
Detecting Local Communities in Networks with
Edge Uncertainty

Chi Zhang
Department of Computing Science

University of Alberta
Edmonton, Canada

chi7@ualberta.ca

Osmar R. Zaı̈ane
Department of Computing Science

University of Alberta
Edmonton, Canada
zaiane@ualberta.ca

Abstract—In this work, we focus on the problem of local
community detection with edge uncertainty. We use an estimator
to cope with the intrinsic uncertainty of the problem. Then
we illustrate with an example that periphery nodes tend to be
grouped into their neighbor communities in uncertain networks,
and we propose a new measure K to address this problem. Due to
the very limited publicly available uncertain network datasets, we
also put forward a way to generate uncertain networks. Finally,
we evaluate our algorithm using existing ground truth as well
as based on common metrics to show the effectiveness of our
proposed approach.

Index Terms—uncertain network, local community detection,
social network analysis

I. INTRODUCTION

Many datasets can be represented by networks consisting
of a set of nodes and edges connecting these nodes. Examples
include protein-protein interaction networks [1], food webs
[2], social networks [3], air transportation networks, collab-
oration networks [4], [5] and the worldwide web (WWW) [6],
[7]. The nodes in many networks fall naturally into groups
or communities. Nodes in the same community are densely
connected, while the number of edges between nodes of differ-
ent communities is much smaller. Community detection is the
task of finding such communities in complex networks based
on edges between nodes. Detection of these communities is
key to understanding the structure of complex networks and
extracting useful information from them. The discovery of
communities in networks can be useful in various applications.
For example, the detection of groups within the worldwide
web can be used to find sets of web pages on related topics
[8]; the detection of groups within social networks can also
be used to find social units or communities [9]. Besides
these applications, community detection can also be used
in analyzing trends in citation networks [10] and improving
recommender systems [11]. Because of its broad applications
in different domains, community detection has attracted in-
creasing attention from computer scientists, biologists and
physicists recently.

In the past, a large number of community detection algo-
rithms have been proposed for deterministic graphs, where
the existence of edges is known and certain. According to
the characteristics of these algorithms, they can be divided

into graph partitioning-based algorithms [12], [13], clustering-
based algorithms [9], [14]–[16], genetic algorithms-based al-
gorithms [17] and label propagation-based algorithms [18].

Most previous approaches on community detection have
focused on networks where the structure is deterministically
known. Recently, we have an increasing number of networks
which have edge uncertainty, which means the network struc-
ture is not exactly and deterministically known. The edges
are constructed through uncertain or statistical inference, so
we only know the connections between nodes with a certain
probability. Examples of such networks include protein-protein
interaction networks with experimentally inferred links, sensor
networks with uncertain connectivity links, or social networks,
which are augmented with inferred friendship, similarity, or
trust links. To deal with uncertain networks, Krogan and his
colleagues converted the uncertain network into a conventional
binary network by thresholding the likelihoods [1]. Dahlin and
Svenson proposed a method which is based on sampling from
an ensemble of deterministic networks that are consistent with
the available information about the uncertain networks [19].
Liu et al. developed a novel k-means algorithm to solve the
uncertain clustering problem [20]. Martin, Ball and Newman
gave a principled maximum-likelihood method for inferring
community structure [21]. Kollios et al. [22] and Ceccarello et
al. [23] proposed approximation algorithms to cluster uncertain
graphs. However, all these approaches require knowledge of
the entire graph structure. The requirement of accessing the
whole network can not be satisfied when networks become
too large to know completely, for example, the WWW. In this
scenario, it is hard to identify global communities, however,
finding a local community for a certain node is still useful.
A local community is a community defined based on local
information without having access to the entire network. For
instance, we may want to quantify the local community of
a person given his/her social network on Facebook. Though
several different local modularity metrics [24]–[26] have been
proposed to identify local community structure given limited
information in deterministic networks. The problem of local
community detection with edge uncertainty is not yet solved.

