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Uncertainty in various domains implies the necessity for data mining techniques and 
algorithms that can handle uncertain datasets. Many studies on uncertain datasets have 
focused on modeling, query ranking, discovering frequent patterns, classification models, 
clustering, etc. However despite the existing need, not many studies have considered 
uncertainty in sequential data. This paper introduces UAprioriAll, a method to mine 
frequent sequences in the presence of uncertainty in transactions. UAprioriAll scales 
linearly in time relative to the size of the dataset. 

1.   Introduction 

1.1.   Producing Hard Copy Using MS-Word 

Statistical studies on uncertain data have recently attracted significant 
attention due to the fact that data produced and collected in modern applications 
are often uncertain or noisy. Uncertainty happens because of the limitations in 
the equipment, privacy reasons, information conversion or extraction, etc.  

In a probabilistic transactional database, an item in a transaction can have a 
probability attached to it indicating its existential uncertainty of appearing in the 
transaction. This is a common form of uncertainty, called existential uncertainty. 
As an example of this assume a health-related database in which data is 
extracted from hand-written or text-based medical records using machine 
learning approaches [1]. Each attribute in this database describes a fact about the 
patient, and may be inaccurate for several reasons including inaccuracy in the 
information extraction method. 

Sequential Pattern Mining or SPM is a well known and important problem 
in data mining and has been addressed by many studies [2-5]. However mining 
frequent sequences from uncertain datasets is still an open problem. In this 
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paper, we propose a solution for the aforementioned problem by introducing a 
new algorithm called UAprioriAll. 

UAprioriAll is designed to enable mining frequent sequences in datasets 
with existential uncertainty. The proposed algorithm uses expected support as 
the measure of frequentness of transactions and sequences. Expected support is a 
metric that measures the expected frequency of an itemset/sequence in uncertain 
datasets. It is memory efficient and very fast to compute [6]. 

In this paper, we briefly overview the studies in the field of uncertain 
datasets in Section 2, then introduce and describe our proposed algorithm in 
Section 3. We discuss the experiments designed to evaluate the proposed 
algorithm in Section 4. 

2.   Related Works 

Frequent sequential pattern mining or SPM [2-5] deals with datasets in 
which each transactions is considered to be associated with an id. Each id may 
be associated with a sequence of transactions. The definition of the problem is as 
follows. 

Given a set of sequences where each sequence consists of a list of elements 
and each element consists of a set of items, and given a user-specified minimum 
support threshold, sequential pattern mining is to find all of the frequent 
subsequences, i.e., the subsequences whose occurrence frequency in the set of 
sequences is no less than the minimum support. 

Uncertain datasets have attracted much attention recently [6]. Some studies 
have addressed the SPM problem for specific and limited types of uncertain 
datasets [2,3]. The main difference between related works and our study is the 
nature of the problem and the data modeling. In our model, each item has a 
probability of existence in each transaction, which implies that the spaces of the 
models in the previous work are subspaces of our model. 

The data model that we propose for a realistic capture of uncertainty in 
sequential datasets is existential probabilistic datasets. In such datasets, each 
item exists within a transaction with a probability. Equation 1 shows the general 
form of our datasets. Each dataset D with size |D| is a set of |D| sequences Si, 
where each sequence of size Si contains Si transactions ti,j. 
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Our novel algorithm, UAprioriAll, his algorithm has three phases: a) U-
Litemset; b) U-Transformation; c) U-Sequence. 

2.1.   UlItemset: Mining Single Sequences 

In this phase, the sequences of size 1 (containing only one transaction) are 
evaluated. Each single sequence (itemsets) is marked as a candidate, if its 
expected support is above the minimum threshold. In the probabilistic datasets D 
the expected support is computed by Equation 2.  
 

���(�)� = 	 ���∈!�"��	 ∈ ��
"��	 ∈ �� = 	1 −	$�%∈���1 − ���	 ∈ &��

"��	 ∈ &� = 	 ' "��	 ∈ &�
��	∈(�

	

(2) 

We mine the probabilistic frequent patterns using a UApriori based 
technique [7]. These itemsets are put in a set called L1. Next, each of the patterns 
in set L1 is mapped to a unique integer number and L1 is transformed using this 
map. Set L1 is the output of this phase. 

