
1

UAPRIORI: AN ALGORITHM FOR FINDING SEQUENTIAL
PATTERNS IN PROBABILISTIC DATA

METANAT HOOSHSADAT, SAMANEH BAYAT, PARISA NAEIMI, MAHDIEH S.
MIRIAN, OSMAR R. ZAÏANE

Computing Science Department, University of Alberta, Canada
Email: {hooshsad, samaneh, naiemi,mirianho,zaiane}@cs.ualberta.ca

Uncertainty in various domains implies the necessity for data mining techniques and
algorithms that can handle uncertain datasets. Many studies on uncertain datasets have
focused on modeling, query ranking, discovering frequent patterns, classification models,
clustering, etc. However despite the existing need, not many studies have considered
uncertainty in sequential data. This paper introduces UAprioriAll, a method to mine
frequent sequences in the presence of uncertainty in transactions. UAprioriAll scales
linearly in time relative to the size of the dataset.

1. Introduction

1.1. Producing Hard Copy Using MS-Word

Statistical studies on uncertain data have recently attracted significant
attention due to the fact that data produced and collected in modern applications
are often uncertain or noisy. Uncertainty happens because of the limitations in
the equipment, privacy reasons, information conversion or extraction, etc.

In a probabilistic transactional database, an item in a transaction can have a
probability attached to it indicating its existential uncertainty of appearing in the
transaction. This is a common form of uncertainty, called existential uncertainty.
As an example of this assume a health-related database in which data is
extracted from hand-written or text-based medical records using machine
learning approaches [1]. Each attribute in this database describes a fact about the
patient, and may be inaccurate for several reasons including inaccuracy in the
information extraction method.

Sequential Pattern Mining or SPM is a well known and important problem
in data mining and has been addressed by many studies [2-5]. However mining
frequent sequences from uncertain datasets is still an open problem. In this

 2

paper, we propose a solution for the aforementioned problem by introducing a
new algorithm called UAprioriAll.

UAprioriAll is designed to enable mining frequent sequences in datasets
with existential uncertainty. The proposed algorithm uses expected support as
the measure of frequentness of transactions and sequences. Expected support is a
metric that measures the expected frequency of an itemset/sequence in uncertain
datasets. It is memory efficient and very fast to compute [6].

In this paper, we briefly overview the studies in the field of uncertain
datasets in Section 2, then introduce and describe our proposed algorithm in
Section 3. We discuss the experiments designed to evaluate the proposed
algorithm in Section 4.

2. Related Works

Frequent sequential pattern mining or SPM [2-5] deals with datasets in
which each transactions is considered to be associated with an id. Each id may
be associated with a sequence of transactions. The definition of the problem is as
follows.

Given a set of sequences where each sequence consists of a list of elements
and each element consists of a set of items, and given a user-specified minimum
support threshold, sequential pattern mining is to find all of the frequent
subsequences, i.e., the subsequences whose occurrence frequency in the set of
sequences is no less than the minimum support.

Uncertain datasets have attracted much attention recently [6]. Some studies
have addressed the SPM problem for specific and limited types of uncertain
datasets [2,3]. The main difference between related works and our study is the
nature of the problem and the data modeling. In our model, each item has a
probability of existence in each transaction, which implies that the spaces of the
models in the previous work are subspaces of our model.

The data model that we propose for a realistic capture of uncertainty in
sequential datasets is existential probabilistic datasets. In such datasets, each
item exists within a transaction with a probability. Equation 1 shows the general
form of our datasets. Each dataset D with size |D| is a set of |D| sequences Si,
where each sequence of size Si contains Si transactions ti,j.

 � = ���: � = 1. . |�|�
�� = < ���,��: � = 1. . |��| >

���,�,�� = (���,�,�, ����,�,��): � = 1. . |��,�|

(1)

 3

Our novel algorithm, UAprioriAll, his algorithm has three phases: a) U-
Litemset; b) U-Transformation; c) U-Sequence.

2.1. UlItemset: Mining Single Sequences

In this phase, the sequences of size 1 (containing only one transaction) are
evaluated. Each single sequence (itemsets) is marked as a candidate, if its
expected support is above the minimum threshold. In the probabilistic datasets D
the expected support is computed by Equation 2.

���(�)� = 	 ���∈!�"��	 ∈ ��
"��	 ∈ �� = 	1 −	$�%∈���1 − ���	 ∈ &��

"��	 ∈ &� = 	 ' "��	 ∈ &�
��	∈(�

	

(2)

We mine the probabilistic frequent patterns using a UApriori based
technique [7]. These itemsets are put in a set called L1. Next, each of the patterns
in set L1 is mapped to a unique integer number and L1 is transformed using this
map. Set L1 is the output of this phase.

2.2. U-Transformation: Simplifying the Dataset

In this phase, we transform the sequential dataset based on set L1. The
transformed dataset has two major differences with the original dataset. First, all
the infrequent itemsets of the original dataset, that is the ones that are not
contained in L1, are removed from the transformed dataset. Second, the frequent
itemsets are mapped into integer numbers as in L1.

UC-Sequence: Mining the Sequences
In this phase, we mine the frequent sequences from the transformed dataset

(output of U-Transformation) using an UApriori-like algorithm. At each step,
the new candidate set (Ck) is filled up based on the frequent sequences of the
previous level (Lk-1) by evaluating Lk-1 ⋈ Lk-1 for all two tuples that have k-2
items in common and then removes those that have infrequent subsets. The
procedure starts from L1 which was calculated in phase 2. We continue till the
set Lk is empty.