In this work, we mainly focus on the problem of local
community detection in the context of uncertain networks. We
propose a way to convert the uncertain community detection

Fig. 1. An example of uncertain network. The numbers are existential
probabilities.

problem into the deterministic scenario, and put forward a new
measure to tackle the problem existing in uncertain networks.
The remainder of this paper is organized as follows. In Section
II, we provide the problem definition. In Section III, we
review related works. In Section IV, we show the limitation
of previous works and develop a new algorithm to find local
communities in uncertain networks. In Section V, we present
our evaluation metrics and the experiment results. We also
demonstrate how we find the best hyper-parameter in this
section. Finally, we conclude the results in Section VI.

II. PROBLEM DEFINITION

A. Uncertain Network

An uncertain graph G = (V, E ,P) is defined over a set of
nodes V , a set of edges E , and a set of probabilities P of
edge existence. Note the probability over the edge between
node Vi and node Vj can be represented as Pi,j or Pj,i. The
multiple links and self-connections are not allowed. Figure 1
is an example of an uncertain network.

B. Local Community Detection

As mentioned in the introduction, local communities are
densely-connected node sets which are discovered and evalu-
ated based only on local information. The task of local com-
munity detection aims to find a local community for a certain
start node. Clauset, Chen and Wu proposed local community
detection problem settings for deterministic networks in [24],
[25], [27]. Here, we reiterate them in the context of uncertain
networks.

Suppose that in an undirected network G, we start with
one node and we know all its possible neighbors and the
possibilities of edge existence between the start node and
all possible neighbors. Note we use ‘possible’ here because
there exists uncertainty in the existence of edges between the
start node and neighbors. The possibility is in the range of
(0,1]. We use D to denote the known local community of the
graph (for the start node). This necessarily implies that we
also have limited information for another shell node set S,
which contains nodes that are possible neighbors of nodes in
D but do not belong to D (note ‘limited’ means nodes in S
may also have other possible neighbors that are not in D, but
we do not know this information until we visit them). In such
circumstances, the only way to gain additional information

Fig. 2. Local Community Definition

about the network G is to visit possible neighbor nodes si
of D (where si ∈ S) and obtain the possible neighbors of
si and the possibilities of edge existence between si and its
neighbors. As a result, si is removed from S and becomes a
member of D while additional neighbor nodes of si may be
added to S. Furthermore, nodes in D can be split into two
groups: the core node set C, where any node ci ∈ C has no
outward links, which means all possible neighbors of ci belong
to D; and the boundary node set B, where any node bi ∈ B
has at least one possible neighbor in S. Figure 2 shows node
sets D, S, C and B in a network.

III. PREVIOUS WORK

A. Local Modularity R in Deterministic Networks

In deterministic networks, Clauset proposed the local modu-
larity R for the local community evaluation problem and used
R in the expansion step to find the best local community [24].

R =
Bin edge

Bout edge + Bin edge
(1)

where Bin edge is the number of edges that connect boundary
nodes and other nodes in D, while Bout edge is the number of
edges that connect boundary nodes and nodes in S. Intuitively,
a good community should have a sharp boundary which has
fewer connections from the boundary to the unknown portion
of the graph, while having a greater number of connections
from the boundary nodes back into the local community. Thus,
R measures the fraction of those inside-community edges in
all edges with one or more endpoints in B and community D
is measured by the sharpness of the boundary given by B.

B. Local Community Detection Algorithm for Deterministic
Networks

To find a local community for a start node in deterministic
networks, Chen and his colleagues proposed a local commu-
nity identification algorithm based on the local modularity
R [25]. The algorithm firstly places the start node in the
community and its neighbors in the shell node set. At each
step, the algorithm adds the neighbor node which gives the
largest increase of R to the community. Then the algorithm
update the community set, the boundary set, the shell node set

and the R value. This process will not finish until there are
no candidate nodes that could increase R.