2.2.   U-Transformation: Simplifying the Dataset 

In this phase, we transform the sequential dataset based on set L1. The 
transformed dataset has two major differences with the original dataset. First, all 
the infrequent itemsets of the original dataset, that is the ones that are not 
contained in L1, are removed from the transformed dataset. Second, the frequent 
itemsets are mapped into integer numbers as in L1. 

UC-Sequence: Mining the Sequences 
In this phase, we mine the frequent sequences from the transformed dataset 

(output of U-Transformation) using an UApriori-like algorithm. At each step, 
the new candidate set (Ck) is filled up based on the frequent sequences of the 
previous level (Lk-1) by evaluating Lk-1 ⋈ Lk-1 for all two tuples that have k-2 
items in common and then removes those that have infrequent subsets. The 
procedure starts from L1 which was calculated in phase 2. We continue till the 
set Lk is empty. 

To form Lk, we choose c from Ck if the expected support of c is greater than 
the minimum value. To calculate the expected support based on Equation 2, we 
need to calculate the value of "�� ∈ �� for x which size is greater than 1.The 
probability by which the first k items of candidate * ∈ +, (m>k) appears at least 
once within the first j items of the sequence � ∈ � is denoted by P{j,k}(c,s) and 
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computed by a recursive approach presented in Equation 3. The recursive 
equation allows us to benefit from the dynamic programming scheme. 
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The recursive formula is achieved by dividing the problem into two 
mutually exclusive states. State a is when sj contains ck and state b is otherwise. 
The probability value is the addition of the probabilities of the two states. State a 
requires two events to happen, both *3�4 ⊆ �3�4 and s[1..j-1] (the j-1 first 
elements of s) should contain at least one appearance of c[1..k-1] (the first k-1 
elements of c). State b also requires two events, c[k] ∉s[j]  and c being a subset 
of s[1..j-1]. It is evident that states a and b are mutually exclusive. The total 
number of computations required can be assessed by Equation 4. 
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Relying on the mathematical meaningfulness of the expected support, the 
purpose of UAprioriAll is to find all sequences that have higher expected 
support than the predefined threshold. It is easily verifiable that our algorithm is 
sound. An induction using the downward closure lemma [7] can prove the 
algorithm completeness. In addition, the algorithm terminates when the set Lk is 
empty, that is worst case happens at the Kmax-th level, where Kmax is the 
maximum length of the sequences. Therefore, total correctness can be proven 
for UAprioriAll. 

3.   Experiments 

As there are no uncertain sequential datasets publicly available similar to other 
studies on uncertain data (such as in [8]), we used synthetic datasets in our 
experiments. Each generated synthetic data is characterized by two parameters: 
the number of sequences L and the total number of items I. Our goal is to 
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investigate the effect of L on the time consumption, so we set I to 20 and L is 
varied from 50 to 10000. 
 

 

Figure 1-Time consumption of UAprioriAll with different support values 

The number of transactions in each sequence is a monotonically distributed 
pseudo-random number from 1 to 0. We randomly select the items within the 
transaction, where all items have equal chances. The existence probability 
attached to each item within the transaction is a randomly generated number 
between 0 and 1. 

To increase the reliability of the results, for each value of L, 5 datasets were 
generated and the method was applied 5 times to each dataset, and then 
averaged. In this process, we used the Scaling Method. This method scales down 
a large dataset by randomly eliminating some transactions, to get a smaller 
dataset with lower number of sequences.  

The experiments were carried out on a machine with 2.66 GHz clock speed 
and 8 GB of RAM. In the implementation of the algorithm we adopted a free 
online Java implementation of Apriori [9]. 
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The experiments include the time consumption of the algorithm based on 
the minimum support. This measure is important because decreasing it may 
cause a dramatic drop in performance and may affect the consistency in the 
behavior of UAprioriAll. Setting the minimum support in real world 
applications depends greatly on the domain. 

Figure 1 shows the time scalability of UAprioriAll with different values of 
minimum support. UAprioriAll grows linearly based on the number of 
sequences.  

4.   Conclusion 

In this paper, we proposed a novel uncertain sequential pattern mining 
algorithm employing the expected support. UAprioriAll considers attribute level 
(existential) probability, and mines the frequent sequential patterns. We showed 
the feasibility of our new algorithm in terms of time consumption. Based on the 
results of the experiments, UAprioriAll's runtime is linearly scalable based on 
the number of sequences in the dataset.  
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