To form Lk, we choose c from Ck if the expected support of c is greater than
the minimum value. To calculate the expected support based on Equation 2, we
need to calculate the value of "�� ∈ �� for x which size is greater than 1.The
probability by which the first k items of candidate * ∈ +, (m>k) appears at least
once within the first j items of the sequence � ∈ � is denoted by P{j,k}(c,s) and

 4

computed by a recursive approach presented in Equation 3. The recursive
equation allows us to benefit from the dynamic programming scheme.

 "�* ⊆ �� = "�|.|,|/|�(* ⊆ �)
"��,��(* ⊆ �) = "��01,�01�(* ⊆ �) ∗ �(*3�4 ⊆ �3�4) +

"��01,��(* ⊆ �) ∗ �1 − �(*3�4 ⊆ �3�4)�
"��,��(* ⊆ �) = 0 �7 � > �

"��,1�(* ⊆ �) = 1 − $�89⊆/�
�:;1..��,�1 − �(*314 ⊆ �:)�

(3)

The recursive formula is achieved by dividing the problem into two
mutually exclusive states. State a is when sj contains ck and state b is otherwise.
The probability value is the addition of the probabilities of the two states. State a
requires two events to happen, both *3�4 ⊆ �3�4 and s[1..j-1] (the j-1 first
elements of s) should contain at least one appearance of c[1..k-1] (the first k-1
elements of c). State b also requires two events, c[k] ∉s[j] and c being a subset
of s[1..j-1]. It is evident that states a and b are mutually exclusive. The total
number of computations required can be assessed by Equation 4.

�+�(.,/)� = �"��,��(.,/): |*| − � > |�| − � �

+>?�@�A��>B3"(* ⊆ �)4 = |�|. |*| −
�|*|C − |*|�

2
−

�|*|C − |*|�
2

= |*|. (|�| − |*| + 1)

(4)

Relying on the mathematical meaningfulness of the expected support, the
purpose of UAprioriAll is to find all sequences that have higher expected
support than the predefined threshold. It is easily verifiable that our algorithm is
sound. An induction using the downward closure lemma [7] can prove the
algorithm completeness. In addition, the algorithm terminates when the set Lk is
empty, that is worst case happens at the Kmax-th level, where Kmax is the
maximum length of the sequences. Therefore, total correctness can be proven
for UAprioriAll.

3. Experiments

As there are no uncertain sequential datasets publicly available similar to other
studies on uncertain data (such as in [8]), we used synthetic datasets in our
experiments. Each generated synthetic data is characterized by two parameters:
the number of sequences L and the total number of items I. Our goal is to

 5

investigate the effect of L on the time consumption, so we set I to 20 and L is
varied from 50 to 10000.

Figure 1-Time consumption of UAprioriAll with different support values

The number of transactions in each sequence is a monotonically distributed
pseudo-random number from 1 to 0. We randomly select the items within the
transaction, where all items have equal chances. The existence probability
attached to each item within the transaction is a randomly generated number
between 0 and 1.

To increase the reliability of the results, for each value of L, 5 datasets were
generated and the method was applied 5 times to each dataset, and then
averaged. In this process, we used the Scaling Method. This method scales down
a large dataset by randomly eliminating some transactions, to get a smaller
dataset with lower number of sequences.

The experiments were carried out on a machine with 2.66 GHz clock speed
and 8 GB of RAM. In the implementation of the algorithm we adopted a free
online Java implementation of Apriori [9].

 6

The experiments include the time consumption of the algorithm based on
the minimum support. This measure is important because decreasing it may
cause a dramatic drop in performance and may affect the consistency in the
behavior of UAprioriAll. Setting the minimum support in real world
applications depends greatly on the domain.

Figure 1 shows the time scalability of UAprioriAll with different values of
minimum support. UAprioriAll grows linearly based on the number of
sequences.

4. Conclusion

In this paper, we proposed a novel uncertain sequential pattern mining
algorithm employing the expected support. UAprioriAll considers attribute level
(existential) probability, and mines the frequent sequential patterns. We showed
the feasibility of our new algorithm in terms of time consumption. Based on the
results of the experiments, UAprioriAll's runtime is linearly scalable based on
the number of sequences in the dataset.

5. References

1. A. M. Cohen and W. R. Hersh, A survey of current work in biomedical text mining,
Briefings in Bioinformatics 6, 57 (2005).
2. J. Pei, J. Han, B. M. Asl, H. Pinto, Q. Chen, U. Dayal and M. C. Hsu, Prefixspan
mining sequential patterns efficiently by prefix projected pattern growth, in ICDE ’01:
Proceedings of the 17th International Conference on Data Engineering, (Heidelberg,
Germany, 2001).
3. J. Yang, T. J. Watson, W.Wang, P. S. Yu and J. Han, Mining long sequential patterns
in a noisy environment, in SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, (Madison, Wisconsin, USA, 2002).
4. M. J. Zaki, SPADE: An Efficient Algorithm for Mining Frequent Sequences, Mach.
Learn. 42, 31 (2001).
5. R. Agrawal and R. Srikant, Mining sequential patterns, in Data Engineering, 1995.
Proceedings of the Eleventh International Conference on, (Taipei, Taiwan, 1995).
6. C. C. Aggarwal and P. Yu, A Survey of Uncertain Data Algorithms and Applications,
IEEE Transactions on Knowledge and Data Engineering 21, 609(May 2009).
7. C. C. Aggarwal, Y. Li, J. Wang and J. Wang, Frequent pattern mining with uncertain
data, in KDD ’09: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, (Paris, France, 2009).
8. Q. Zhang, F. Li and K. Yi, Finding frequent items in probabilistic data, in SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD international conference on Management
of data, (Vancouver, Canada, 2008).
9. P. Fournier-Viger, Algorithms/frequent itemset mining algorithms (2010), url:

http://www.philippe-fournier-viger.com/spmf/index.php.