IV. LOCAL COMMUNITY DETECTION ALGORITHM FOR
UNCERTAIN NETWORKS

A. Local Modularity UR in Uncertain Networks

Inspired by the local modularity R in deterministic net-
works, in order to solve the problem of detecting local
communities with edge uncertainty, one intuitive approach is
to convert the uncertain community detection problem into
the deterministic scenario by using edge probability. In the
uncertain scenario, the local modularity UR for uncertain
networks can be defined as follows:

UR =
E(Bin edge)

E(Bin edge) + E(Bout edge)
(2)

where E(Bin edge) is the expected number of edges that
connect boundary nodes and other nodes in D, which can be
represented as:

E(Bin edge) =
1

2

∑
Vi∈B,Vj∈B,i6=j

Pi,j +
∑

Vi∈B,Vj∈C
Pi,j (3)

while E(Bout edge) is the expected number of edges that con-
nect boundary nodes and nodes in S, which can be represented
as:

E(Bout edge) =
∑

Vi∈B,Vj∈S
Pi,j (4)

After replacing R with UR, we can use the algorithm
mentioned in [25] to find the local community for the input
node.

B. Reviews of the Previous Method

However, simply using UR to replace R and applying the
original local community detection algorithm (as mentioned
in Section III-B) will cause some problems. In uncertain
networks, there are some noise edges between nodes, which
may be generated by missed observations, misreporting or
wrong inference. Although some of them are assigned low
probability, they do not actually exist and can be regarded as
noise. Due to these kinds of noise, if the algorithm starts from
a node Vi in community A, the expansion step might fall into a
different neighbor community B. Figure 3 shows an example.

Community A is a 6-vertex clique, and the probability over
edges in community A are all 0.9. Community B is a 4-vertex
clique, and the probability over edges in community B are
all 0.8. Besides these edges, there is an edge between node
V6 and node V7 with a probability of 0.8. There are also
some other edges between other nodes of community A and
B and the unknown part of the network. If the start node is
V6, we want to find the local community for node V6. The
algorithm mentioned in [25] starts the expansion step from
the start node’s neighbors and adds the node which results in
the largest increase in R to the community. In this uncertain
example, we use UR to take the place of R. V1 to V5 and
node V7 are all neighbors of V6, so they are all candidates.

Fig. 3. An example showing the problem of only using UR to find the local
community.

Initially, UR = 0. In the first step, V6 is added to D and B;
V1 to V5 and V7 are added to S. The UR of the community,
after adding V1,V3 or V5, are all

0.9

4× 0.9 + (4× 0.9 + 0.8) + 0.9
= 0.1011 (5)

After adding node V2 or V4, the UR will be less than 0.1011
due to extra outward edges. The UR of the community after
adding node V7 is

0.8

5× 0.9 + 3× 0.8 + 0.8
= 0.1039 (6)

The algorithm will add node V7 to C because it results in the
largest increase in UR. Then nodes V8,V9,V10 (or V10,V9,V8,
because nodes V8 and V10 are exactly the same) will be added
to C one by one. In this example, when we input the node V6,
the algorithm will regard nodes V6 to V10 as node V6’s local
community, while it should be nodes V1 to V6.

In this example, the structure of the network is clear, but
the algorithm still makes a wrong decision. Chen et al. also
reported a similar problem in the deterministic network in [26],
but they regarded these start nodes as periphery nodes and did
not provide local communities for them. In other uncertain
networks, there are more (noise) edges between communities,
and the probability over some edges are low while others
are high, which make the situation even more complex. In
complex uncertain networks, based on our experiments, we
find more nodes will encounter the aforementioned problem
and be grouped into their neighbor communities. We can not
just simply regard these nodes as periphery nodes and report
no community for them.

C. Introduction of the New Measure K
The reason why the original algorithm does not perform

well in uncertain networks is that UR only measures the
sharpness of the boundary. However, in the uncertain scenario,
the boundary between communities becomes less clear due to
the appearance of noise edges. One main drawback of the
local modularity UR is that it only cares about the nodes
in D and pays no attention to the difference between shell
nodes and unknown area’s nodes. At this moment, though shell

nodes are not part of the community, they can be regarded
as the neighbors of the community, and they can give us
extra information about the community. In the research of
link prediction, people [28] propose a measure called Common
Neighbor (CN) to find the potential links. Researchers find that
two nodes are more likely to form a link if they have many
common neighbors. This idea can also be used in the local
community detection problem. It is easy to understand that
nodes in the same community share some common neighbors,
even though they do not have direct links with each other.
Inspired by this idea, in order to solve the existing problem
in uncertain scenarios mentioned previously, a new measure
K is introduced, which not only pays attention to nodes in B,
but also nodes in S.

