Australasian database conference, pp. 215–222, January 2002.

16. W. Li, J. Han, and J. Pei, “CMAR: Accurate and efficient classification based on
multiple class-association rules,” in IEEE ICDM, pp. 369–376, 2001.

17. Q. Zhang, F. Li, and K. Yi, “Finding frequent items in probabilistic data,” in ACM
SIGMOD, pp. 819–832, 2008.

18. T. Bernecker, H. p. Kriegel, M. Renz, F. Verhein, and A. Zuefle, “Probabilistic
frequent itemset mining in uncertain databases,” in ACM SIGKDD, 2009.

19. J. R. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann Publishers,
1993.

20. J. Demsar, “Statistical comparison of classifiers over multiple data sets”, JMLR,
vol. 7, pp. 1–30, 2010.

21. M. Hooshsadat, Classification and Sequential Pattern Mining From Uncertain
Datasets, MSc dissertation, University of Alberta, Edmonton, Alberta, Septem-
ber, 2011.