Ki = E(Ni,in edge) + E(Ni,shell edge) (7)

where E(Ni,in edge) is the expected number of edges that
connect candidate node Vi and other nodes in D, which can
be represented as:

E(Ni,in edge) =
∑
Vj∈D

Pi,j (8)

while E(Ni,shell edge) is the expected number of edges that
connect candidate node Vi and other nodes in S, which can
be represented as:

E(Ni,shell edge) =
∑

Vj∈S,i6=j

Pi,j · Pj,shell (9)

Pj,shell = 1−
∏

Vm∈D
(1− Pj,m) (10)

The new measure K aims to measure how close the relation-
ship is between the candidate node and the existing commu-
nity. The larger the value K is, the closer the relationship
between the community and the candidate node will be. This
measure will be used to choose which neighboring node should
be added to C (and to B, if necessary) in the first few steps.
It is worth noting that:

1) E(Ni,shell edge) is not simply the sum of probability
over edges between candidate node Vi and nodes in D,
but it also cares about the true probability of at least one
edge between shell node Vj and the existing community
being present, which is denoted by Pj,shell.

2) The start node is more likely to merge other commu-
nities’ nodes at the first few steps of the discovery
phase. With the increase in the number of nodes, the
possibility of wrongly adding other communities’ nodes
will be significantly reduced, so K will only be mainly
considered in the first few steps of the discovery phase
(K will also be considered when UR ties in future steps).

In the example mentioned in Figure 3, the K value for nodes
V1,V2,V3,V4,V5 and V6 are calculated as follows:

Ki=1,2,3,4,5 = 0.9 + 0.9× 0.9× 4 = 4.14 (11)

Ki=7 = 0.8 (12)

Ki=7 is smaller than Ki=1,2,3,4,5, so we will first exclude
node V7. As mentioned in equation (5), the UR of the
community after adding V1,V3 or V5 is 0.1011 while the UR
of the community after adding V2 or V4 is less than 0.1011.
The node added to the community C will be randomly chosen
from nodes V1,V3 and V5.

D. Full Algorithm Description

Similar to the algorithm mentioned in Section III-B, our
algorithm also firstly places the start node in the community.
At each step, we sort candidate nodes based on their K (first
few steps) or UR values (other steps). After all candidate
nodes are sorted, the algorithm will add the first node (which
can increase the community’s UR) to the community C. This
process will stop when there are no remaining nodes in S
which can increase the community’s UR. It is worth noting
that candidate nodes are sorted based on K value in the first
few steps. However, the number of steps is not yet decided. It
is a tunable hyper-parameter, and we use λ to represent it. We
will demonstrate how to find the optimal λ in Section V-C.
The full algorithm description can be found in Algorithm 1.

V. EXPERIMENTS

A. Datasets

To compare methods and evaluate them for use in practical
applications, both synthetic and real-world networks are used
in the experiments.

Real-World Networks

The two real-world networks used are classics in network
science and describe different types of networks: human
friendships and football matches. These networks all have
a known community structure which is supplied by external
labels.

The karate network [29] describes friendships between
members of a karate club at a U.S. university in 1977. The
core network consists of 34 nodes and 78 edges. The club
fractured into two parts during the study and the resulting two
groups are the labels used for the external evaluation. It is
assumed that the community structure can be recovered using
a good community detection algorithm.

The football network [9] contains all the Division IA college
football teams and the edges indicate games during the fall
of 2000. The total number of teams is 115 and the total
number of matches is 613. The labels are the conferences
to which each team belongs and matches are most often
played between teams from the same conference. Therefore
communities detected in this network should indicate the
different conferences.

Synthetic Networks

The synthetic network model used in this paper is adopted
from [30]. The authors have constructed algorithms to generate
synthetic networks with community structures, which has
become a standard benchmark for community detection using
synthetic networks. The networks are generated using six

Algorithm 1: Local Community Identification with Edge
Uncertainty

Data: A network G, a start node V0 and number of steps
λ.

Result: A local community for V0
1 Add V0 to D and B, add all V0’s neighbors to S,
UR ← 0;

2 repeat
3 Array nodelist← [];
4 for each Vi ∈ S do
5 Compute URi;
6 // URi represents the UR value after adding

node Vi;
7 Compute Ki;
8 Add Vi to nodelist;
9 end

10 if |D| < λ then
11 Sort nodelist first by Ki, then by URi;
12 else
13 Sort nodelist first by URi, then by Ki;
14 end
15 // If some nodes have same Ki and URi, break ties

randomly;
16 for each Vi ∈ nodelist do
17 if URi > UR then
18 UR ← URi;
19 Add Vi to D;
20 Remove Vi from S;
21 Update B, D;
22 Update shell nodes possibility based on

Equation (10);
23 break for loop
24 end
25 end
26 until no new node is added to D;
27 return D

TABLE I
PARAMETERS FOR GENERATING SYNTHETIC NETWORKS

Variable Value Description
N 100 number of nodes
k 10 average degree

kmax 30 maximum degree
µ 0.2 mixing parameter

cmin 15 minimum for the community sizes
cmax 25 maximum for the community sizes

different input parameters, shown in the Table I 1, together
with the values used in this paper. These parameters allow for
the generation of families of networks with desired properties.

1The parameters shown in Table I are randomly chosen. We also generate
other synthetic networks based on other parameters and get similar results
in the experiments. To avoid redundancy, we only show the results when
executed using the parameters in Table I.

Generating Uncertain Networks

Since most uncertain graphs are more often than not cor-
porate and government assets and sensitive information, they
are rarely disclosed to the public. Since there are not many
publicly available uncertain network datasets, we proposed a
way to generate uncertain networks based on deterministic net-
works. It is mainly based on three assumptions: (1) Edges that
exist in deterministic networks tend to have high probability in
corresponding uncertain networks; (2) In uncertain networks,
except existential edges, there should exist some edges which
do not exist in deterministic networks, and they tend to have
low probability; (3) Based on a power law distribution, nodes
with high degree are more likely to have new added edges.
Based on these three assumptions, we generate the uncertain
network by the Algorithm 2.

Algorithm 2: Uncertain Network Generator
Data: A deterministic network G, non-existential edge

percentage p
Result: An uncertain network G.

1 for each edge e ∈ G.edges do
2 Generate probability P according to a Gaussian

distribution with mean 0.8 and variance 0.1. (If not
in the range (0,1], regenerate it.);

3 Assign probability P to edge e;
4 Add edge e to the uncertain network G;
5 end
6 NonExistentialEdgesCount← |G.edges| × p;
7 while NonExistentialEdgesCount > 0 do
8 Generate edge e which is not in G.edges;
9 Generate probability P according to a Gaussian

distribution with mean 0.2 and variance 0.1. (If not
in the range (0,1], regenerate it.);

10 Assign probability P to edge e;
11 Add edge e to the uncertain network G;
12 NonExistentialEdgesCount←

NonExistentialEdgesCount− 1;
13 end
14 return uncertain network G

In experiments, the percentage of non-existential edges we
choose to add range from 10% to 40%. Besides, we also
evaluate our algorithm on original deterministic networks,
which can be regarded as a special case of uncertain networks.

B. Evaluation

The most important step is to evaluate our algorithm on
real-world networks and synthetic networks. In this section,
we compare our algorithm (UR+K) and other algorithms
by supervised evaluation and unsupervised evaluation. The
name for these algorithms and their corresponding descriptions
are shown in Table II. We mainly focus on the comparison
between our algorithm and the other two local community
detection algorithms (R and UR). Though Louvain algorithm
[15] is not a local community detection algorithm, we also

TABLE II
ALGORITHM LIST

Algorithm Description

R original local community detection algorithm
based on the local modularity R

UR
original local community detection algorithm

based on the uncertain version local
modularity UR as mentioned in Equation (2)

UR+K our algorithm as mentioned in Algorithm1
Louvain Louvain algorithm

ULouvain regard probability as weight and run
weighted version of the Louvain algorithm

compare our algorithm with it and its variant because it is also
a greedy optimization method and it is always regarded as a
baseline in the research of community mining. As mentioned
previously, in our algorithm, λ is a tunable hyper-parameter.
In this section, we choose λ = 3, and we will demonstrate
how we find the optimal λ in Section V-C.

All uncertain networks are randomly generated based on
deterministic networks. To get more reliable results, for each
deterministic network, we randomly generate 100 uncertain
networks, and all values shown in result tables/figures are
average values over 100 uncertain networks.

Supervised Evaluation

One way to compare community detection results is su-
pervised evaluation. We use a similar evaluation method as
mentioned in [26]. We provide networks with absolute com-
munity ground truth to the algorithm, but limit its access to
network information to local nodes only (Louvain and ULou-
vain algorithms are allowed to use global information). The
only way for the algorithm to obtain more network knowledge
is to expand the community, one node at a time. Therefore, we
can evaluate our algorithm based on the comparison between
ground truth and results obtained by our algorithm, while
satisfying limitations for local community identification.

We compare our algorithm with other algorithms on 2 real-
world networks and 1 synthetic network. For each network,
each node is taken as the start point for algorithms one by
one. Assume the start point is Vi, we use Di to represent
the local community for the start point Vi after running local
community detection algorithms, and we use Di′ to represent
the set of nodes which have the same label as the start node
Vi. To quantify the accuracy of local community detection
algorithms, based on the ground truth, we use F1-measure as
our evaluation metrics. F1-measure is defined as the harmonic
mean of precision and recall. The definition of precision, recall
and F1-measure are as follows:

precision =

∑
Vi∈G |Di ∩ Di′|∑

Vi∈G |Di|
(13)

recall =

∑
Vi∈G |Di ∩ Di′|∑

Vi∈G |Di′|
(14)

F1-measure =
2

1
precision + 1

recall

(15)

Fig. 4. Algorithm results on karate club, football and synthetic networks.
For each network, we add 10%, 20%, 30% and 40% non-existential edges to
the original network. The original network is also regarded as a special case
of uncertain network. For each uncertain network, we compare our algorithm
(UR+K) with the other 4 algorithms. The precision, recall and F1-measure
values of each algorithm are all shown in the graphs. The F1-measure values
gained by different algorithms are represented by different colored bars. Each
F1-measure value’s precision and recall values are represented by its inner
black bar and external white bar respectively.

The results on three networks are shown in Figure 4.
From Figure 4, we can observe that our algorithm (UR+K)

can significantly outperform other algorithms in terms of F1-
measure in karate club dataset and football dataset. Though
our algorithm cannot beat Louvain and ULouvain algorithms
in synthetic network, it also shows competitive detection
accuracy, and it still performs better than algorithms R and
UR on synthetic dataset. Considering our algorithm only uses
local information, while Louvain and ULouvain use global
information, these results are still satisfying.

Unsupervised Evaluation

Since we generate uncertain networks based on determin-
istic networks, when we evaluate our algorithm in the super-
vised way, we assume that uncertain networks have the same
community ground truth as their corresponding deterministic

networks. This assumption is true if we only add a few noise
edges to uncertain networks because a small number of noise
edges will not have an impact on the community structure.
However, with the increase in the number of noise edges, some
communities may merge into one community. In this scenario,
using the original community labels will cause problems.

To solve this problem, we also propose an unsupervised
way to evaluate our algorithm. As mentioned in Section III-A,
the local community modularity R can be used to measure
the quality of the local community. In the uncertain networks
scenario, we can use UR. Therefore, to compare different
algorithms, we can compare local community modularity UR
values after running different algorithms.

In this part, we also compare our algorithm (UR+K) with
other algorithms on 2 real-networks and 1 synthetic network.
The results are shown in Tables III, IV, V.

TABLE III
UR ON KARATE CLUB DATA

Noise R UR UR+K Louvain ULouvain
No 0.5787 0.5789 0.654 0.5604 0.5604

10% 0.584 0.5902 0.7026 0.5176 0.5258
20% 0.6235 0.5942 0.7462 0.4737 0.4858
30% 0.7065 0.6232 0.7858 0.4326 0.4583
40% 0.7628 0.6641 0.8601 0.3965 0.4281

TABLE IV
UR ON FOOTBALL DATA

Noise R UR UR+K Louvain ULouvain
No 0.5065 0.5057 0.5327 0.5497 0.5497

10% 0.4714 0.4826 0.4902 0.5152 0.5208
20% 0.4378 0.4491 0.454 0.4783 0.4802
30% 0.415 0.4189 0.4221 0.4384 0.4463
40% 0.4121 0.4008 0.4017 0.4134 0.4164

TABLE V
UR ON SYNTHETIC DATA

Noise R UR UR+K Louvain ULouvain
No 0.6018 0.6019 0.6537 0.6537 0.6537

10% 0.5476 0.5361 0.5928 0.5924 0.5924
20% 0.5016 0.4941 0.5484 0.5415 0.5414
30% 0.4964 0.4685 0.5306 0.5003 0.5
40% 0.5232 0.4735 0.5742 0.4635 0.4642

From Tables III, IV, V, we can find our algorithm (UR+K)
performs the best on karate club and synthetic datasets, and the
UR values achieved on football dataset by our algorithm are
very close to the best results achieved by the other algorithms.
It is worth noting that, in the expansion steps, though the UR
algorithm always chooses the node which gives the largest
increase of UR, while UR value is not mainly considered
in the first few steps in our algorithm, our algorithm finally
achieved higher UR values than the UR algorithm on all
datasets.

C. Hyper-Parameter Evaluation
Our algorithm has a hyper-parameter λ. As we mentioned

in Section IV-D, the choice of hyper-parameter λ is another

crucial topic in our experiment. To validate that the λ value
we use is a reasonable choice, we conduct experiments in this
section to find the optimal λ. We do this by repeating previous
supervised evaluation experiments on karate club, football and
synthetic networks over a range of different λ values, as shown
in Figure 5.

By using different λ values, we run our algorithm (UR+K)
on three networks and get their corresponding F1-measure
values.

Fig. 5. Hyper-parameter Validation. For each network, we add 10%, 20%,
30% and 40% non-existential edges to the original network. The original
network is also regarded as a special case of uncertain network.

From these experiments, we can conclude that though the

optimal choice of the hyper-parameter λ varies with networks,
the best choice of the hyper-parameter λ is 3 or 4 in almost
all cases. In most cases, λ = 3 performs the best compared
to the other values. Even in the other cases when λ = 3 is
not the optimal choice, the results achieved by λ = 3 is also
competitive compared to the results achieved by the optimal
λ value. Therefore, it is reasonable to choose λ = 3 when
running our algorithm.

VI. CONCLUSION

In this work, we provide a novel approach which is able to
detect local communities in uncertain networks. By taking our
new measure K into consideration, our algorithm can avoid
the problem in which periphery nodes tend to be grouped
into their neighbor communities, and we experimentally show
that our algorithm can outperform the other local community
detection algorithms. However, one drawback is that using K
in the algorithm inevitably results in additional computation.
The K value is mainly considered in the first few steps, after
that, K will only be considered when UR has ties. To reduce
computation, when steps > λ, we can ignore K and no
longer calculate it at those steps. When UR has ties, we can
just randomly pick one node from all nodes which gives the
equally largest increase of UR to the community. Though it
will affect the performance of our algorithm, the extent of the
impact is not significant, since UR rarely has ties in uncertain
networks. Even though UR can sometimes have ties, choosing
a node which does not have the largest K value will only
have a slight impact on the final detection result, because the
detected local community is stable enough at that stage.

We have shown the effectiveness of applying K to the orig-
inal local community detection algorithm. A future direction
is that the new measure K may also be applied in global
community detection algorithms that deal with edge existential
uncertainty. Many hierarchical clustering-based algorithms,
such as Louvain, also use the greedy strategy to maximize the
modularity gain in the agglomeration phase. When devising
an equivalent approach for uncertain graphs, when detecting
global communities, we may encounter some similar problems
as we mentioned in Section IV-B, and our measure K may then
be considered.

REFERENCES

[1] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko,
J. Li, S. Pu, N. Datta, A. P. Tikuisis, et al., “Global landscape of protein
complexes in the yeast saccharomyces cerevisiae,” Nature, vol. 440,
no. 7084, pp. 637–643, 2006.

[2] R. J. Williams and N. D. Martinez, “Simple rules yield complex food
webs,” Nature, vol. 404, no. 6774, pp. 180–183, 2000.

[3] J. Shetty and J. Adibi, “The enron email dataset database schema and
brief statistical report,”

[4] M. A. Nascimento, J. Sander, and J. Pound, “Analysis of sigmod’s co-
authorship graph,” ACM Sigmod record, vol. 32, no. 3, pp. 8–10, 2003.

[5] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 1, no. 1, p. 2, 2007.

[6] R. Albert, H. Jeong, and A.-L. Barabási, “Internet: Diameter of the
world-wide web,” nature, vol. 401, no. 6749, pp. 130–131, 1999.

[7] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener, “Graph structure in the web,” Computer
networks, vol. 33, no. 1, pp. 309–320, 2000.

[8] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee, “Self-
organization and identification of web communities,” Computer, vol. 35,
no. 3, pp. 66–70, 2002.

[9] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proceedings of the national academy of sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[10] P. Bedi and C. Sharma, “Community detection in social networks,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 6, no. 3, pp. 115–135, 2016.

[11] C. Cao, Q. Ni, and Y. Zhai, “An improved collaborative filtering
recommendation algorithm based on community detection in social
networks,” in Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, pp. 1–8, ACM, 2015.

[12] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell system technical journal, vol. 49, no. 2,
pp. 291–307, 1970.

[13] M. E. Newman, “Community detection and graph partitioning,” EPL
(Europhysics Letters), vol. 103, no. 2, p. 28003, 2013.

[14] M. E. Newman, “Fast algorithm for detecting community structure in
networks,” Physical review E, vol. 69, no. 6, p. 066133, 2004.

[15] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[16] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.

[17] C. Pizzuti, “Ga-net: A genetic algorithm for community detection in
social networks.,” Springer.

[18] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Physical review
E, vol. 76, no. 3, p. 036106, 2007.

[19] J. Dahlin and P. Svenson, “A method for community detection in
uncertain networks,” in Intelligence and Security Informatics Conference
(EISIC), 2011 European, pp. 155–162, IEEE, 2011.

[20] L. Liu, R. Jin, C. Aggarwal, and Y. Shen, “Reliable clustering on
uncertain graphs,”

[21] T. Martin, B. Ball, and M. E. Newman, “Structural inference for
uncertain networks,” Physical Review E, vol. 93, no. 1, p. 012306, 2016.

[22] G. Kollios, M. Potamias, and E. Terzi, “Clustering large probabilistic
graphs,” IEEE Transactions on Knowledge and Data Engineering,
vol. 25, no. 2, pp. 325–336, 2013.

[23] M. Ceccarello, C. Fantozzi, A. Pietracaprina, G. Pucci, and F. Vandin,
“Clustering uncertain graphs,” Proceedings of the VLDB Endowment,
vol. 11, no. 4, pp. 472–484, 2017.

[24] A. Clauset, “Finding local community structure in networks,” Physical
review E, vol. 72, no. 2, p. 026132, 2005.

[25] J. Chen, O. R. Zaiane, and R. Goebel, “Detecting communities in
large networks by iterative local expansion,” in Computational Aspects
of Social Networks, 2009. CASON’09. International Conference on,
pp. 105–112, IEEE, 2009.

[26] J. Chen, O. Zaı̈ane, and R. Goebel, “Local community identification
in social networks,” in Social Network Analysis and Mining, 2009.
ASONAM’09. International Conference on Advances in, pp. 237–242,
IEEE, 2009.

[27] Y.-J. Wu, H. Huang, Z.-F. Hao, and F. Chen, “Local community detection
using link similarity,” Journal of computer science and technology,
vol. 27, no. 6, p. 1261, 2012.

[28] M. E. Newman, “Clustering and preferential attachment in growing
networks,” Physical review E, vol. 64, no. 2, p. 025102, 2001.

[29] W. W. Zachary, “An information flow model for conflict and fission
in small groups,” Journal of anthropological research, vol. 33, no. 4,
pp. 452–473, 1977.

[30] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities,” Physical Review E, vol. 80, no. 1, p. 016118, 2009.

